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Abstract

Purpose—To compare the performance of computer-automated diagnosis using fMRI interictal 

graph theory (CADFIG) to that achieved in standard clinical practice with MRI, for lateralizing 

the affected hemisphere in temporal lobe epilepsy (TLE).

Materials and Methods—Interictal resting state fMRI and high-resolution MRI were 

performed on 14 left and 10 right TLE patients. Functional topology measures were calculated 

from fMRI using graph theory, and used to lateralize the epileptogenic hemisphere using quadratic 

discriminant analysis. Leave-one-out cross-validation prediction accuracy of CADFIG was 

compared to performance based on expert manual analysis (MA) of MRI, using video EEG as the 

“gold standard” for focus lateralization.

Results—CADFIG correctly lateralized 95.8% (23/24) of cases, compared to 66.7% (16/24) with 

expert MA of MRI. Combining MA with CADFIG allowed all cases (24/24) to be correctly 

lateralized. CADFIG correctly identified the affected hemisphere for all patients (8/8) where MRI 

failed to lateralize.

Conclusion—CADFIG based on fMRI lateralized the affected hemisphere in TLE with superior 

performance compared to expert MA of MRI. These results demonstrate that functional patterns in 

fMRI can be used with automated machine learning for diagnostic lateralization in TLE. Addition 

of fMRI-based tests to existing protocols for identifying the affected hemisphere in pre-surgical 

assessment can improve diagnostic accuracy and surgical outcome in TLE.
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INTRODUCTION

Temporal lobe epilepsy (TLE) is the most common pharmacoresistant and surgically 

remediable epilepsy in adults. However, surgery is denied in 30%, primarily due to unclear 

localizing evidence from pre-surgical testing (1). In standard pre-surgical evaluation, high-

resolution MRI plays a central role. Discordance or non-concordance of MRI with video-

electroencephalography (VEEG) hampers the pre-surgical workup, with 30-40% of patients 

with EEG evidence of TLE showing normal or non-lateralizing MRI scans (1,2).

Accurate lateralization reported with non-invasive tests is 70-85% (MRI), 60-90% (positron 

emission tomography, PET), 50-90% (magnetoencephalogram, MEG), and >90% (single-

photon emission computed tomography, SPECT) (2). MRI is considered the best non-

invasive test to define the epileptogenic lesion (3). However, functional imaging provides 

complementary information to structural imaging such as MRI (2), and may improve TLE 

lateralization.

Recent neuroimaging advances have stimulated interest in using pattern extraction based on 

machine learning to perform brain image classification. Machine learning techniques have 

demonstrated potential for improving epileptogenic lateralization using various structural 

and metabolic imaging tests, including MRI (85-95%) and SPECT (95%) (4,5). Functional 

connectivity MRI (fcMRI) has recently gained popularity in TLE connectivity research due 

to the characterization of TLE as a “network disease” (2). Graph theory provides an 

effective model for quantifying connectome patterns in resting-state fMRI (rs-fMRI) (6). 

However, to our knowledge, fMRI graph theory has not been used for lateralizing TLE on a 

prospective subject-level basis using machine learning.

Here, we employed a graph theory model of interictal rs-fMRI data to estimate measures of 

brain topology. We showed that lateralized differences in fMRI graph theory measures can 

be used to prospectively predict the epileptogenic hemisphere in TLE with high sensitivity, 

and propose one such computer-automated diagnostic approach using fMRI interictal graph 

theory (CADFIG). Application of fMRI-based tests such as CADFIG for pre-surgical 

epilepsy assessment may aid TLE lateralization. The objectives of this study were to (1) 

evaluate the sensitivity of CADFIG for TLE lateralization, (2) compare performance of 

CADFIG to MRI, which is clinically proven in lateralizing TLE, and (3) compare the 

relative discriminatory capabilities of various fMRI graph theory measures in lateralizing 

TLE.

