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Abstract

Systems biology is an approach to understanding living systems that focuses on modeling diverse 

types of high-dimensional interactions to develop a more comprehensive understanding of 

complex phenotypes manifested by the system. High throughput molecular, cellular, and 

physiologic profiling of populations is coupled with bioinformatic and computational techniques 

to identify new functional roles for genes, regulatory elements, and metabolites in the context of 

the molecular networks that define biological processes associated with system physiology. Given 

the complexity and heterogeneity of asthma and allergic diseases, a systems biology approach is 

attractive, as it has the potential to model the myriad connections and interdependencies between 

genetic predisposition, environmental perturbations, regulatory intermediaries, and molecular 

sequelae that ultimately lead to diverse disease phenotypes and treatment responses across 

individuals. The increasing availability of high-throughput technologies has enabled system-wide 

profiling of the genome, transcriptome, epigenome, microbiome, and metabolome, providing 

fodder for systems biology approaches to examine asthma and allergy at a more holistic level. In 

this article, we review the technologies and approaches for system-wide profiling as well as their 

more recent applications to asthma and allergy. We discuss approaches for integrating multiscale 

data through network analyses and provide perspective on how individually-captured health 

profiles will contribute to more accurate systems biology views of asthma and allergy.

Keywords

systems biology; network; asthma; allergy; atopic; genome; transcriptome; epigenome; 
microbiome; metabolome; individual health profile; big data

© 2014 American Academy of Allergy, Asthma amp; Immunology. All rights reserved.
*Correspondence: Supinda Bunyavanich, MD, MPH, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, # 1198, 
New York, NY 10029, USA, tel. +1-212-241-6188, fax +1-212-426-1902, supinda@post.harvard.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Allergy Clin Immunol. Author manuscript; available in PMC 2016 January 01.

Published in final edited form as:
J Allergy Clin Immunol. 2015 January ; 135(1): 31–42. doi:10.1016/j.jaci.2014.10.015.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The complexity and heterogeneity of asthma and allergic diseases make both their clinical 

management and investigation challenging. Innumerable environmental and microbial 

exposures modulate variable degrees of genetic predisposition, yielding a spectrum of 

transcriptional and molecular sequelae, disease phenotypes, and treatment responses across 

individuals. The increasing availability of high-throughput technologies has enabled system-

wide profiling of the genome, transcriptome, epigenome, microbiome, and metabolome, 

providing fodder for systems biology approaches to examine asthma and allergy at a more 

holistic level (Figure 1). In systems biology, large data sets collected by multiple modalities 

in populations, ideally with multiple dimensions of data for each individual, are used to 

generate networks that link phenotypic information to interdependent genetic, regulatory, 

metabolite, and environmental profiles. The resulting networks are used to predict behavior 

of the trait and generate novel, biologically relevant information. In this review, we provide 

an overview of the technologies and approaches for system-wide profiling and review their 

more recent applications to the study of asthma and allergy. We focus on findings from the 

past few years and provide perspective on their integration with increasingly available 

personal health profiles toward a systems view of asthma and allergy.

Genome

Since the completion of the Human Genome Project, oligonucleotide microarrays have 

enabled the simultaneous genotyping of millions of genetic variants (single nucleotide 

polymorphisms (SNPs)) scattered across the genome at low cost and with small amounts of 

starting DNA. The increasing technical and financial accessibility of this technology has led 

to direct-to-consumer genotyping services, expanding the pool of genotyped populations.1 

Genome-wide association studies (GWAS), which examine for associations between 

genotype and phenotype, enable unbiased identification of genetic loci for asthma and 

allergy disease risk.2 The National Human Genome Research Institute provides a searchable 

catalog of published genome-wide association studies at www.genome.gov.3

More GWAS of asthma have been conducted compared to GWAS for other allergic 

diseases.3 The 17q21 locus4 has been associated with asthma with the greatest 

reproducibility. 4–7 Encompassing four genes (ORMDL3, GSDMB, ZPBP2, and IKZF3), this 

locus may affect endoplasmic reticulum mediated Ca2+ homeostasis and protein folding, 

resulting in the unfolded protein response as an endogenous inducer of inflammation.8 Other 

asthma susceptibility loci identified through GWAS include genes related to recruitment or 

activation of inflammatory cells (TSLP5, 9, 10, IL335, 9, IL1RL15, 6, 11), T-cell response and 

differentiation (HLA genes9, 10, IL2RB9, DENND1B12, IL6R7), and like the 17q21 locus, 

cell-signaling modulation (PDE4D13, SMAD39, CDHR314). GWAS have also identified 

genetic variants associated with drug treatment response in asthma.15, 16

Although GWAS have uncovered common variation in numerous genes for asthma, a large 

proportion of genetic risk for asthma remains unexplained. SNPs on genotyping arrays 

largely represent common variants that may tag rare variants incompletely. Sequencing can 

uncover rare variants, as it enables deeper coverage of genes and regions of interest, or of 

the entire genome in the case of whole genome sequencing. Sequencing is more cost 

prohibitive than genotyping arrays, however, and therefore practical at this time to 
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implement for targeted gene regions (e.g. 9 candidate asthma genes in 965 subjects 17) or for 

discovery in limited numbers of individuals (e.g. whole genome sequencing in 16 subjects 

with well-characterized asthma18).

