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Abstract

Recent advances in imaging, modeling and computing have rapidly expanded our capabilities to 

model hemodynamics in the large vessels (heart, arteries and veins). This data encodes a wealth of 

information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels 

typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the 

heart and larger arteries is often complex, and velocity field data provides a starting point for 

investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, 

and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are 

necessary to understand inherently transient hemodynamic conditions from the fluid mechanics 

perspective, and to properly understand the biomechanical factors that lead to acute and gradual 

changes of vascular function and health. The goal of the present paper is to review Lagrangian 

methods that have been used in post-processing velocity data of cardiovascular flows.
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1 Introduction

The practical motivations for computational hemodynamics are to better understand blood 

flow in a particular region of the vasculature to (1) improve diagnosis of a cardiovascular 

problem, (2) better understand the hemodynamic underpinnings of cardiovascular disease 

initiation or progression, (3) evaluate and possibly improve how an intervention or device 

alters blood flow, or (4) gain more fundamental understanding of native cardiovascular 

function. These motivations are broad and have significant overlap.

The circulation serves to transport and exchange matter and energy throughout the body. 

The arteries and veins mostly serve a mechanical role in distributing blood between the heart 

and various microvascular beds where exchange processes take place. We restrict our 

discussion to the heart and larger vessels where inertial effects of blood flow are important 

and, in concert with local vascular morphology, can promote complex flow structures. 

Computational hemodynamics serves as a tool to probe such complex conditions for the 
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purposes described above. From the physical perspective, disturbances in blood flow 

influence biology in two fundamental ways, (1) by imparting forces on cellular elements in 

the vessel wall or in the blood, and (2) by enhancing or suppressing transport to and from 

various regions. Quantitative analysis of spatially resolved hemodynamics data has largely 

focused on determining the fluid mechanic forces imparted on the vessel wall – and namely 

wall shear stress for its role in endothelial function [36] and growth and remodeling [64]. 

Quantitative analysis of transport is less common. This is not because it is less important, 

but because transport is an emergent, spatiotemporal phenomenon that is difficult to 

quantify.

The hemodynamics in larger vessels are typically studied using computational fluid 

dynamics (CFD), and particularly using an image-based framework [144]. After verification 

and validation, an important question that arises is how to properly use, or postprocess, the 

resulting data. CFD can provide highly resolved spatial and temporal velocity and pressure 

field information. However, the purpose of computing is insight, not numbers. Image-based 

simulations usually deal with complex domains and pulsatile unsteady flow. From the fluid 

mechanics standpoint, the inherent complexity of the flow makes interpretation difficult, 

which is confounded by uncertainty in what about the flow is meaningful–either from the 

clinical, biological or even numerical perspective. Moreover, modeling or measuring fluid 

flow often amounts to deriving velocity data, u(x, t). Not surprisingly, this predisposes the 

analysis of fluid mechanics to visualization of the velocity field, or closely related 

instantaneous measures. So while fluid flow, and especially blood flow, is traditionally 

analyzed in terms of instantaneous Eulerian fields, these measures often fail in conveying 

the integrated fluid behavior because their viewpoint is both frame-dependent and localized 

in time.

The scope of this paper is a discussion of methods used to postprocess hemodynamics 

velocity field data for purposes of understanding transport. It is biased to Lagrangian post-

processing, which more naturally captures the spatiotemporal behavior of fluid flow than 

rate-of-change measures, especially when the flow topology is changing with time as is the 

case in most investigations of hemodynamics. The discussion mostly coincides with 

modeling blood as a homogeneous fluid, where blood is treated as a continuum in deriving 

the governing dynamics, which when solved typically provide velocity (and pressure) field 

information. This discussion also applies to measured velocimetry data. We do not discuss 

Lagrangian-based methods for modeling blood flow dynamics per se, e.g. methods that 

inherently model blood as a suspension and directly solve particle dynamics as part of the 

governing equations for blood flow [47]. Modeling blood as a suspension is mostly limited 

to very small scales and low Reynolds numbers, e.g. modeling flow in the microcirculation, 

where the hemodynamics are quite different than the flow in heart, arteries and veins.

2 Modeling advection from velocity data

The velocity field is the primitive variable used to describe fluid mechanics, including blood 

flow, and ostensibly describes how a parcel of blood, or an element carried by the blood, is 

transported. However, the velocity field is largely a mathematical construct, representing the 

instantaneous and differential change in a fluid element’s position with time. For unsteady 
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flows, it is easy to misinterpret the physical behavior of the flow from inspection of the 

velocity data. Namely, the spatial and temporal variation of the velocity field can be simple 

and predictable, yet the motion of fluid elements integrated according to the velocity field 

alone can be surprisingly chaotic. This realization is important because it is the transport of 

blood elements over space and time, not the velocity field per se, that is more biologically 

relevant. Likewise, the relevance of other instantaneous fields derived from the velocity, or 

more commonly the velocity gradient (including most methods to identify “vortical” 

structures), to the integrated flow behavior is tenuous because a sequence of snapshots often 

fails to capture the emergent behavior of the integrated effect. Namely, it is challenging to 

characterize something that is always changing.

2.1 Eulerian approach

We refer to the motion of fluid elements according to the velocity field as advection. There 

are two main approaches for studying advection. The continuum approach models advection 

by a partial differential equation (PDE) and each fluid element is assumed to transport some 

property or concentration, which might not be strictly invariant due to flux on the sub-

element scale (diffusion). This viewpoint commonly leads to the advection-diffusion (AD) 

equation modeling the transport of the scalar field c(x, t) according to

(1)

where u(x, t) is the velocity field that is assumed known, K is the diffusivity tensor, and an 

arbitrary source/sink (or reaction) term s has been added for generality. The material 

derivative on the left hand side can be thought of as an artifact of using an Eulerian 

viewpoint to describe the variable c. Therefore, we view the AD equation as an Eulerian 

approach to studying transport.

