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Abstract

Zebrafish is increasingly used to assess biological properties of chemical substances and
thus is becoming a specific tool for toxicological and pharmacological studies. The effects of
chemical substances on embryo survival and development are generally evaluated manual-
ly through microscopic observation by an expert and documented by several typical photo-
graphs. Here, we present a methodology to automatically classify brightfield images of
wildtype zebrafish embryos according to their defects by using an image analysis approach
based on supervised machine learning. We show that, compared to manual classification,
automatic classification results in 90 to 100% agreement with consensus voting of biological
experts in nine out of eleven considered defects in 3 days old zebrafish larvae. Automation
of the analysis and classification of zebrafish embryo pictures reduces the workload and
time required for the biological expert and increases the reproducibility and objectivity of this
classification.

Introduction

Zebrafish (Danio rerio) is commonly used as a vertebrate model organism [1] which has first
shown its usefulness in the field of embryonic developmental biology, but also, during the last
years, increasingly in toxicology, pharmacology and vertebrate behavioral biology [2, 3]. It is
fitted just as well to physiological analyses than genetic ones. Studies performed during the last
twenty years revealed a remarkable similarity in the genetic and metabolic pathways between
fish and mammals, opening up the way to the generation of fish models for many human pa-
thologies [4].

Thanks to the aquatic life mode, the permeability to small molecules, the low cost and the
transparency of the zebrafish embryos, the effect of chemical substances on their development
can be studied by simple microscopic observation. Several hundreds of embryos can easily be
obtained and used to assess the effects of a large number of substances in a screening approach.

Lethality and teratogenicity tests represent by far the most used tests and will always be a
prerequisite for further, more specific assays. In the European “REACH” directive {Council,
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2006 #4255}, the “Zebrafish EmbryoToxicity” (ZET) test is included as an alternative to animal
testing {Testing, 2014 #4254} and is bound for use on a large number of molecules. In view of
the large number of tests that will have to be performed, we identified the observation phase as
the main rate- and quality-limiting step in the procedure. Classically, an expert evaluates the
defects caused by a chemical compound by directly observing each embryo under a microscope
and scoring manually the different effects. Typical defects are illustrated by photography and
the observations are statistically processed to infer the toxicological effects of the drug. Ideally,
all the evaluated individuals should be documented and classified according to the defects ob-
served. This method is tedious, time-consuming and prone to appreciation subjectivity which
can affect the reproducibility of the results. According to [5], an expert is restricted to visualiza-
tion of a mean number of 400 specimens a day. Knowing that a single female is able to produce
up to 800 eggs per day, manual observation is clearly the limiting step. The large number of
substances to be tested and the need for accuracy of the results call for methods allowing auto-
mation of data acquisition as well as identification of the defects and classification of the ac-
quired images.

From a recent survey, it clearly appears that the aim of a fully automatic procedure to cap-
ture images of zebrafish larvae and classify/quantify their phenotypes is not yet reached [6].
Here, we propose an efficient and flexible approach for defect classification based on supervised
learning algorithms using a limited learning set of images annotated by experts to perform effi-
cient and reliable automatic classification of various defects caused by teratogenic chemicals in
3 days old zebrafish larvae. This tool carries the potential to be adapted to different types of im-
ages (different stages, fluorescent) in future applications.

Materials and Methods
Fish and embryo maintenance

Zebrafish (Danio rerio) of the AB strain were reared in a recirculating system from Techniplast,
Italy at a maximal density of 7 fish/l. The water characteristics were as follows: pH = 7.4, con-
ductivity = 500 pScm-1, temperature = 28°C. The light cycle was controlled (14 h light, 10 h
dark). Standard references of breeding can be found in [7]. Fish were fed twice daily with dry
powder (ZM fish food) adapted to their age and once daily with fresh Artemia salina nauplii
(ZM fish food). Larvae aged less than 14 days were also fed twice daily with a live paramecia
culture. Wild type embryos were used and staged according to Kimmel et al [8].