MATERIALS AND METHODS

Patients

Twenty-four TLE patients were recruited from our institution’s comprehensive epilepsy 

center and underwent inpatient VEEG and a high-resolution MR imaging session. Patients 

with (1) bilateral TLE or (2) significant cognitive impairment or major neurological/

psychiatric co-morbidities were excluded. The study protocol was approved by our 

institutional review board and informed consent obtained from study participants.
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Video-EEG Monitoring

Inpatient VEEG was used as the “gold standard” for epileptogenic lateralization, following 

previous studies (7). Including only patients with unequivocal VEEG lateralization, 14 

patients had left TLE and 10 had right TLE (Supplementary Table 1).

Image Acquisition

MR imaging was performed on a 3.0 Tesla scanner (Ingenia, Philips Healthcare, Best, 

Netherlands). 3D IR-TFE imaging parameters were: 220 phase encoding steps; TR/TE=8ms/

4.0ms; flip angle=8°; time between successive TFE shots=3000ms; 

FOV=240×220×170mm3; acquired voxel size=1×1×1mm3. A parallel imaging acceleration 

factor of two was applied along the slice direction. A volumetric T2-prepared 3D-FLAIR 

with variable refocusing angle modulation was used to obtain CSF-attenuated, T2-weighted 

images: TR/TI=4800ms/1650ms; T2-preparation time=125ms (four refocusing pulses); 

turbo-spin echo readout duration=640 ms (inter-echo spacing=3.2ms); acquired voxel 

size=1.1×1.1×1.1mm3; scan time=06:57min. A refocusing pulse modulation was used to 

attain an effective TE of 142 ms (equivalent TE of 320 ms). A parallel imaging acceleration 

factor of two was applied along each phase encoding direction (phase/slice). Rs-fMRI was 

acquired axially for 10 minutes with: TR=6000ms, TE=30ms, FOV=228mm, 

matrix=100×100, slice thickness=2.25mm, 67 slices, 100 volumes. Patients were instructed 

to lie still with eyes closed, and asked not to think about anything in particular during the 

functional sequences. The imaging technician ensured that the subjects did not fall asleep 

during imaging. No auditory stimulus was present other than acoustic noise from imaging.

BOLD fMRI Image Pre-processing

Data pre-processing were performed using FSL (fMRIB Software Library) version 5.0.2 

(Oxford, UK, www.fmrib.ox.ac.uk/fsl). The first 12 seconds were discarded to attain 

magnetization equilibrium. Common pre-processing steps for rs-fMRI were applied (8). 

These included non-brain tissue elimination; slice-timing correction; spatial smoothing using 

a Gaussian kernel (5-mm FWHM); linear co-registration to the T1-weighted image; temporal 

bandpass filtering (0.01<f<0.08 Hz) and removal of sources of spurious variance using 

linear regression: six motion parameters and temporal derivatives, ventricular and white 

matter signal. Whole-brain signal regression was not performed, in order to increase test-

retest reliability in graph theory analyses (9). Motion scrubbing was also performed (10). 

Residuals were normalized prior to analysis.

Brain Parcellation and Graph Construction

After linear registration to the MNI standard, functional images were parcellated into ninety 

anatomical regions using an automated anatomical labeling atlas (11). fMRI residual time 

series were averaged across all voxels in each region. Functional connectivity was estimated 

by the Pearson correlation coefficient between residual time series.

Negative correlations were set to zero to improve the reliability of graph theory metrics (12). 

Unweighted graphs were constructed by thresholding the correlation matrix across the 
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biologically plausible range of connection densities (6), yielding a range of potential 

undirected graphs of the brain’s functional network.

FMRI Features, Feature Selection, and Discriminant Analysis

Expert manual analysis (MA) of T1-weighted, T2-weighted, and FLAIR sequences was 

performed by neuroradiologists experienced in the interpretation of epilepsy neuroimaging. 

Based on MA reports, baseline measures of lateralization sensitivity encountered in standard 

clinical practice were obtained by calculating the ratio of correctly lateralized to total cases 

for left, right, and overall TLE groups.