Non-dimensionalizing Eq. (1) using a characteristic length L, velocity magnitude u0 and 

corresponding (advective) time L/u0, along with dropping the source term and assuming 

isotropic diffusion (K → κ), the AD equation can be written in familiar form

(2)

where Pe = u0L/κ is the Peclet number. For red blood cells, platelets and most macro-

molecules transported in blood κ is less than (10−7 cm2/s) [27, 147]. For blood flow in 

vessels where the velocity field is typically computed or measured, u0 = (1–10 cm/s) and L 

= (0.1–1 cm), yielding Peclet numbers generally larger than (106). Recalling that Pe can 

be interpreted as the ratio of the diffusion response time (L2/κ) to the advection response 

time (L/u0) it is clear that transport in larger vessels is heavily advection dominated and the 

right hand side can often be ignored.

Eq. (2) models the evolution of a scalar field, not discrete elements or particle trajectories. 

Although not common, the Eulerian approach can be used to compute the trajectories of 
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individual fluid elements. We can “label” each material point in the domain by its initial 

location at some arbitrary (initial) time t0. More formally, consider a point (x, t) ∈ Ω × I ⊂ 

ℝ3 × ℝ in space-time, which corresponds to a material point whose position as a function of 

time is denoted x(t), with x0 ≐ x(t0). Then we can define a labeling l : (x, t) ↦ x0. This 

labeling is unique (by uniqueness of solutions) and invariant under the flow (by definition of 

a material point), and thus satisfies

(3)

This advection equation can then be solved and individual trajectories can be obtained as the 

intersection of level sets li(x, t) = x0i for i = 1, 2, 3 in extended phase space, where l = (l1, l2, 

l3) and x0 = (x01, x02, x03).

2.2 Lagrangian particle tracking

The alternative approach to studying advection is a (discrete) Lagrangian approach. Using 

this viewpoint, the position of a material point or tracer may be governed by the ordinary 

differential equation (ODE)

(4)

where the velocity field u(x, t) is assumed known and (x, t) ∈ Ω × I. Eq. (4) can be 

integrated to obtain the position of a tracer at a desired time

(5)

using an appropriate numerical method.

The term Lagrangian particle tracking is often used to describe integration of tracers. 

However, the term “particle” is also often used to refer to objects with non-negligible size 

and mass (inertial particles), as modeled using dynamic relationships (force balances) rather 

than the direct kinematic equation of motion above (cf. §2.3). Regardless, there are generally 

two main objectives in Lagrangian particle tracking. The first is to better understand the 

transport topology by visualization or geometric quantification of particle paths. The second 

is to quantify the exposure of particles to some influence as they move through the domain, 

such as the level of shear stress or chemical exposure experienced by a cellular or sub 

cellular element (e.g. platelet).

Lagrangian particle tracking has been used in several cardiovascular applications to study 

transport. Ehrlich and Friedman [41] performed one of the first computational particle 

tracking studies in blood flow using an idealized 2D bifurcation model to determine a 

measure of stasis as the (normalized) distance traveled by a particle over one cardiac cycle. 

Perktold et al. [110, 112, 113] studied pathlines inside idealized aneurysms and observed 

complicated whirling motions hypothesized to promote thrombosis. More generically, the 

flow inside curved vessels has been studied by constructing trajectories traced from the inlet 
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of the vessel to demonstrate recirculating and helical flow features [149, 56]. The carotid 

bifurcation is a common focus for hemodynamics research, due to the compelling 

correlations between atherosclerosis and separated blood flow in this region, and different 

studies have used particle tracking to better understand flow features in this region [111, 

137, 139, 142, 92]. The effect of non-Newtonian blood rheology on tracer paths has been 

investigated in a 2D stenosis model [20], and in a 2D slice of an aneurysm where velocities 

were obtained from particle image velocimetry (PIV) [37]. Lagrangian particle tracking has 

also been used in evaluating surgical and device design, including optimal flow distribution 

in the design for the Fontan surgery [91, 157, 156]. Figure 1 shows an example of 

Lagrangian particle tracking for evaluating how blood is distributed in a surgery to treat 

congenital heart defects.

2.2.1 Comments on pathlines and trajectories—Note that solutions x(t) can be 

viewed as tracing out curves in Ω or in Ω × I; we refer to the former as pathlines and the 

later as trajectories. In this sense, a pathline is the projection of a trajectory. An implication 

is that pathlines of two material points may intersect each other or themselves, but 

trajectories do not intersect due to uniqueness of solution. We also tend to refer to the 

motion of a material point’s position x(t) in Ω as its trajectory–the duality being that a 

trajectory can be identified as a curve in Ω × I, or as a moving point in Ω when viewed over 

time.

As far as visualization, it is known that for unsteady flows streamlines are of questionable 

utility (or even misleading) since nothing physically flows along them. Direct integration of 

particle trajectories is needed to better understand how material is transported through the 

domain. This is achieved by visualizing pathlines or viewing trajectories of particles over 

time, however both approaches typically provide an intertwined mess that is difficult to 

interpret. This is perhaps why streamlines are commonly visualized even for unsteady 

applications; while nothing actually flows along them, they are visually appealing since they 

do not intersect. While trajectories in space-time do not intersect, visualization of curves in 

space-time (where time is a coordinate) is unintuitive and difficult to graph.

Pathlines are often plotted to visualize the flow structure of unsteady hemodynamics data. 