GWAS of atopic dermatitis (AD) support that mutations in the FLG gene encoding the 

epidermal structural protein filaggrin are risk factors for AD in Europeans and Asians.19–21 

FLG mutations are not commonly found in those of African ancestry, as a study using whole 

exome sequencing demonstrated.22 In whole exome sequencing, the subset of DNA that 

encodes proteins (exons) is sequenced. The whole exome represents about 1% of the human 

genome and has been more frequently sequenced in family-based studies of rare diseases 

(such as primary immunodeficiencies23) with limited application to asthma and allergy.

Loci near C11orf3021, 24, 5q22.120, and 20q13.3320 have also been identified as AD risk 

variants by GWAS. A meta-analysis of 16 population-base cohorts identified risk loci for 

AD near OVOL1 and ACTL9, which are implicated in epidermal proliferation and 

differentiation; these loci were replicated in an independent study of Japanese subjects21, 

where additional variants were also identified. GWAS of AD overlapping with other 

conditions such as psoriasis and asthma have also been performed.25

The C11orf30 locus associated with AD was also found to be associated with allergic 

rhinitis through GWAS.26 A genome-wide association meta-analysis of Caucasian 

subjects27 examined the associations between genotype and self-reported allergies using 

data from a direct-to-consumer genotyping service 1 combined with a more traditionally 

recruited study cohort. Several loci overlapped with those for asthma, and there was one 

locus near HLA-DQA1 at 6p21.32 specifically associated with self-reported cat allergy.27 

GWAS of ethnically diverse North American subjects identified distinct genome-wide 

significant loci among Latinos, with integrative genomic analyses showing enrichment of 

the identified GWAS loci for mitochondrial pathways.28

GWAS have also been performed for allergen sensitization. A European study focusing on 

grass sensitization specifically found that the AD-associated gene C11orf30 was also 

associated with grass sensitization, as were HLA-DRB4 and a locus near TMEM232 and 

SLC25A46.26 A subsequent larger-scale GWAS of food and environmental allergen 

sensitization combined data from 16 cohorts and identified 10 loci associated with 

sensitization to any allergen. These loci were scattered across the genome, with 6 previously 

associated with established roles in the immune system including STAT6, IL1RL1, BCL6, 

IL2, HLA-DQB1, and HLA-B-MICA.29

GWAS of eosinophilic esophagitis (EoE) showed that common variants at 5q22 

encompassing TSLP and WDR36 were associated with the disease.30 Consistent with this, 

TSLP transcripts were higher in esophageal biopsy specimens from EoE subjects compared 

to unaffected controls, although this was not observed for WDR36.30 GWAS with an 

expanded cohort replicated the previously observed association at the 5q22 locus and 

identified an association at 2p23 spanning CAPN14, which was also specifically expressed 

in esophagus tissue.31
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Transcriptome

The systematic, unbiased quantitative and qualitative characterization of RNA transcripts 

across the genome is called transcriptomics.32 A disease-relevant tissue is sampled, and then 

oligonucleotide microarrays or RNA sequencing (RNA-seq) technologies are used to 

systematically profile the tissue’s RNA transcripts. Transcriptomics offers a complementary 

and synergistic approach to GWAS for studying disease, as RNA reflects the more dynamic 

processes at play in a given tissue or tissues that underlie pathophysiology.

The majority of transcriptome profiling to date has been performed using oligonucleotide 

microarrays. With microarrays, a pool of fluorescently tagged cDNA generated from RNA 

samples is hybridized against a microarray surface studded with known oligonucleotide 

DNA sequences.32 The binding of each oligonucleotide probe with its complementary 

cDNA yields fluorescence that is quantitatively measured and corresponds to the relative 

abundance of the target RNA in the sample. A disadvantage of oligonucleotide microarrays 

is that gene expression measurement depends on efficient, unbiased hybridization of target 

sequence to a predefined, fixed probe set.32 Because selecting probes specific to a given 

gene across all genes in the transcriptome is not possible to achieve, most gene specific 

probe sets report on a complicated mixture of background noise, different isoforms of the 

targeted genes, and cross hybridization of different genes given shared sequence 

characteristics with the targeted gene.

Recent advances in sequencing technologies have made possible the comprehensive and in-

depth characterization of transcriptomes via RNA sequencing (RNA-seq).33 Unlike 

microarrays, RNA-seq does not depend on predefined sequence-dependent hybridization. 

Sequence reads of ~30–500 bases in length for current next generation sequencing 

technologies, and into the thousands of bases for third generation single molecular 

sequencing technologies, are generated randomly from the target sample. Sequencing-based 

measures represent individual transcription reads and are free from the constraints of pre-

specified probes. RNA-seq offers several advantages over oligonucleotide microarrays, 

including the ability to quantify (1) more RNA species, (2) novel non-coding variants (3) 

RNA at baseline, rather than only relative changes across conditions, and (4) a wider range 

of signal.34, 35 Downstream analysis of RNA-seq data is more involved and requires 

bioinformatics expertise to align raw sequence reads to a reference genome or to de novo 

reconstruct transcripts, annotate, and assign gene identity to the sequences. Experimental 

analysis may involve differential gene expression analysis, network modeling, clustering 

algorithms, and machine learning approaches.32 Methods for analyzing RNA-seq data are 

being actively developed.

The majority of gene expression studies to date have been conducted using oligonucleotide 

microarrays. Within asthma and allergy, these array-based studies have involved relatively 

small sample sizes, as others have reviewed.32 Here we focus on gene expression studies in 

asthma and allergy that have applied the more recent technology of RNA-seq.