Several functional topology measures can be calculated for brain networks; however, the 

relevance of many in TLE is unclear. We focused on graph measures which reflect (1) basic 

small-world properties of network topology: clustering coefficient (γ), characteristic path 

length (λ), small-world index (σ), and global efficiency (GE) (6,13); (2) first and second 

mathematical sample moments of the connectivity matrix: connectivity strength (CS) and 

connectivity diversity (CD); and (3) regional measures implicated in TLE: betweenness 

centrality (BC), local efficiency (LE), and regional clustering coefficient (CC) of the left and 

right hippocampi (13) (Appendix A). Because of the large number and correlation between 

fMRI features, feature dimension reduction was necessary. All subsets feature selection was 

performed using quadratic discriminant analysis (QDA) with all subsets of extracted fMRI 

features compared with respect to leave-one-out cross-validation (LOO-CV) error. QDA 

was used to classify epileptogenic focus laterality using the selected set of fMRI features 

based on maximum a posteriori assignment. For validation, LOO-CV error was used to 

assess final classification performance. Details on QDA and LOO-CV are in Appendix B.

Performance Assessment

Sensitivities of MA and CADFIG were assessed by calculating the ratio of the number of 

correctly classified to total patients for left, right, and overall TLE groups. The sensitivity of 

a combined approach defined by using either test (i.e., MA, or CADFIG when MA was not 

concordant with VEEG) was also evaluated. The area under the ROC curve (AUC) was 

assessed as a general performance measures. McNemar’s test was used to investigate 

improved sensitivity using CADFIG compared to MA alone, as well as a combined 

approach of CADFIG+MA compared to MA alone. Agreement between MA and CADFIG 

was evaluated using Cohen’s weighted kappa (κ) statistic.

FMRI Feature Ranking

Univariate discriminatory ability of fMRI features was assessed based on the Fisher 

separability criterion (FSC). To assess the relative contribution of fMRI features to the 

multivariate discriminatory function, backward stepwise variable importance (BSVI) was 

used. All statistical analyses were performed using R version 3.0.1 (R Foundation, Vienna, 

Austria). Details on FSC and BSVI are in Appendix C.
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RESULTS

CADFIG

CADFIG correctly predicted focus laterality in a significantly greater proportion of TLE 

subjects (23/24 or 95.8%) than MA (16/24 or 66.7%) (p-value 0.045), with a 42.9% increase 

in sensitivity for right TLE (10/10 or 100% for CADFIG, versus 7/10 or 70.0% for MA) and 

a 44.4% increase in sensitivity for left TLE (13/14 or 92.9% for CADFIG, versus 9/14 or 

64.3% for MA) (Figure 1). This equated to an 11.5 times greater odds of correctly 

lateralizing the epileptogenic focus using CADFIG. For both left and right TLE, the AUC 

for CADFIG was 0.96 (95% confidence interval, 0.87-1.00) (Figure 2).

Figure 3a shows coronal FLAIR demonstrating left hippocampal hyperintensity and atrophy 

from a patient for whom both MA and CADFIG accurately identified the epileptogenic 

hemisphere (Subject 1, Supplementary Table 1). Much greater agreement was identified 

between CADFIG and VEEG (κ=0.92) than between MA and VEEG (κ=0.34). Cases 

lateralized by MA had good agreement of focus laterality between CADFIG and MA 

(κ=0.88).

Combined Approach of fMRI and MA

CADFIG correctly identified focus laterality in all cases where MA was non-lateralizing or 

discordant (8/8 or 100%). Figure 3b shows coronal FLAIR in a patient with non-lateralized 

MRI, but accurately lateralized CADFIG (Subject 13, Supplementary Table 1). A combined 

CADFIG+MA approach accurately identified focus laterality in all cases (24/24 or 100%). 

This provided a significant improvement over the classification accuracy of MA alone 

(16/24 or 66.7%) (p-value 0.013).

fMRI Feature Ranking

Figure 4 provides multivariate visualization of the fMRI graph theory measures identified in 

the optimal feature subset (CD, GE, BC of left and right hippocampi). At a univariate level, 

left hippocampal BC had the highest discriminative ability (Table 1). Considered in the 

context of other variables, most features retained relative ranks of importance. However, left 

hippocampal BC became less essential to the discriminatory function when GE, CD, and 

right hippocampal BC were taken into account. GE had a relatively greater contribution to 

the discriminatory function (BSVIGE=0.333) than left hippocampal BC (BSVIBC(L)=0.292). 

Left hippocampal BC was much more relatively discriminatory (FSCBC(L)=1.468; 

BSVIBC(L)=0.292) than right hippocampal BC (FSCBC(R)=0.089; BSVIBC(R)=0.125) (Table 

1).