However, the flow structure revealed is highly specific to when the pathlines are initialized – 

a fact that is often overlooked. The path traced out by x(t) depends explicitly on its location 

at some “initial” time. Hence, the initial position(s) and time(s) particles are seeded in the 

domain can play a pivotal role in what is revealed about the flow. One way to consider this 

is to recall pathlines as the projections of trajectories. The trajectory lives in Ω × I, and 

hence projecting to some hyperplane (physical 3D space), which we denote Ωt0, gives the 

pathlines seeded at t0. These projections can look completely different as the projection 

hyperplane Ωt0 varies with t0. Moreover, we can have fundamentally different trajectories 

leading to the same pathlines.

These are not problems in steady flow, where points can be seeded and integrated forward 

and backward in time to map out the flow. The same is not true for pathlines for unsteady 

flow. Hence, pathlines in unsteady flows are inherently not as useful as pathlines 

(streamlines) in steady flows. As an aside, from the dynamical systems perspective, the flow 
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generated by Eq. (4) is a one-parameter family  : x0 ↦ x(t; x0) when u is independent of t; 

otherwise the flow is a two-parameter family  for time dependent u. 

One can map out the flow in space as integral curves parameterized by t for steady flows; 

such parameterized curves (pathlines) do not encode the flow for unsteady u since the extra 

parameter t0 is not accommodated.

2.3 Inertial particle tracking

It is often desirable to model transport of particles in the cardiovascular system whose size 

and mass cannot be readily ignored. Embolic particles are an important example. 

Fundamental work into particle transport has a rich background in fluid mechanics, as 

reviewed by Michaelides [97]. The works of Maxey and Riley [95] and Gatignol [51] derive 

the following dynamical equation

(6)

where mp and mf are the mass of the (spherical) particle and displaced fluid respectively; g is 

the acceleration due to gravity; v and u are the velocity of the particle and fluid; a is the 

particle radius; and μ and ν are the dynamic and kinematic viscosities of the fluid, and 

and  are the material derivatives following the fluid and particle. The first term on the right 

is the sum of the hydrodynamic forces an equivalent fluid sphere would experience. 

Including this term and neglecting the rest would model the particle as a fluid element, 

equivalent to using Eq. (4). The next term is the buoyancy force. The remaining three terms 

are essentially drag forces: the first is the added mass effect, the next is the steady (Stokes) 

drag, and the last (Boussinesq/Basset/history) term accounts for diffusion of vorticity. These 

last three terms include the Δu Faxen corrections, which account for local non-uniformity of 

the velocity field.

Equation (6) can be derived by assuming the relative Reynolds number, based on the 

difference between the particle velocity and the fluid velocity, is small, and that the particle 

is small compared to the length scale of the background flow. The application of Eq. (6) is 

often extended beyond these realms [97]. To a first order approximation, most emboli can be 

considered spherical in shape, but Eq. (6) can also be used to understand the motion of 

irregular particles. In such cases, the irregular particle can be modeled in terms of a 

equivalent diameter particle. Alternatively, if more information is known about the shape, 

e.g. discoid or spheroid, a theoretical or empirical correction can be added as appropriate 

[30, 73]. Eq. (6) does not account for hydrodynamic lift, which can be added accordingly 
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[96, 73] such as in locations of high shear (Saffman lift) or for rotating (Magnus lift) or non 

spherical particles.

An early computational study simulating inertial particle dynamics in a steady, 2D 

bifurcating artery was performed by Nazemi & Kleinstreue [105], and looked at impact 

locations of cellular (dia = 5μm sphere) particles in the bifurcation. Kleinstreuer et al. [65, 

66, 21] later used the same methods in 3D geometries to correlate various wall shear stress 

(WSS) metrics to particle deposition sites. Basciano et al. [11] similarly looked into the 

transport of inertial particles inside an abdominal aortic aneurysm (AAA) with relation to 

stagnation and thrombus formation. These studies assumed deposition occurred when the 

distance of the center of the particle from the wall was within a specified threshold. Since 

chemical or biophysical affinity of the vessel wall and particle are likely crucial parameters 

for wall deposition, a more refined deposition model was proposed by Kim et al. [72] in the 

context of inertial particle tracking. Other modeling of inertial particle dynamics employed 

in the study of blood flow includes modeling the separation of different blood constituents 

[33].

Many studies including the above have primarily focused on modeling the transport of blood 

cells as inertial particles in large artery flows. This sets up inherent inconsistencies that are 

difficult to reconcile. Prior to applying Eq. (6), or a similar one-way coupled particle 

dynamics model, blood is modeled as a fluid, i.e. a continuum, to derive the velocity field 

u(x, t). In most large vessels, blood is a dense suspension, but when endowed with a proper 

rheology, blood can be modeled as a homogeneous fluid and the macroscopic mechanical 

behavior can be effectively recovered. However, this does not reasonably imply one can go 

back and use the flow field to model the dynamics of cellular elements as a dilute solution 

surrounded by a homogeneous fluid. Unlike in dilute suspensions, there is not a compelling 

expectation that individual cells of blood are dominated by fluid forces as described by Eq. 

(6). Rather intercellular collision and adhesion forces are likely as dominant, if not more 

dominant, than inertial and drag forces on this scale. Moreover, the fluid mechanics is not 

being resolved on the micron scale per se, since blood cannot be modeled as homogeneous 

on this scale. It is perhaps more consistent to assume cellular elements are advected by the 

velocity field, and possibly with diffusive (not necessarily Brownian) motion superimposed, 

as in e.g. [114]. That is, modeling cells as experiencing more “sub-element” effects versus 

“super-element” effects.