The day before breeding, wild-type adult male and female zebrafish were set up in several
breeding tanks, separated by a clear plastic wall. After the light was turned on the next morn-
ing, walls are removed and eggs are generated by natural mating and then, collected from
30 minutes to 2 hours after spawning. After sorting, clean eggs are moved to Petri dishes and
incubated at 28°C in E3 medium (5 mM Na Cl, 0.17 mM KCl, 0.33 mM CaCl,, 0.33 mM
MgSOy, 0.00001% Methylene Blue).

Animal care and all experimentation were conducted in compliance with Belgian and Euro-
pean laws (Authorization: LA1610002). All experiments and the entire study were evaluated by
the Ethical Committee of the University of Liége, Belgium and the study protocols were ap-
proved under the file numbers 1076 and 13-1506.

Chemicals and treatments

All chemicals used for zebrafish embryo treatment were purchased from Sigma-Aldrich (Die-
gem, Belgium). Stock solutions were prepared according to the manufacturer’s instructions
concerning solubility. Propanolol was dissolved in dimethyl sulfoxide (DMSO) to obtaina 1 M
stock solution. Amiodarone was dissolved in ethanol (ETOH) to obtain a 1 M stock solution.
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Acetaminophen was dissolved in ETOH 100% to make a 500 mM stock solution. Valproic acid
(VPA) was dissolved in pure water to make a 1 mM stock solution. The heavy metals: thallium,
methylmercury (MeHg), lead acetate (PbAc) and zinc sulfate (ZnSO4) were dissolved in pure
water to obtain respectively 10 g/1, 100 mg/l, 100 mg/l, 100 mg/l stock solutions. Caffeine, theo-
phyllin and 4,5-dichloroanilin (DCA) were prepared as, respectively 82.4 mM, 40.85 mM and
200mg/1 stocks in pure water.

The treatment solutions for toxicity tests were obtained by dilution of the stock solutions in
embryo medium (E3). Zebrafish embryos were treated at 2 dpf (days post fertilization) in
batches of 25 individuals distributed into 6-well plates and analyzed after 24 hours of treat-
ment. At this stage (3 days old), the embryos have normally hatched and are easily observable.
The larvae were rinsed twice in E3 before observation. Untreated control batches received only
the solvent used for the drug stock solution. For teratogenicity assessment of caffeine, theo-
phyllin and DCA, the surviving larvae were observed for morphological defects and the num-
ber of larvae presenting at least one morphological defect was reported as percentage of the
surviving larvae. For LC50 and EC50 calculation, GraphPad Prism software was used.

Manual image acquisition

Control or treated embryos were placed in a melt of E3 and methylcellulose, in a glass plate
with 12 cavities (Hecht, Sondheim, FRG), one fish per well. Images were captured using an
Olympus SZX10 stereo dissecting microscope coupled with an Olympus XC50 camera with a
transmitted light illumination, the light passing up from the condenser and through the em-
bryo. The Olympus XC50 camera allows us to acquire 2575 x 1932 pixel resolution images
with a size of 14,2 Mo in TIFF format. We used the same parameters for all acquisition sessions
(exposure time = 17ms, contrast = 1.05, maximum luminosity, white balance, magnification =
1.60x). First test runs revealed the ability of the classification algorithm to classify the images
according to the acquisition session, therefore we defined a rigorous protocol in order to avoid
variations in acquisition adjustments and parameters inducing artifacts that could bias the
image analysis algorithms [9, 10]. Besides the primary aspects, such as the control of luminosity
and focus, we also paid a particular attention to the position of the fish and to the nature of the
plates (e.g.: glass) in order to avoid light refraction problems, causing shadowed parts on the
images that can disturb the analysis. Finally, we decided to include images from five indepen-
dent acquisition sessions into the learning set (see also below).