DISCUSSION

We investigated whether fMRI-based measures of functional network topology reliably 

discriminate left and right TLE. We propose one such approach, CADFIG, and demonstrate 

its superior performance over MA in lateralizing TLE, with all cases of focus laterality 

correctly predicted when CADFIG was used in conjunction with MA. Graph theory 

measures of fMRI data have not been used previously for computer-automated TLE 
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lateralization to our knowledge. High sensitivity of CADFIG at an individual subject level 

illustrates the potential use of fMRI in the pre-surgical TLE workup. Additionally, we 

propose a combined multimodal approach for seizure lateralization based on fMRI and MRI 

manual analysis, which attains higher sensitivity than either modality alone. This illustrates 

the utility of combining structural and functional MR imaging in TLE.

We show that abnormalities not visible on MRI may be detectable using fMRI in TLE. Our 

novel finding that features extracted from fMRI are able to discriminate the affected 

hemisphere with high sensitivity corresponds with published data showing that left and right 

TLE differ with respect to the functional connectome (14).

Left hippocampal BC had the highest univariate discriminatory value for lateralizing TLE. 

The contralateral hippocampus generally had greater BC than the ipsilateral hippocampus in 

both left and right TLE (Figure 4). Increased contralateral hippocampal BC may suggest a 

shift in hub importance from the ipsilateral to contralateral hippocampus. This is congruent 

with prior reports of increased contralateral hippocampal functional connectivity co-

occurring with reduced ipsilateral hippocampal connectivity (15) and correlation of BC with 

the clinically resected epileptogenic zone (16).

Discriminatory power was much lower for right than left hippocampal BC. Although high 

left hippocampal BC most likely indicated a right-sided epileptogenic focus and low left 

hippocampal BC most likely indicated a left-sided epileptogenic focus, such a clear 

difference did not exist for right hippocampal BC. One possible reason includes higher 

plasticity of the left hippocampus for assuming lost functionality in TLE. This is supported 

by increased activation of the contralateral hippocampus identified in right, but not left, TLE 

(17).

Although CD and GE did not individually discriminate well between left and right TLE, a 

clear decision boundary was identified when considered together (Figure 4, pairwise CD/GE 

plot). When considered simultaneously, discriminatory power of CD and GE exceeded that 

of left hippocampal BC (Table 1). The non-linear separation boundary, however, masks the 

high discriminatory ability of CD and GE, demonstrating the need for multivariate 

techniques when discriminating left from right TLE.

The high discriminatory power of GE and CD corresponds with decreased white matter 

global efficiency in left TLE (18) and a 17 times more abnormal connectivity network in 

right TLE (19). CD also differs between schizophrenia and controls (20), and may suggest 

different propensities toward psychosis of epilepsy between left and right TLE. In our study, 

although CD was on average greater in right than left TLE for patients with low GE, the 

opposite was true for patients with high GE. This is apparent from the biconcave 

discrimination boundary in the pairwise scatterplot of CD and GE in Figure 4.

Some limitations should be considered in this study. (1) VEEG has the potential for false 

lateralization. However, included cases had unequivocally lateralized VEEG to avoid 

ambiguity of class labels. (2) Our population had advanced pharmacoresistant TLE, which 

may not be representative of TLE in general. However, it is typical of an epilepsy surgery 

population where CADFIG would be most useful. (3) Subgroup analysis is needed to 
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determine reliability of CADFIG in TLE subtypes such as mesial temporal sclerosis and 

cortical dysplasia. (4) Although our sample size was large enough to permit reasonable 

assessment of overall predictive accuracy in lateralized TLE, the non-concordant MRI 

subgroup size was only moderate. Validation with larger samples and multi-site data are 

needed to completely assess the utility of CADFIG. (5) Due to moderate sample size, cross-

validation was used to estimate classification performance. External test validation is needed 

to fully evaluate classification performance. Cross-validation estimates may possibly be 

biased upward from performance attained from external testing. However, even more 

conservative methods of double cross-validation still attained high performance accuracy 

(90.0%, right TLE; 85.7%, left TLE; 87.5%, overall). (6) To compare with the current 

standard of care, CADFIG was compared to qualitative expert MA of MRI. Research using 

quantitative MRI is also needed for comparison. (7) Due to a limited number of bilateral 

TLE patients in our study sample, this population was not considered. Patients with major 

neurological/psychiatric co-morbidities were also excluded to avoid network abnormalities 

from other conditions. These TLE subgroups represent extensions which should be 

considered in future work, requiring larger sample sizes to learn noisier statistical patterns. 