For particles whose size is large compared to that of a blood cell, blood may effectively be 

treated as a homogeneous fluid from the particle’s perspective, which imposes 

hydrodynamic forces according to Eq. (6), or similar dynamical model. This may be relevant 

in modeling of embolic particles, which has previously been performed to model 

thromboemboli [107, 28]. The Stokes number (characteristic time of a particle to 

characteristic time of the flow) of cellular elements is typically < 0.001 in larger arteries and 

hence cells can be treated as material points. The Stokes number for thromboemboli can 

easily become close to 1. Hence an important consideration is how might the transport of 

inertial particles, especially to different locations in the circulation, differ from the 

distribution of blood flow. This is especially true for particles originating from the heart, 

which are a leading cause of stroke and whose possible destination is less obvious or 
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consequential than for particles originating elsewhere in the circulation. Carr et al. [28], 

demonstrated that the transport of inertial particles from the heart to the cerebral arteries can 

vary markedly from the distribution of blood flow, and the relationship to particle size is not 

monotonic as one might expect. Fig. 2 is a visualization of inertial particle tracking through 

an aortic coarctation that differentiates between particle to the upper aortic branch arteries 

and the descending aorta.

As consistent with the scope of this paper, Eq. 6 employs a one-way coupling whereby the 

particles are assumed to not affect the velocity field (and particle-particle interactions are 

ignored as reasonable for low particle concentrations). Whether a one way coupling is a 

reasonable assumption or not depends on the particular application. There are several 

variations in how, and to what extent, the fluid and particle dynamics may be more fully 

coupled. Given the complexity of cardiovascular flow modeling, few studies have 

investigated fully-coupled particle dynamics simulations in comparison with one-way 

coupling. However, in a recent study, a two-way coupling approach was used to track the 

distribution of particles of different size and density in circle of Willis [44], which reported a 

slight change in velocity contours between one- and two-way coupled methods, but did not 

report how that influenced particle distributions.

2.4 Lagrangian Helicity

The number of flow descriptors that have been used to characterize fluid mechanics from 

velocity field, or its derivatives, are too numerous to discuss. However, one descriptor that 

has seen repeated use in cardiovascular applications is Lagrangian helicity. Helical motion 

of blood flow is often observed in arteries. Helicity density is defined as the inner product of 

velocity u(x, t) and vorticity ω(x, t) = ∇ × u(x, t) [98]. Grigioni et al. [56] introduced the 

local normalized helicity

(7)

They integrated this measure along tracers to measure Lagrangian helicity

(8)

where the calculation is done for the k’th tracer. Repeating the calculation for different 

tracers a mean quantity called the helical flow index (HFI) was obtained

(9)

where Np is the total number of tracers. Morbiducci et al. used this approach to quantify 

helicity in bypass grafts [101], aorta [103, 104], and carotid bifurcations [100, 99]. A 
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comparison of helical and traditional artery bypass grafts has also been done with this 

method [150, 162].

2.5 Simulated particle tracking for experimental data

Phase contrast (PC) magnetic resonance imaging (MRI), also referred to as PC 

cardiovascular magnetic resonance (CMR), is a non-invasive flow imaging technique 

capable of providing 3D time-resolved velocity in all three directions for large arteries in 

vivo. With the advances made in imaging techniques in the past years PCMRI has become 

an emerging tool in studying blood flow in major arteries [90, 159, 61].

The velocity field obtained by PCMRI has been commonly used for visualizing pathlines. 

The earliest studies have shown the feasibility of this methodology, applying it to various 

major arteries by forward and backward integration of velocity [23, 24]. The construction of 

pathlines in the aorta [16, 17, 88, 89], heart [151, 49, 18, 42, 19], heart valves [74], 

pulmonary artery [10], and aortic aneurysms [62, 48] has been used to visualize in vivo flow 

features. Figure 3 demonstrates pathlines emanating from the heart obtained from in vivo 

PCMRI data, created by releasing tracers in left and right ventricles.

MRI is subject to inherent measurement errors and artifacts that arise especially in complex 

flows. Numerical simulation of MRI has been used to understand these imaging errors. This 

process uses velocity data obtained from CFD to perform particle tracking of spins 

(magnetic moments) to reconstruct the MR image with appropriate equations. This approach 

has been used in studying the signal loss in magnetic resonance angiography [131], and 

imaging artifacts in black blood MR [138].

3 Tracking cellular damage

Thrombosis stemming from alterations in blood flow is a primary concern with nearly all 

major cardiovascular diseases, surgeries, and devices. Platelet activation is a critical step in 

the cascade of events that lead to thrombosis, and platelets can become activated chemically, 

or by exposure to high levels of shear (mechanical activation). Therefore, it is no surprise 

that velocity data from computational hemodynamics simulations has been extensively used 

to better understand the chemical or shear exposure of platelets as they are transported in a 

variety of cardiovascular flows.

Platelets are 2–4 μm in diameter. In larger artery flows, platelets have very high Peclet 

numbers and very small Stokes numbers, so it is reasonable to assume they are transported 

as material points. The exposure of platelets to pathological stresses in disturbed (high 

shear) flow conditions, such as through heart valves, devices and stenoses, has been of 

significant interest. By tracking platelets through the flow domain as discrete particles, it is 

common to define an activation potential (AP) as the integrated stress that the particle 

experiences. E.g. the activation potential defined in [127] was

(10)
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where e is the rate of strain tensor (obtained from the velocity field gradient), T is the 

integration length (exposure time of platelets). Alternatively, the deviatoric stress tensor σ 

could be used in place of e; the two are related by the viscosity. Some studies only 

incorporate “shear stress” in this definition, however experiments suggest that activation can 

also occur from normal stress [116]. The above AP measures both the duration that a 

particle remains in the domain and the level of stress that it has sustained during that time.

As noted in Sec. 2, the AP, like most Lagrangian measures, depends on the initial time and 

location when particles are seeded. To alleviate this problem, particles may be uniformly 

seeded initially, and then released at the inlet of the domain proportional to flow rate (in 

space and time) as to simulate a uniform density of particles continuously released and 

integrated through the domain, which is more or less what occurs physiologically with the 

seeding of platelets (ignoring the fact that platelets are thought to have higher near wall 

density, which may be of questionable relevance in complex flows). Regardless, since the 

initial location and time one starts to accumulate stress is arbitrary, one may interpret results 

as representing the local contribution to mechanical activation, or assuming some initial 

activation potential, as well as assuming only stresses above some threshold contribute to 

the activation potential [143].