RNA-seq was recently used to identify new gene transcripts associated with EoE.36 Using 

esophageal biopsies from 6 healthy controls and 10 patients with active EoE, investigators 
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identified 1607 differentially expressed transcripts, 66% of which had not been previously 

identified by oligonucleotide microarray profiling.36

In asthma, RNA-seq profiles of lower as well as upper airway biospecimens distinguish 

subjects with the disease. A comparison of RNA-seq profiles of endobronchial biopsies from 

steroid-free atopic asthma patients and healthy nonatopic controls demonstrated 46 

differentially expressed genes, including SLC26A4, POSTN, and BCL2.37 Gene expression 

differences were also seen when the investigators examined airway smooth muscle RNA-seq 

profiles, with a set of 8 differentially expressed genes specifically discriminating asthma 

from non-asthmatics, irrespective of atopic status.37 RNA-seq profiles of nasal brushings 

from 10 asthma and 10 control subjects showed that nasal airway gene expression profiles 

can identify subjects with asthma driven by IL33.38 IL33 was previously implicated in 

GWAS of asthma.5, 9

Transcriptome profiling in asthma has also been done on tissue obtained peripherally. An 

examination of the transcriptome of circulating CD19+ B lymphocytes from asthmatic 

patients with house dust mite allergy showed increased IL4R expression compared to 

controls, suggesting that B cell transcriptional deregulation is involved in allergic asthma.39

Potential mechanisms underlying glucocorticoid treatment in asthma have been examined 

using RNA-seq. In a double-blind intervention study of 12 steroid-free patients who 

underwent endobronchial biopsy before and after prednisolone or placebo treatment, oral 

prednisolone therapy was observed to alter gene expression in airway smooth muscle. 40 

Fifteen genes were differentially expressed before and after treatment, with 2 of these genes 

(FAM129A and SYNPO2) also associated with methacholine challenge response. 40 Of note, 

SYNPO2 was associated with total serum IgE in asthmatics in an independent GWAS,41 

suggesting roles for this gene in both asthma and allergy. The effect of another 

glucocorticoid, dexamethasone, on airway smooth muscle response was studied using RNA 

sequence profiles of airway smooth muscle cell lines treated with dexamethasone.34 316 

differentially expressed genes were identified, including known (DUSP1, KLF15, PER1, 

TSC22D3) as well as less investigated (C7, CCDC69, CRISPLD2) glucocorticoid response 

genes.34

Single-molecule RNA-seq was recently used to study pediatric AD, where small biopsies 

yield limited mRNA. The technology was applied to interrogate the transcriptome of 26 

children with AD and 10 nonatopic teenage controls.42 2430 differentially expressed genes 

were identified, and gene ontology-based analysis to these differentially expressed genes 

highlighted aberrations in extracellular space and lipid metabolism in atopic skin.42 Further 

effects were seen when subjects were stratified by mutations in FLG,42 the gene frequently 

implicated in AD in GWAS.

Epigenome

Heritable changes in gene expression can occur without direct alteration of DNA sequence. 

The study of such epigenetic changes complements genome-wide and transcriptomic 

approaches for studying disease, as it can characterize DNA sequence-independent 

modification contributing to transcriptomic variation and downstream phenotype.
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Epigenetic changes may include DNA methylation, DNA hydroxymethylation, histone 

modification, and microRNAs. DNA methylation refers to the covalent addition of a methyl 

group (-CH3) predominantly to a cytosine (C5) in a CpG dinucleotide. Occurring less 

commonly, DNA hydroxymethylation refers to the addition of 5-hydroxymethylcytosine (5-

hmC) to C5 and has primarily been studied for its role in disordered cell function in 

neurological disorders, stem cell biology, and cancer. Hypermethylation at gene promoters 

is generally associated with downregulation of the gene, although DNA methylation may 

also play other roles. 42 More recently, epigenetic modifications in RNA have been 

identified and demonstrated to play regulatory roles, although protocols that enable routine 

detection of such modifications are still in the early stages of development.43 Other types of 

epigenetic modifications include the acetylation, methylation, phosphorylation, and/or 

ubiquitination of the tails of core histones. These histone modifications are associated with 

activation and repression of transcription. Another type of epigenetic regulation involves 

microRNAs, non-coding, single-stranded RNAs of about 22 nucleotides that function in 

post-transcriptional regulation of gene expression. They bind to complementary sequences 

in target mRNAs, leading to gene silencing by cleaving mRNA, shortening mRNA polyA 

tails, and reducing the efficiency of mRNA translation.44 The examination of epigenetic 

modifications in asthma and allergy has been of interest to investigators, as epigenetics may 

mediate links between environmental exposures and disease phenotype that have been 

epidemiologically evident. Most studies to date have used epigenetic approaches, targeting 

modifications to candidate genes and regions of interest in asthma and allergy. When DNA 

methylation, DNA hydroxymethylation, histone modification, or microRNAs are examined 

on a genome-wide basis, the term epigenomics is used.