Image pre-processing

To maximize the efficiency of our classification algorithm, larvae images were processed in
order to be standardized before being classified. This pre-processing consists in removing parts
of the image background that could contain noise unrelated to the phenotype to be detected
and is performed using the Image] software (http://imagej.nih.gov/ij/). An algorithm has been
developed within the Image] environment based on shape detection of the larvae (Fig. 1 and

S1 Fig. for code). At this stage, images are first submitted to a series of morphological opera-
tions. First, a variance filter allowing to highlight edges in the images by replacing each pixel
with the neighborhood variance is applied in order to highlight the edges of the objects within
the image (larvae and/or debris), ignoring image borders. Images are then binarized to apply
two dilatations in order to obtain a continuous outline surrounding each region. Finally, a
connected-component labeling is used to obtain the object with the maximum area, to select
and localize the larvae. If several connected components are found in the image, the largest one
is assumed to be the larva, and its coordinates are kept. A supplementary test (ratio between
height and width of the rectangle) is performed before cropping to check whether this region
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Figure 1. Image Preprocessing: From original image to the one used for classification. The original
image is submitted to an Imaged script (S1 Fig. for the code) which allows to automatically crop the zebrafish
embryo into a square as far as possible. The embryo will be surrounded by a rectangle if it is placed near the
sides of the original image. We use a connected-component labeling approach combined with different
morphological transformations and binarizations, in order to localize the embryo.

doi:10.1371/journal.pone.0116989.9001
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has a circular shape (as is the case for some phenotypes). Preliminary classification tests re-
vealed that the best efficiencies were obtained if, at the end of this preprocessing, all larvae are
displayed in the center of a square. In the case of a fish (region) with a circular shape, the
region is cropped by the square directly surrounding it (Fig. 1, right). Otherwise, the region is
placed into a square using the largest dimension of the surrounding rectangle (see algorithm in
S1 Fig.). This algorithm fully works on all our images without damaging any of the embryos in
term of shape or size.

Image labeling—manual ground truths

Manual annotations of zebrafish phenotypes were performed using the CYTOMINE web-
based application [11] (see also www.cytomine.be) that allows to upload microscopy images
and annotate them according to user-defined vocabularies. In addition, each annotated defect
is linked to a user-defined region of interest in the corresponding image.

Supervised image classification

Supervised image classification methods exploit a dataset of labeled images to build a model
(training phase) able to classify new, unseen images based on their visual content (testing
phase).

Training defect classification models by machine learning

We used a previously described machine learning based image classification algorithm [12]
using dense random subwindows extraction in images, their description by raw pixel values
and, finally the use of ensembles of extremely randomized trees [13] to classify these subwin-
dows, and thence images by the joint exploitation of these subwindows’ classifications. Specifi-
cally, the method first extracts 1000 subwindows of random sizes and at random locations in
each training image. Random sizes are controlled by two parameters: minimum and maximum
sizes as a fraction of the total image size. These subwindows are resized to a fixed-size (in our
case 32x32 pixels) and then described by raw pixel intensity values in a given color space. We
used a normalized red-green-blue space (TRGB) where pixel value distributions were normal-
ized within each subwindow for each RGB channel independently (by subtracting the mean
and then dividing by the standard deviation). Then, an ensemble of extremely randomized
trees is built with parameters T (the number of trees), N,,,;, (the minimal size of the sample

to split a node), K (the number of random tests evaluated at each test node) and the type of
tests at each node, SIMPLETHRES (single pixel value thresholding) or DIFFNEIGHBOR
(thresholding the difference of one pixel with one of its 8 neighbors). Once an ensemble of
trees is built, it can be used in two modes: either to directly classify subwindows hence images
(C mode), or to build image features (based on subwindow frequencies in terminal nodes) clas-
sified by a linear SVM method (BAGS mode) also trained on the training set.

Prediction using the trained classifiers

To classify a test image, subwindows are as well extracted randomly according to the parame-
ters used for training the classifier and propagated into the trees built at the learning step. In
the direct classification mode (C mode), for each subwindow, and for each tree, class probabili-
ty estimates are predicted and then aggregated by averaging both over the subwindows and the
ensemble of trees; the most probable class of the resulting vector of probabilities is then as-
signed to the image. In the BAGS mode, an image descriptor is built based on the frequencies
of appearance of its subwindows in each leaf of each tree of the ensemble. This high-
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dimensional descriptor is propagated into the linear SVM model, which outputs a final class
decision for the image.