Equation (10) quantifies the stress acting on a particle by the (Frobenius) norm of the stress 

tensor. Most experimental studies that have measured a stress threshold for platelet 

activation are based on a simple shear experiment. However, in reality all the components of 

the stress tensor are involved in deforming fluid elements (and potentially cellular elements). 

Based on Von-Mises yield criteria, setting the work done in deforming an element in a 

simple shear flow equal to that done by a full 3D stress tensor one obtains [3]

(11)

Therefore, σν could be used in Eq. (10) alternatively. This has been used in several 

computational studies to calculate AP [9, 1, 133]. It should be noted however that for 

incompressible flow, , and the two measures provide equivalent results. Some 

experimental studies have suggested that stress and exposure time should not be “weighted 

equally,” but AP is better expressed as a power law of stress and exposure time [53, 2, 55, 

106], which has been applied in several computational studies [9, 1, 102, 153, 132, 133, 12, 

93].

Mechanical heart valves (MHV) have represented an important application of this type of 

study. Thrombosis and thromboembolism are the major complications of these devices, 

mainly due to mechanical platelet activation. Bluestein et al. [14, 13] have studied the vortex 

shedding phenomena behind MHVs, showing that platelets initially exposed to high shear 

get trapped in the formed vortices, consequently contributing to a higher AP level, similarly 

shown in [134]. Performance of bileaflet and monoleaflet MHVs have been compared 

showing higher AP levels for the bileaflet MHVs [158, 9]. The AP levels of different 

commercial bilieaflet MHVs has also been compared [39, 154, 160]. Different phases of 
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MHV closure have been studied by comparison of vorticity, shear stress, and AP [76, 54]. 

Morbiducci et al. [102] have shown that spanwise vorticity has a greater effect on platelet 

activation in MHVs than the streamwise vorticity. The levels of AP in bioprosthetic heart 

valves (BHV) have also been studied [133].

PIV is another method to obtain highly resolved velocity data to calculate AP[12], and has 

been compared to CFD predictions of AP giving good agreement [117]. The influence of 

helical flow on platelet activation has been studied in a stenosed carotid bifurcation [93]. 

Shadden and Hendabadi [127] have shown that AP is generally maximized near the 

distinguished material surfaces of the flow that control the transport mechanism (see Sec 5).

Another important application tracking cellular damage is the study of hemolysis. High 

levels of mechanical stress on blood cells can cause cell rupture, which leads to the release 

of its contents into the surrounding medium. The mechanical modeling of hemolysis is 

similar to platelet activation but requiring much higher levels of stress thresholds (referred to 

as blood damage index or hemolysis index in this context). Similar to platelet activation 

potential, different models have been proposed to study hemolysis taking the exposure time 

and stress level into account [57]. Ventricular assist devices (blood pumps) [3, 135, 136, 

152, 153, 109], and MHVs [34, 132, 35, 63] have been common applications of hemolysis 

studies.

4 Flow Stagnation

Regions of the vasculature that are diseased or surgically-altered, and regions where 

vascular disease often initiates, commonly harbor flow stagnation and recirculation (e.g. 

aneurysms, stenosis, bifurcation zones, arterial bends, etc.). Increased residence time of 

atherogenic compounds, coupled with endothelial dysfunction from reduced wall shear in 

these locations, may be an important factor stimulating plaque formation and atherosclerosis 

[161]. Moreover, flow stagnation can lead to the accumulation of antagonistic compounds, 

platelet and blood cell aggregation, and reduced transport of natural inhibitors, leading to 

intravascular thrombosis. Flow stagnation is inherently a transport phenomena and hence 

important application of Lagrangian methods.

Particle residence time (PRT) is a common measure readily computed from particle 

trajectory data. A simple field definition for PRT is the minimum amount of time that a 

tracer with initial position x0 at time t0 requires to leave a domain of interest (Γ)

(12)

where the tracer position x(x0, t0 + t) is given by Eq. (5). The calculation of PRT requires a 

region Γ to be specified, which can be a subset of the computational domain. A main 

problem with the above definition is that it does not account for the nominal 

unidirectionality of blood flow, and hence locations further upstream become biased to 

generally higher PRT values.
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Buchanan et al. [22] normalized PRT by the values calculated from a steady flow with the 

same mean Reynolds number to study the transient effects induced by changing the 

Womersley number in a stenosis. The effect of continuous flow from ventricular assist 

devices on PRT has also been evaluated [121, 115, 46]. Aneurysms are an important 

application of flow stagnation and recirculation. PRT in an internal carotid artery with two 

aneurysms has been investigated [25], as well as for abdominal aortic aneurysms (AAA). In 

AAA, the expansion of the aneurysm bulge together with retrograde flow induced by the 

renal arteries creates stagnant conditions, which have long been thought to promote 

aggregation of platelets and intraluminal thrombus formation (a major complication of most 

AAAs). Suh et al. [140, 141] computed PRT for several patient specific AAA demonstrating 

a considerable decrease in PRT during lower limb exercise due to increase in infrarenal flow 

rate. Arzani et al. [5] quantified the overall level of residence time inside different AAAs for 

rest and exercise conditions. Experimental techniques have also been used to evaluate PRT 

[69, 26, 71, 146, 45]. Figure 4 shows the procedures used for obtaining a PRT field in a 

AAA.