Microarrays have been frequently used in epigenomics, with several platforms and protocols 

available for detecting 5-methylcytosine (5-mC), the most common type of DNA 

methylation.45 Array platforms have also been used to examine genome-wide histone 

modifications by chromatin immunoprecipitation (ChIP) followed by hybridization on 

microarrays (ChIP-chip). Analogous miRNAs platforms are also available (miRNA-chip).45 

As in transcriptomics, next-generation sequencing has expanded epigenome assessment.46 

These technologies have been applied to profiling histone marks (ChIP followed by high 

throughput sequencing (ChIP-seq)), microRNAs (miRNA-seq), open chromatin areas of the 

genome (FAIRE-seq), and spatial chromatin organization (3C-seq). Because bisulfite-

converted DNA sequencing on the genome scale is expensive, most methylome profiling is 

still done on array platforms. 45 Emerging third generation sequencing technologies promise 

to provide a more comprehensive characterization of the epigenome, as they enable 

identification of all known chemical modifications that can occur in nucleic acid sequences 

at single molecule, single nucleotide resolution.47, 48

Recent studies on the epigenomics of asthma have examined several aspects of the disease 

and built upon epigenetic findings previously reviewed.45 Methylation array-based studies 

of bronchial brushings49 and mucosal biopsies50 have identified methylation marks 

associated with asthma and atopic status versus normal control. A recent study of genome-

wide histone modification profiles in naïve, Th1, and Th2 cells from the peripheral blood of 

healthy and asthmatic individuals identified enhancers associated with Th cell subsets that 

differed in histone H3 Lys4 dimethyl (H3K4Me2) enrichment depending on asthma status.51 
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In a study of potential mechanisms for airway smooth muscle dysregulation in asthma, 

investigators observed that dysregulated trimethylation of histone H3 at lysine 9 (H3K9me3) 

at the vascular endothelial growth factor (VEGF) promoter may influence VEGF 

hypersecretion.52

To examine whether atopic risk due to maternal asthma and atopy is conveyed by epigenetic 

changes, research groups have applied genome-wide methylation profiling in murine and 

population-based studies. Splenic dendritic cells from mouse pups whose mothers had been 

ova-sensitized prenatally demonstrated more genome-wide DNA methylation changes at 

birth compared to controls.53 Subsequent allergen sensitization resulted in transcriptional 

changes at CpG loci, supporting that maternal transmission of atopic risk may occur through 

epigenetic means.53 Consistent with this, a separate human study showed that maternal 

asthma during pregnancy was associated with differential methylation at 70 CpG loci 

corresponding to 67 genes in infants’ peripheral blood DNA.54 The infants’ peripheral blood 

also showed that methylation at several loci was associated with intermediate phenotypes 

including maternal blood eosinophil level, maternal exhaled nitric oxide (eNO), maternal 

serum total IgE, and maternal inhaled corticosteroid use.54

Other studies have examined the epigenome as a potential mechanistic bridge between 

environmental exposures and the development of asthma. Prenatal smoke exposure was 

associated with methylation at 19 CpG loci in a study of 527 children ages 5–12 years with 

asthma,55 supporting that prenatal tobacco exposure may be associated with epigenetic 

changes that persist into childhood. 55 Human rhinovirus infection and gene expression 

response to infection were found to be associated with a methylation locus at SNORA12 in 

an in vitro study of nasal epithelial cells collected from asthmatics and healthy controls.56

Epigenetic changes were found to be specific to lesional epidermis in an epigenome-wide 

study of AD.57 AD-affected and healthy individuals were examined for methylation changes 

in DNA derived from epidermis (AD lesional, AD non-lesional, healthy non-lesional), 

whole blood, T cells, and B cells. Altered methylation and expression of genes important for 

keratinocyte differentiation, proliferation, and innate immune response were observed in 

lesional epidermis of AD patients but not in the other tissues examined.57 Null findings for 

peripheral blood-based epigenetic changes in AD patients were also reported in a genome-

wide DNA methylation study of naïve CD4+ T cells from patients with psoriasis and AD.58 

A methylation array-based study of cord blood DNA, however, found that prenatal smoke 

exposure was associated with methylation in TSLP,59 a gene previously associated with 

asthma5, 9, 10, AD60, allergen sensitization27, and EoE30 in GWAS and transcriptional 

studies. In keratinocytes from patients with AD, miRNA array profiles showed increased 

levels of miR-146a associated with inflammatory processes triggered by IFN-y and N-kB 

activation.61 Non-genome-wide studies of AD epigenetics have targeted loci such as the 

high-affinity IgE receptor gamma subunit (FCER1G) promoter 62, FLG63, TSLP64, and 

FOXP365.

In allergic rhinitis, genome-wide methylation profiling has been applied to phenotype 

patients. 66 Using DNA methylation data from peripheral blood CD4+ T cells of untreated 

allergic rhinitis patients and healthy controls, investigators used the aggregate methylation 
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data to carry out principal component analysis resulting in the identification of principal 

components that could distinguish affected patients.66 Interestingly, they found that these 

methylation-based principal components more accurately predicted allergic rhinitis status 

than gene expression.

The association between genome-wide DNA methylation profiles from CD4+ T cells was 

also examined in food allergy. In a hypothesis-generating study of 12 children with food 

allergy and 12 controls, 179 and 136 probes were found to be differentially methylated at 

age 12 months and birth, respectively. 67 Pathway analysis of these genes suggested 

dysregulation of DNA methylation at MAPK signaling-associated genes.67

In EoE, miRNA profiling of esophageal biopsies identified several miRNA that were 

differentially expressed in EoE, with results supporting interaction between miR-21 and 

miR-223 in the polarization of adaptive immunity and regulation of eosinophilia.68 MiRNA 

profiling of esophageal tissue from EoE patients before and after treatment with steroids has 

also been performed.69

Microbiome

With an estimated composition of 100 trillion cells,70 our commensal microbiota outnumber 

us by at least 10-fold. Our immune system must contend with these symbionts through its 

innate and adaptive arms, and the same immune system also mediates asthma and allergic 

diseases. It is therefore compelling to consider that these complex communities of bacteria, 

viruses, fungi, and other commensal species play roles in asthma and allergy. Associations 

between culturable microbiota, asthma, and atopy have been studied71–73, but the recent 

availability of culture-independent tools has had a dramatic impact in the field. Specifically, 

systematic profiling of the collective microbial community is now possible by 16S rRNA 

and shotgun metagenomic sequencing of aggregate microbial genomes (aka microbiome), 

revealing far more microbiota and phylogenetic relationships than previously detectable. 