(8) Validation in other focal epilepsies is also necessary prior to use in clinical practice.

In conclusion, we demonstrated that fMRI can potentially be used to identify the affected 

hemisphere in TLE during the pre-surgical epilepsy assessment, using fMRI features based 

on functional topology. We showed that fMRI-based tests, such as CADFIG, can 

discriminate left and right TLE with high sensitivity, both when standard MRI sequences are 

normal and abnormal. In cases with non-lateralizing MRI sequences, CADFIG predicted the 

affected hemisphere with high sensitivity. When lateralizing abnormalities were visible on 

MRI, CADFIG showed high agreement with MA. Used together, a combination of MA and 

fMRI correctly predicted epileptogenic focus laterality for all cases. With further validation 

from larger samples and multi-center data, fMRI-based tests such as CADFIG, which 

exploit differences in functional topology, can improve epileptogenic zone identification in 

TLE.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sensitivity of manual analysis of high-resolution structural MRI (MA), CADFIG, and 

combined approach of MA and CADFIG in lateralizing left and right TLE. Proportion of 

correctly lateralized patients are shown above the corresponding bars. TLE, temporal lobe 

epilepsy.
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Figure 2. 
Receiver operating characteristic (ROC) curve for classification performance of CADFIG. 

AUC, area under the ROC curve.
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Figure 3. 
FLAIR images from (a) a left TLE patient with left hippocampal hyperintensity and atrophy 

(white arrow) in keeping with mesial temporal sclerosis (Subject 1), and (b) a left TLE 

patient with non-lateralizing MRI (Subject 13). For the subject shown in (a), both MA and 

CADFIG correctly identified the affected hemisphere. For the subject shown in (b), MRI 

sequences were non-lateralizing but CADFIG was able to accurately identify focus 

laterality. Images are displayed in radiologic convention.
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Figure 4. 
Scatterplot matrix visualizing separation of left (L) and right (R) TLE subjects based on 

variables identified from optimal feature subset (connectivity diversity, global efficiency, 

and betweenness centrality of the left and right hippocampi). Purple and turquoise areas 

indicate whether future out-of-sample observations would be classified as right (purple) or 

left (turquoise) TLE, based on a quadratic discriminant function trained on the sample 

examined in this study. x- and y-axes are given by the corresponding graph theory metrics 

listed on the main diagonal. CD, connectivity diversity; GE, global efficiency; BC (L), left 

hippocampal betweenness centrality; BC (R), right hippocampal betweenness centrality.
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Table 1

Discriminatory power of fMRI graph theory measures when considered in univariate and multivariate 

discriminatory contexts. Univariate discriminatory power was assessed based on the Fisher separability 

criterion (FSC). Multivariate discriminatory power was assessed using a backward stepwise variable 

importance measure (BSVI), calculated based on the increase in LOO-CV error with removal of the variable 

from the optimal feature set.

Univariate (FSC) Multivariate (BSVI)

CD 0.125 0.292

CS 0.329 --

γ 0.124 --

λ 0.216 --

σ 0.023 --

GE 0.220 0.333

BC (L) 1.468 0.292

BC (R) 0.089 0.125

CC (L) 0.099 --

CC (R) 0.177 --

LE (L) 0.007 --

LE (R) 0.064 --

Abbreviations: BC (L), left hippocampal betweenness centrality; BC (R), right hippocampal betweenness centrality; BSVI, backward stepwise 
variable importance measure; CC (L), local clustering coefficient of left hippocampus; CC (R), local clustering coefficient of right hippocampus; 
CD, connectivity diversity; CS, connectivity strength; FSC, Fisher separability criterion; LE (L), local efficiency of left hippocampus; LE (R), local 
efficiency of right hippocampus; γ, clustering coefficient; λ, path length; σ, small-world index
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