Another problem with PRT measures is that tracers that have been seeded at a particular 

location might get trapped later on in another location. Hence high PRT at a particular 

location does not necessarily reveal where stagnation/recirculation happens. To overcome 

this issue, the mean exposure time (MET) has been proposed [86], similar to that in [77] 

(termed volumetric residence time therein). MET is defined for each element or voxel e of 

the domain, and measures the accumulated amount of time that tracers entering the model 

spend inside this subset, as

(13)

where Ne is the number of encounters of a tracer into the element e, Ve is the volume of the 

element, xp(t) is the position of the tracer, He is the indicator function of the element e, and 

Nt is the total number of particles released. The particle release is usually done constantly at 

the inlet of the domain of interest. Because of the Ne normalization, MET weighs 

recirculation (tracers re-entering the element) lower than stagnation (tracers staying inside 

the element). Similar measures without this normalization have been proposed [122]. The 

 scaling is most reasonable for small elements, where the time spent passing through an 

element is proportional to length, not volume. One shortcoming of the MET measure is that 

it requires a high resolution of Lagrangian tracers to be released in order to sample all the 

computational elements sufficiently. Therefore, it is not advisable to use the flow solver 

elements e, but instead larger elements that are more commensurate with the features of 

interest. That is, stagnation/recirculation is something that happens over space and time and 

hence requires some finite-spatial scale of interest. Making elements too small renders the 

information rather useless–becoming effectively an inverse measure of flow speed at each 

location.
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Gundert et al. computed MET for different stent designs [58]. MET has been calculated in 

patient specific AAAs to relate flow stagnation and progression of the aneurysm [7]. 

Duvernois et al. developed methods to perform Lagrangian postprocessing on deformable 

grids, demonstrating that PRT and MET calculations from deformable and rigid wall models 

produced similar results [40].

Longest et al. [83, 79] have proposed a measure to quantify near-wall residence time 

(NWRT) as

(14)

where Nt is the total number of particles released, Ne is the total number of particles passing 

through a near wall volume (VNW ), Qav is the average flow rate of the model used to 

nondimensionalize the measure, ap is the radius of the particle, hp is the distance between 

particle center and the wall, s represents an exponent set to match experimental data (set to 0 

for massless particles), ||up|| is the magnitude of the particle velocity, and the integration is 

done along particle path (r). This group has used this measure to quantify stagnation in the 

near wall region for different applications such as grafts [83, 80, 79, 81, 82, 84], monocyte 

and platelet deposition [85, 78], and diseased carotid artery surgery [67]. Recently, NWRT 

has been used to evaluate monocyte deposition in AAAs [59].

5 Lagrangian coherent structures (LCS)

The computation of LCS seeks to overcome some important pitfalls of standard approaches 

to analyze flow topology. As mentioned above, characterization of unsteady flow is often 

performed by seeding the domain with particles and visualizing their motion. The 

complexity of the resulting motion and dependence on seeding strategy obscures 

interpretation and fundamental details of the flow. Alternatively, one can compute a scalar 

field of interest (residence time, helicity, vorticity, λ2 criterion, etc.) and visualize this field. 

These measures can be derived from instantaneous rate of change information, or 

Lagrangian statistics, but in either case the field typically does little to retain/convey 

mechanistic understanding of transport. While in some cases the scalar field has direct 

clinical or biological meaning, in many cases the measure is more or less ad hoc, and 

interpretation depends on arbitrary color mapping or thresholding.

The reason that a simple Lagrangian tracking technique loses its capabilities in complex 

flows is the chaotic behavior of fluid motion. Fluid is a substance that is constantly busy 

getting out of its own way. However, even when viewing complex fluid motion, coherent 

structures can be observed. By definition, there is something “special” about these material 

objects, as by definition they have some persistent organizing behavior on the flow. Thus, if 

we restrict ourselves to viewing the fluid evolution directly, not some mathematical 

construct, rather than track material points at random (whose motion ends up looking 

random), one may seek to identify core material surfaces organizing tracer advection – 

which we identify as LCS.
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Fluid, whether compressible or not, wants to behave as incompressible when it moves – i.e. 

it rather get out of its own way than bunch up. This sets up inherent saddle type 

hyperbolicity for fluid elements, and the elements whose direction and strength of attraction 

and repulsion remain most persistent are organizing features in the flow. (E.g. when “flow 

visualization” experiments are performed, dye is essentially used to highlight the most 

persistently attracting material structures.) With this viewpoint, LCS can be defined as 

material surfaces that are most strongly attracting or repelling – the later are hidden from 

dye visualization but are nonetheless important. This can be done using the right Cauchy-

Green strain tensor , where  : x0 ↦ x(t) is the flow map 

obtained e.g. from Eq. (5).

The most common method to visualize LCS is by computation of the finite time Lyapunov 

exponent (FTLE) field. The FTLE is essentially a scaling of the largest eigenvalue of the 

right Cauchy-Green strain tensor, [129] as

(15)

The natural log tends to highlight “exponential” separation and the 1/|t − t0| make the 

measure an average growth rate but is mostly unnecessary in identifying LCS. FTLE 

measures the exponential rate of separation of nearby trajectories, a common feature of 

chaos. To compute the tensor field C(x0; t0, t), a grid of tracers is placed in the domain of 

interest and integrated forward, and the strain tensor can be computed by e.g. finite 

differencing nearby paths. In general, the integration length is dependent on the time scales 

of the flow structures. Consult [124] for a comprehensive review on FTLE/LCS 

calculations. Repelling LCS can be obtained from forward FTLE (choosing T > 0), and 

attracting LCS can be obtained from backward FTLE (T < 0). These structures have been 

used to extract vortex boundaries (combination of attracting and repelling LCS), flow 

separation (from attracting LCS) or reattachment profiles (from repelling LCS), boundaries 

of stagnant flow (from repelling LCS), partitions of fluid going to different downstream 

vessels (from repelling LCS), and mixing mechanisms (stretching and folding marked by 

repelling LCS and attracting LCS respectively).