The bacterial 16S ribosomal RNA gene is a highly conserved locus of the bacterial genome, 

and DNA sequence differences within the hypervariable regions of the 16S rRNA gene 

allow for identification of bacterial species by reference to existing 16S rRNA gene 

sequence databases. 16S rRNA sequencing of the total genomic content of samples allows 

for precise identification of bacteria without being tied to the fastidious culture conditions of 

individual bacteria, and the fact that the majority of bacteria cannot be cultured. 

Metagenomic sequencing allows for the total DNA of the ecosystem to be sequenced, 

allowing for the inventorying of all microbiota in addition to bacteria. The introduction of 

sample barcoding, the decreasing cost of next-generation sequencing technologies, 

improvements in bioinformatics tools, and online databases have allowed researchers to 

more comprehensively examine microbes living in and on the human body.74 It is likely that 

the bacterial, viral, and fungal biomes interact with the human genome in complex ways to 

influence asthma and allergy. System biology approaches have been used to examine 

relationships between microbiota and host genomic profiles in other disease areas such as 

inflammatory bowel disease.75, 76 The role of the microbiome and its interaction with the 

host genome in asthma and allergic diseases can be examined via systems biology 

approaches.
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Bacterial 16S rRNA sequenced from airway brushings support that the healthy bronchial 

tree is not sterile, in contrast to traditional medical teaching.77 The healthy bronchial tree 

contains a mean of 2,000 bacterial genomes per cm2, with Bacteroidetes predominating.78 

Subjects with asthma have higher populations of Proteobacteria.78 The diversity of the 

bronchial epithelial microbiome appears to be greater in those with asthma and correlates 

with measures of bronchial hyperreactivity, as seen in a pilot study where greater 

representation of Proteobacteria was also observed among asthmatics.79 Greater bacterial 

diversity and high Proteobacteria representation were also observed when comparing 16S 

rRNA sequenced from induced sputum samples from asthmatic vs. non-asthmatic 

subjects.80 Microbiome examination of bronchial alveolar lavage samples from subjects 

with corticosteroid sensitive vs. corticosteroid-resistant did not show differences in diversity 

and community composition at the phylum level, although genus-level examination showed 

expansion of gram-negative bacteria in corticosteroid-resistant asthma.81 Bacteria from 

these genuses were experimentally observed to upregulate transforming growth factor-b-

associated kinase and MAPK in cultured peripheral blood monocytes leading to reduced 

responses to corticosteroid.81

As the gut microbiome may influence immune responses that mediate allergy and asthma,82 

researchers have also examined for associations between gut microbiota and atopic 

outcomes. In contrast to the associations between high diversity and asthma observed with 

airway microbiome studies, low total diversity of gut microbiota during infancy has been 

associated with asthma in children at 7 years of age83 and with AD during the first 18 

months of life.84–86 In an open trial of potential treatment for reduced gut bacterial diversity 

in AD, mothers were supplemented with Bifidobacterium starting at 1 month before delivery 

followed by Bifidobacterium supplementation to the infant until 6 months of age. 87 

Compared to unsupplemented controls, the supplemented infants were found to have 

reduced risk of developing AD during the first 18 months of life, and pyrosequencing 

analyses showed differences in gut microbiota in those who developed AD.87

16S-rRNA-sequencing-based analysis of the skin microbiome in AD has revealed its own 

findings. Temporal shifts in microbiota are seen in the lesional skin of AD patients at 

baseline, during disease flare, and following treatment.88 Specifically, Staphylococcus 

aureus and the skin commensal Staphylococcus epidermidis were increased with clinical 

disease activity, whereas Streptococcus, Propionibacterium, and Corynebacterium species 

were increased following therapy.88 Interestingly, skin at the popliteal fossae and elbow 

folds had lower diversity compared to the same areas in healthy controls.88

Initial studies of gut microbiota in food allergy support a potential disease-modifying role 

for the gut microbiome. Mice induced to have a food allergic phenotype through IL4raF709 

mutation and oral sensitization to chicken egg ovalbumin exhibited a distinct gut microbiota 

compared to control animals.89 Interestingly, the food allergy phenotype could be 

transmitted by transferring the gut microbiota via fecal pellets from the affected mice to 

wildtype germ-free mice.89 In humans, a small study examining 16S rRNA gene V1-V3 

hypervariable regions from the feces of food allergic infants (IgE mediated and non-IgE 

mediated) and controls showed reduced proportions of Bacteroidetes, Proteobacteria, and 

Actinobacteria in the food allergic children. 88 The study was limited by sample size and 
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heterogeneity of the food allergy phenotype, as the case subjects had different food allergies 

and factors known to affect gut microbiome (feeding patterns and modes of delivery) were 

not factored into the analyses.

