Skip to main content
. Author manuscript; available in PMC: 2016 Jan 1.
Published in final edited form as: J Craniofac Surg. 2015 Jan;26(1):71–75. doi: 10.1097/SCS.0000000000001233

Table 2.

Assessing model fit using the Akaike information criteria and the relative likelihood that progressive models are similar to or worse than the previous model using estimates linking nasoalveolar molding status to surgical outcomes

Logistic Regression
Multilevel regression adjusting for doctor-level grouping
Cross-classified multi-level logistic models shown
Est. p-value Est. p-value Est. p-value
UCLP Minimum severity cleft AIC
RL
1034 <0.001 891
<0.001
<0.001 873
<0.001
<0.001

 Best anticipated surgical outcome AIC
RL
1246 <0.001 1101
<0.001
<0.001 1088
0.002
<0.001

 No revision necessary AIC
RL
1459 <0.001 886
<0.001
<0.001 878
0.011
<0.001

BCLP Minimum severity cleft AIC
RL
1040 <0.001 990
<0.001
<0.001 806
<0.001
<0.001

 Best anticipated surgical outcome AIC
RL
1178 <0.001 1112
<0.001
<0.001 971
<0.001
<0.001

 No revision necessary AIC
RL
1861 <0.001 1348
<0.001
<0.001 1255
<0.001
<0.001

Note: Est. is the estimated value; UCLP is unilateral cleft lip and palate. BCLP is bilateral cleft lip and palate. AIC is the Akaike’s information criterion