These methods were first applied to cardiovascular flows in [130], who demonstrated the 

capabilities of this approach to track evolution of flow separation (in a carotid bifurcation), 

evolution of vortex boundaries (in an idealized AAA), complex mixing patterns (in a patient 

specific AAA), and how the partitioning of blood to downstream vessels can be mapped out 

(left and right pulmonary arteries in a total cavopulmonary connection). AAA represents an 

important application where highly complex blood flow typically occurs, which is difficult 

to analyze with traditional methods. Arzani and Shadden [6] used LCS to understand the 

detailed flow topology in several patient specific AAA showing that in all the patients the jet 

penetrating into the aneurysm bulge forms a vortex ring in systole, and not only the 

propagation of this vortex ring determines the transport topology during diastole, but also 

the diastole flow field dictates the fate of the penetrating vortex. An LCS capturing a large 
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coherent vortex in a AAA model is shown in Fig. 5. Arzani et al. [5] extended this analysis 

to study the effects of exercise and the complexities it adds to the flow topology in AAA.

The transport of blood in the left ventricle (LV) during the heart filling in diastole is another 

interesting application of LCS. The formation of a vortex ring inside LV enhances the 

optimal transport and it is correlated with ejection fraction [52]. LCS can be used as an 

objective method to quantify the volume of the vortex. Espa et al. [43] used experimental 

data from a heart pump to compute LCS and study the flow structures formed inside LV. 

LCS has also been computed from in-vivo LV PCMRI data of healthy and diseased patients 

[145, 29], and used to quantify the volume of the vortex ring [145]. Hendabadi et al. [60] 

computed LCS from LV Doppler-echocardiography data of healthy and diseased patients. 

They used attracting LCS to identify the boundaries of injection and repelling LCS as 

boundaries of ejection. The combination of these information was further used in their study 

to quantify residence time. Figure 6 contrasts characterization of flow topology using 

streamlines versus LCS in the LV using methods described in [60], revealing important flow 

structures not easily observed using traditional flow visualization.

Other studies have used this method to study transport in different aortic flows. FTLE/LCS 

has been computed for steady flow measured from PIV in a carotid artery showing the 

recirculating structures, and the increase in complexity of the structures with increase in 

Reynolds number [148]. LCS has been used in aortic valves to delineate the boundaries and 

area of the jet formed downstream of the valve [125, 8], used to quantify the severity of 

aortic stenosis. Xu et al. [155] used LCS to study blood flow during clot formation and 

determined regions of blood that were delivered to the clot. Duvernois et al. [40] computed 

FTLE on a deformable grid from a TCPC patient and observed little difference of the 

emerging LCS compared to the rigid grid. Krishnan et al. [75] developed a method by FTLE 

computations to extract vessel boundaries from PCMRI data, exploiting the fact that PCMRI 

gives random (noisy) velocity data for regions outside the vessel wall that lead to high FTLE 

values.

Schelin et al. [118, 120, 119] studied the chaotic advection of blood flow in idealized 

stenosis and aneurysm models. They used the concept of fractal dimension and Lyapunov 

exponents to quantify the chaotic behavior of flow. They argued that the creation of fractal 

structures by the chaotic flow can lead to an increase in exposure time of platelets along 

these structures, and the high stretching induced by these regions can enhance platelet 

activation. Parshar et al. [108] quantified chaos with Lyapunov exponents in an idealized 

aneurysm for different Reynolds number. Maiti et al. [87] looked at the effect of blood 

rheology corresponding to different hematocrit concentrations on the chaotic flow in a 

stenosis.

6 Mixing

Although LCS (Sec 5) can be effective to understand the mechanisms underlying mixing, 

they do not (directly) provide quantitative information on mixing or mixedness. In this 

section other Lagrangian approaches used to evaluate mixing are discussed. Whether mixing 

in cardiovascular flows is beneficial or not is not an easy question. Laminar flow in a 
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straight tube is unidirectional with poor mixing, however this is generally the preferred state 

in arteries. The situation can become more complex for diseased arteries. For example, high 

mixing in AAA is thought to be favorable. If there is a high global mixing in the aneurysm, 

platelets near the wall that are subject to aggregation and thrombosis due to stasis have a 

higher chance of being advected away from the wall and flushed out of the aneurysm. On 

the other hand, it is possible to have a region relatively cut off from the rest of the flow, but 

that maintains rather good mixing within itself. This is generally adverse though and can 

enhance thrombosis by maintaining relative stasis. Likewise, in the heart (e.g. left ventricle) 

an efficient momentum exchange of fluid from the inflow (mitral valve) to outflow (aortic 

valve) is considered beneficial, but on the other hand the heart is not emptied when it 

contract, and thus mixing of the residual blood volume with the injection and ejection 

volumes is needed. In short, secondary flow structures are beneficial for mixing, but also 

lead to low WSS, recirculation, pressure loss, and other undesirable characteristics.

The simplest way to evaluate mixing by Lagrangian methods is to use particle tracking and 

qualitatively evaluate the mixing behavior of tracers. Doorly et al. [38] studied the effect of 

vortices on mixing. They assumed that for short time intervals viscous effects can be 

ignored, therefore vortex lines are advected by the flow. They placed two ring of tracers 

aligned with the vorticity, one close to the wall and another near the axis, and tracked their 

evolution by particle tracking. The interaction of these two rings as they were advected by 

the flow was used to reveal some of the mixing features in a graft flow. The complex 

distribution of PRT and basins of attraction of tracers has been related to complex mixing 

patterns [25]. Avrahami et al. [9] used particle tracking to investigate the role of mixing in 

wash out properties of ventricular assist devices with different MHVs and the relation to 

thrombus formation. Combining two helical tubes with different diameters has been 

proposed to increase mixing in bypass grafts and arteriovenous shunts with only small 

pressure drops [32]. Bockman et al. [15] investigated the mixing of two streams of tracers 

from the left and right vertebral arteries into the basilar artery. Seo and Mittal [123] studied 

the mixing in the left ventricle by tracking tracers coming from the mitral valve, and tracers 

residing in the ventricle at the beginning of diastole. They sampled the domain into small 

volumes, and by using the standard deviation of the concentration of mitral tracers during 

end of diastole, and the standard deviations of unmixed, and perfect mixing conditions, they 

defined a mixing quality index used to quantify mixing.