Metabolome

In metabolomics, the collection of low molecular weight compounds in biological samples is 

systematically assessed, identified, and quantified through pattern recognition methods. 

Metabolomic profiling can provide a snapshot of active physiology and has been used as a 

tool for biomarker discovery. Metabolite levels are typically measured by nuclear magnetic 

resonance (NMR) or liquid chromatography mass spectrometry (LC-MS). NMR can 

quantify limited numbers of molecules (hundreds), while LC-MS can analyze several 

hundreds to thousands.90 NMR analysis is not destructive, allowing for sample analysis in 

vivo more than once. NMR is not as sensitive as LC-MS, although LC-MS results tend to be 

less reproducible, more platform dependent, and subject to variability.91 The two methods 

are currently viewed as complementary.

Recent metabolomic studies of asthma have been conducted on exhaled breath 

condensate92–96, urine97–99, serum100, 101, and plasma.102 These studies have shown that 

metabolites from several pathways can be used to discriminate asthmatics from controls, 

asthma exacerbation from stable asthma, and severe asthma from nonsevere asthma. The 

implicated metabolites are numerous, including phosphatidylcholines, alkanes, aldehydes, 

ammonium ions, retinoic acid, adenosine, vitamin D, ercalcitriol, and urocanic acid, among 

others. Some have used metabolomics to identify possible sources of inflammation98, while 

others have sought to characterize metabolite profiles associated with subphenotypes of 

asthma, such as neutrophilic and eosinophilic asthma.92 Limitations of these studies include 

their small size and differences in baseline characteristics (such as medication use, race, and 

diet) between comparison groups.103

Although metabolomic strategies have been implemented in several studies of asthma, they 

have been less frequently applied to allergic diseases. A small, exploratory study on the 

metabolomics of AD measured urinary metabolite profiles by NMR in 32 children and 

found that these differed between children with and without AD.104

Building networks for asthma and allergy

Data generated through genome-wide association, transcriptome, epigenome, microbiome, 

and metabolome studies have advanced our understanding of asthma and allergic diseases. 

As complex and heterogeneous diseases, however, it is unlikely that a single biomarker or 

even single high throughput profiling modality can capture the interdependent dynamics of 

the molecular networks involved in these diseases (Figure 2). Integrating these types of 

system-wide data is critical if we are to construct models that are predictive of complex 

biological interactions and systems, a necessary step to developing a more complete 

understanding of disease. Generating multiple dimensions of data on each individual would 

lend even more power to this approach. To make accurate disease predictions, we need a 

systems biology approach to create the networks capable of representing causal relationships 
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among molecular features within a given cell or tissue type as well as between different 

tissues.105

We have made steps toward drawing the connections to map biological interactions relevant 

to asthma and allergy (Figure 2). While GWAS identify genetic susceptibility loci, the 

biologic relevance of these variants is sometimes not clear. Integrating genotype data with 

transcriptional profiles can prioritize causal variation,28–30 as genetic variants that are 

associated with RNA transcript change in disease-relevant tissue are more likely to be 

disease relevant than those that do not affect transcript levels. Expression quantitative trait 

loci (eQTL) and expression single nucleotide polymorphism (eSNP) analyses are statistical 

techniques to match variation in mRNA expression levels with DNA variation at specific 

genomic loci. Assessing which eQTLs and eSNPs are likely to be regulatory can be done by 

integrating epigenetic profiles (e.g. FAIRE-PCR/Seq, ChIP PCR/Seq), as has been done in 

asthma for novel susceptibility loci.106

We can build upon the level of data integration thus far toward systems biology network 

models that can capture the connectivity and interactions between the genome, 

transcriptome, epigenome, microbiome, and metabolome in asthma and allergy. Systems 

biology is an approach to understanding living systems that focuses on modeling diverse 

types of high-dimensional complex interactions to develop a more comprehensive 

understanding of biology at multiple scales: molecular, cellular, tissue, organ, organism, and 

community. Comprehensive, multi-scale profiles of populations such as those gained from 

genomic technologies are coupled with bioinformatic and computational techniques to build 

network models. Networks provide a framework for exploring the context in which genes, 

gene products, metabolites, and other variables operate. They are mathematical models 

comprised of nodes and edges that model the connectivity and complex interactions between 

variables that associate with one another. Nodes in a network typically represent genes, gene 

products, metabolites, other molecular entities, or higher order physiological features such 

as clinical features and disease state. Edges (or links) between any two nodes indicate a 

relationship between the two entities. By building networks, we create maps of potential 

connections among components that can suggest new functional roles for specific genes, 

regulatory elements, and metabolites.107 Networks can place genes or molecules of interest 

in the context of biologic pathways and molecular interactions, and the best nodes from a 

network can be used to assess the disease, assess disease risk or progression, and serve as 

targets for therapeutic intervention.

Systems biology approaches such as probabilistic causal network analysis can move us 

beyond association to inferring causal directionality. In such networks, Bayesian methods 

are used to infer causal relationships between molecular interactions by considering 

thousands of molecular or clinical variables and using statistical techniques to select a 

consensus model that best fits the data and identifies directionality of relationships between 

the variables.108 Mapping the connectivity structure of networks in disease helps us 

understand how biological processes are defined at the molecular level, how they are 

disrupted in disease, and how we can assess disease risk and potentially intervene.108 Causal 

network approaches have been applied to several disease areas outside of asthma and 

allergy, resulting in new genetic associations and mechanistic understandings for metabolic 
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disease109, obesity110, and Alzheimer’s disease111. The implementation of such systems 

biology approaches in asthma and allergy is our next challenge.

Large-scale data management and analysis

The success of systems biology approaches in asthma and allergy research will depend on 

our ability to properly manage and interpret large-scale, multi-dimensional data sets. 

Individual laboratories are currently able to generate terabyte and petabyte scales of data at 

reasonable cost.112 However, multiple steps are involved in processing and integrating such 

high-dimensional datasets to yield meaningful results, including data transfer, access control 

and management, standardization of data formats, and accurate modeling of biological 

systems through data integration.112 Computational and bioinformatics infrastructure are 

necessary for each of these steps. Fields that regularly handle big data (such as climatology) 

and IT companies such as Amazon, Google, Facebook, and Microsoft point to 

computational solutions for big data management and analysis, including high performance 

computing systems, cloud-based computing, and high-speed, low-cost heterogeneous 

computation environments.112 For example, Amazon has led the way with cloud computing 

(EC2), high performance data storage (S3), and archival storage (Glacier). Large-scale 

efforts include the cloud-based clinical operating system Nanthealth, the data science and 

software centers Craig Venter is building to process a million human genomes, and BGI’s 

cloud-based bioinformatics platforms. Although institutions are increasingly building and 

bolstering their computational and bioinformatics infrastructures to reap the benefits of big 

data, ensuring individual investigators’ access to such resources is one of the challenges 

facing systems biology approaches in allergy and immunology (Table 1). To this end, 

companies such as Genalice are making next generation sequence data storage and analysis 

accessible to investigators without supercomputers by creating software to process and store 

big data on general purpose hardware. Continuing toward solutions to the computational and 

bioinformatics challenges facing systems biology will propel research on asthma and allergy 

forward, as systems biology can provide the global, quantitative understanding of high-

dimensional, complex interactions in asthma and allergy that traditional reductionist 

approaches cannot capture.

The next wave in big data

Personal health profiles captured by individuals themselves are the next wave of data that 

will contribute to a systems biology view of asthma and allergy (Figure 3). Although 

system-wide profiling technologies have yielded more data than ever on the genome, 

transcriptome, epigenome, microbiome, and metabolome in asthma and allergy, these data 

represent snapshots in time from individuals at patient or research subject visits. Yet the 

intrinsic and extrinsic variables shaping asthma and allergy pathobiology affect individuals 

continuously in real-time. In order for the molecular networks to inform more maximally on 

disease conditions, richer sets of phenotypes that enable a more direct linkage between these 

networks and the pathophysiological features of disease are needed. To gain the deeper 

phenotype and environmental data that will complement the system-wide profiles we are 

building in asthma and allergy, we should seek to reap the rich data that individuals are now 

enabled to regularly capture from wearable devices and mobile health apps.
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Health and environmental data that directly impact an individual’s asthma and allergy 

control can be captured essentially passively with wearable devices and health apps. 

Already, consumer sensor technologies allow for measurement of activity, blood-pressure, 

glucose, heart rate, EKG, EEG, and EMG tracings, ultrasound images, and medication 

adherence through smart phones and wearable devices.113 Such individual-driven 

monitoring can be expanded to include ongoing measures of lung function, symptom scores, 

diet, and relevant environmental exposures such as ambient pollutant and allergen 

concentrations. In fact, today there are Bluetooth enabled peak flow meters and spirometry 

devices providing a mobile health app, and Bluetooth enabled inhalers that let asthma 

patients better monitor their condition. The environmental context for an individual’s health 

could be additionally complemented by freely available data relevant to the person’s GPS-

identified location, such as ambient ozone concentration, weather conditions, and traffic 

patterns. The path for including such real-time data in healthcare is informed by existing 

models, from the Oracle Team for the America’s Cup to the Honda Indy Race Team to 

several NBA and NFL sport teams, where data from hundreds of sensors are already 

integrated to advise on all aspects of performance, even enabling fine tuning in real time to 

maximize performance. Although this level of integration is not yet commonplace in asthma 

and allergy, or even in medicine overall, the increasing role of data in our lives makes 

inevitable the incorporation of individually-generated data into systems biology approaches. 

Individuals are already leading the data-gathering effort through consumer health wearables 

and mobile platforms, and we should be ready to capitalize on the availability of this 

additional dimension of big data.

The deeper phenotype and environmental profiles captured by individuals themselves, 

coupled with ongoing advances and wider implementation in system-wide profiling (such as 

single-cell sequencing), will increase our power to build networks that accurately model the 

complex connectivity and interactions that lead to asthma and allergic disease in real-world 

settings. Such systems biology approaches will elucidate connections that will uncover 

relevant biological pathways and relationships among physiologic, biologic, and 

environmental processes in asthma and allergy that would otherwise remain hidden. 

Focusing on these networks and connections will enable improved disease assessment, risk 

monitoring, and therapeutic intervention.