Realizing that mixing is an increase in disorder of a system, the entropy concept could be 

used in quantification of mixing. Shannon introduced information entropy as the amount of 

information that a message carries (see [70])

(16)

where P represents a probability measure, and the sum is over the set of all the realizations 

where the probability is defined on. Cookson et al. [31] used an alternative description of 

Shannon entropy and used particle tracking to quantify entropy in helical tubes such as 

bypass grafts. Namely,
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(17)

where Nc is the number of cells (used to discretize the domain), Ns is the number of species 

(different sets of particles whose mixing property is desired), i and k are cell and species 

index respectively, ni,k is the fraction of the k’th species in the i’th cell, and wi is a weighting 

factor set to zero if the cell has no particles, or only single type particles. Equation 17 has 

also been used in quantifying mixing of bypass grafts with an Eulerian approach (advection-

diffusion equation) [50].

The concept of Shannon entropy has been applied in dynamical systems, referred to 

Kolmogorov-Sinai entropy as an objective measure [68, 4]. It can be shown that under 

specific conditions the Kolmogorov-Sinai entropy is the spatial integral of the Lyapunov 

exponents of the dynamical system. In other words it measures the spectrum of all the 

Lyapunov exponents, and could be thought of as a measure quantifying chaotic behavior of 

all degrees of freedom of a system. Consequently, the close relation between chaotic 

transport and mixing could be observed as explained in Sec 5.

There are examples of transformations that have zero entropy but can mix specific scalar 

fields, furthermore the entropy measure is independent of initial configuration of the scalar 

field, therefore the concept of mix-norm and mix-variance has been introduced [94]. The 

idea is to integrate the square of the averaged values of a given scalar field over a set of 

subdomains (densely contained in the entire domain) to quantify mixing across all the 

scales. In other words, mix-norm parametrizes all the sub-domains and takes the root mean 

square of the average values of the scalar field across these sub-domains. Mix-variance has 

the same formulation but the mean of the scalar field is subtracted from the scalar field. This 

idea was used quantify mixing in AAAs during rest and exercise conditions in [5], by 

introducing two sets of tracers: fresh blood penetrating into the aneurysm, and old blood that 

is initially inside the aneurysm. By defining the scalar field as the concentration of fresh 

blood they quantified mix-norm and mix-variance and found higher and more uniform 

mixing during exercise. In their formulation mix-norm represents the overall percentage of 

fresh blood at different subdomains and mix-variance represents the overall variation in 

mixing at different subdomains.

7 Conclusions

Computational hemodynamics provides a powerful tool for modeling in vivo 

hemodynamics. Blood flow in large vessels can have fascinatingly complex behavior and 

understanding the nature of this complexity is one of the important challenges in 

hemodynamics research. Lagrangian postprocessing methods are essential in quantifying 

and better elucidating important features of complicated pulsatile flows. Most of these 

methods are based on Lagrangian particle tracking for direct visualization or geometric 

quantification of trajectories, or as Lagrangian framework to quantify the exposure of blood 

borne element as they are transported to various influences – the fluid mechanic stresses 

exerted on cellular elements being an important example.
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While visualization of Lagrangian particle tracking alone can provide more insight into the 

flow topology than the velocity field or common flow characterization measures, the 

complex nature of trajectory data makes interoperation difficult. Quantification of broader 

transport behavior such as flow separation, mixing, stagnation, recirculation, etc., is often 

achieved by defining suitable Lagrangian-based measures that can be plotted as scalar fields. 

Such an approach is usually ad hoc and the scalar field of interest depends closely on the 

specific application, and ultimately shrouds the mechanistic behavior leading to the 

particular field values. LCS computation seeks a compromise by defining a scalar field from 

trajectory data with physical meaning, but retaining the ability to convey explicit geometric 

information about how fluid elements are transported.
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Figure 1. 
Lagrangian particle tracking in a Y-graft model used to quantify inferior vena cava flow 

distribution to the left (LPA) and right (RPA) pulmonary arteries. Figure from Yang et al. 

[157] with permission.
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Figure 2. 
Tracking inertial particles from the aortic valve through an aortic coarctation model. 

Particles are colored according to whether they are transported to the descending aorta or 

aortic arch branch arteries using methods described in [28].
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Figure 3. 
Pathline visualization of systolic blood flow from the heart obtained by releasing tracers in 

the left and right ventricles during isovolumic contraction. The pathlines are computed from 

in vivo PCMRI velocity data by the methods described in Eriksson et al. [42]. Figure 

courtesy of Dr. Tino Ebbers.
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Figure 4. 
The procedure used in computation of particle residence time (PRT). Tracers are released in 

a region of interest and integrated using the velocity data until they exit the prescribed 

domain. The time that each tracer takes to exit the domain is mapped to its initial location of 

release, resulting in the PRT field. Figure from Suh et al. [140] with permission.
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Figure 5. 
An attracting LCS delineates a large coherent vortex ring formed in an aortic aneurysm. This 

material surface defines the leading edge of the vortex [126, 128].
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Figure 6. 
Comparison of streamlines (left) and FTLE (right) from velocity field data reconstructed 

from Doppler echocardiography data at end of diastole. Distinct LCS revealed in the FTLE 

field denote the boundaries and evolution of E-wave and A-wave filling, along with 

respective vortex interaction.
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