Abbreviations

3C chromosome conformation capture

5-hmC 5-hydroxymethylcytosine

5-mC 5-methylcytosine

AD atopic dermatitis

ChIP chromatin immunoprecipitation

CpG cytosine-phosphate-guanine

EoE eosinophilic esophagitis
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eQTL expression quantitative trait loci

eNO exhaled nitric oxide

eSNP expression single nucleotide polymorphism

FAIRE formaldehyde assisted isolation of regulatory elements

GWAS genome-wide association study

LC-MS liquid chromatography mass spectrometry

miRNA microRNA

NMR nuclear magnetic resonance

RNA-seq RNA sequencing

rRNA ribosomal RNA

seq sequencing

SNP single nucleotide polymorphism

GLOSSARY

SYSTEMS BIOLOGY An approach to understanding living systems that focuses on 

modeling diverse types of high-dimensional interactions to 

develop a more comprehensive understanding of complex 

phenotypes manifested by the system. High throughput 

molecular, cellular, and physiologic profiling of populations is 

coupled with bioinformatic and computational techniques to 

identify new functional roles for genes, regulatory elements, 

and metabolites in the context of the molecular networks that 

define biological processes associated with system physiology

GENOME The complete set of genetic information for an organism, 

including genes and non-coding sequences. The genome 

contains the information needed to build and maintain the 

organism. The human genome is over 3 billion DNA base pairs

GENOME-WIDE 
ASSOCIATION 
STUDY (GWAS)

A study in which DNA variants across the genome are 

simultaneously analyzed for association with a trait of interest

MICROARRAY A technology used to study genotype, gene expression, 

methylation, miRNAs, and chromatin marks of thousands of 

genes at once. Known specific nucleic acid sequences (probes) 

are studded on a glass slide. A sample containing cDNA or 

cRNA is then placed. Complementary base pairing between the 

sample and the sequences on the chip yield fluorescence that is 

measured and correlates with the amount of nucleic acid present
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WHOLE GENOME 
SEQUENCING

The process of determining the complete sequence of an 

organism’s chromosomal and mitochondrial DNA at a single 

time

WHOLE EXOME 
SEQUENCING

The process of determining the sequence of an organism’s 

protein-encoding DNA (exons). The whole exome represents 

about 1% of the human genome

TRANSCRIPTOME The set of RNA molecules produced in one or a population of 

cells. The transcriptome can be profiled by oligonucleotide 

microarrays and RNA sequencing (RNA-seq)

EPIGENETICS Modifications to DNA that affect gene expression and occur 

without direct alteration of DNA sequence. Epigenetic changes 

may include DNA methylation, DNA hydroxymethylation, 

histone modification, and microRNAs. These changes can be 

heritable but are also reversible because the genetic code 

remains unchanged

HUMAN 
MICROBIOME

The collection of commensal, symbiotic, and pathogenic 

microorganisms and their genomes that are found in the human 

body

METABOLOMICS High-throughput characterization of metabolites found in an 

organism. Nuclear magnetic resonance (NMR) or liquid 

chromatography mass spectrometry (LC-MS) are typically 

used. Metabolites can be specific to certain body fluids, such as 

urine, serum, plasma, and exhaled breath condensate

NETWORK A framework for exploring the context in which genes, gene 

products, metabolites, and other variables operate. Networks 

are mathematical models comprised of nodes and edges that 

model the connectivity and complex interactions between 

variables in a system that associate with one another. Nodes in 

a network typically represent genes, gene products, metabolites, 

or other important molecular entities. Edges (or links) between 

any two nodes indicate a relationship between the two entities

WEARABLE 
DEVICE

Clothing and accessories incorporating sensors and electronic 

technologies to convey data. Health-related wearable devices 

currently on the market include bracelets and watches that 

monitor activity, nutrition, and sleep, tattoos that monitor pH 

and lactate content in sweat, diapers with urinalysis monitors, 

ingestible sensors that track medication adherence and 

response, and clothing that measures EKG, EEG, and EMG 

signals
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Figure 1. Relationship between system-wide profiles in asthma and allergy
Data on the genome, transcriptome, epigenome, microbiome, and metabolome in asthma and 

allergy have been generated. These types of data are interdependent and interact. Systems 

biology approaches can be used to model the multidimensional interactions that characterize 

complex disease.
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Figure 2. Moving toward a systems biology view of asthma and allergic diseases
The colored circular nodes represent genetic, regulatory, metabolite, and environmental 

entities associated with asthma and allergic disorders. Their identification and potential 

connectivity can be assessed by the profiling represented in the large rectangular nodes. 

Green rectangular nodes represent diseases of interest. Orange lines (edges) denote evidence 

for associations between the implicated nodes in asthma and allergy, many of which are 

reviewed in this article. Dashed blue edges denote relationships that are currently less well-

studied. Examination of the network’s collective nodes and edges, or a substantial subset 

thereof, would move us toward a systems biology understanding of asthma and allergy.
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Figure 3. Personal health profiles captured by individuals themselves will add the next big data 
dimension to understanding asthma and allergic diseases
Data that individuals gather passively through wearable devices and mobile apps for 

personal health will enable deeper phenotyping and real-time profiling of environmental 

exposures. Combined with continued advances in system-wide profiling, network models of 

asthma and allergic disease will become more accurate for disease prediction and 

therapeutics.
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Table 1

Challenges and solutions for systems biology approaches to asthma and allergy.

Challenges Solutions

Access to system-wide profiling technologies Core facilities

Cost of system-wide profiling Costs decreasing with technological advances

Data transfer and management High performance computing systems
Cloud-based computing
High-speed, low-cost heterogeneous computation environments
Software innovations

Data quality and control Standardization
Data-sharing

Accurate modeling of biological systems through data integration Development of tools and software platforms.
Iterative integration by investigators.

Perceived as “fishing” and riskier than traditional reductionist approaches. Education.
Novel causal relationships elucidated by systems biology.
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