Parameter tuning

The values of the main parameters (ranges of sizes of randomly extracted subwindows, type of
tests at each internal node, classification mode) of the algorithm were optimized by cross-
validation on the learning set. For each step of this internal cross-validation, we chose to use
2/3 of the learning set images to train a model and the remaining 1/3 to estimate its accuracy.
To get more stable estimates, results were averaged over 5 to 75 runs with randomized 2/3-1/3
splits. Then, for each classifier (several classifiers are built to cover the different phenotypes;
see below), we kept the parameter values that achieved the best cross-validated recognition rate
for the corresponding prediction problem, and with these settings we then built a new model
on the whole balanced learning sample, and applied it on the test images in order to assess
their accuracy.

Results
Treatments

In order to obtain a collection of different morphological defects, zebrafish embryos were treat-
ed with increasing concentrations of several chemicals, known to cause specific defects on zeb-
rafish larvae except thallium (Table 1). We chose to treat the embryos starting at 48 hpf (2 dpf)
and to analyze the effects at 3 dpf, a period that we previously showed to be highly sensitive
both concerning lethality and teratogenicity [14].

A first class of compounds belongs to the cardioactive family. Acetaminophen is known to
cause tail, heart and yolk sac malformations [15, 16], while propanolol exposure leads to large
pericardial edema, weakened pigmentation and tail curvatures [17]. Finally, amiodarone is
known to cause failure of cardiac valve formation in zebrafish embryos [18].

The second class belongs to the heavy metal family. Thallium is known for its high toxicity
as a pollutant [19], even if its morphological effects on the zebrafish embryo are still unknown.
Methylmercury (MeHg) causes tail fin fold defects and abolishes the tail fin primordium [20],
while lead acetate (PbAc) can induce malformations such as uninflated swim bladder, bent
spine and yolk-sac edema [21]. Zinc sulfate (ZnSO4) was shown to cause pathological alter-
ations in isolated fish erythrocytes [22, 23] and abnormal embryogenesis, low hatchability, de-
layed hatching, a reduction of newly hatched larvae and a poor survival rate [24]. Finally,

Table 1. Summary of the effects of the substances used to intoxicate the zebrafish embryos.

Substances Family Observed Defects
Acetaminophen Cardioactive Tail, Heart and Yolk Sac malformations
Propanolol Cardioactive Large pericardial edemas, weak pigmentation and tail curvatures
Amiodarone Cardioactive Failure of cardiac valve formation
Thallium Heavy Metal High toxicity but morphological effects on the zebrafish embryos are still unrecognized
Methylmercury Heavy Metal Tail fin fold defects and abolishes the tail fin primordium
(MeHg)
Lead acetate Heavy Metal Induces malformations such as uninflated swim bladder, bent spine and yolk-sac edema
(PbAc)
Zinc sulfate Heavy Metal Causes pathological alterations in isolated fish erythrocytes and induces abnormal embryogenesis,
(ZnS04) low hatchability, delayed hatching, and reduction of newly hatched larvae, and a poor survival ratio
Valproic acid (VPA)  Anticonvulsant and Mood- Causes a ventrally curved body axis and pericardial edema
stabilizing

doi:10.1371/journal.pone.0116989.t001
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valproic acid (VPA) was shown to cause a ventrally curved body axis and pericardial edema
[25, 26].

At the end of the treatment (3 dpf), the compounds were washed away and images were ob-
tained of each individual larva in a lateral view. In order to test for robustness of the classifica-
tion, eight completely independent acquisition sessions were organized on different days.

Building the dataset

In a first annotation round, every larva image (all phenotypes mixed randomly) was labeled by
three biologists working independently who chose to assign one or more phenotypes according
to their observation for each image. This first round served to define a vocabulary describing
eleven defects that were observed in the image collection: “Normal”, “Dead”, “Chorion” proba-
bly indicating a general developmental delay, “Down Curved Tail”, “Hemostasis”, “Necrosed
Yolk Sac”, “Edema”, and “Short Tail”. Finally, we defined “Up Curved Tail” and “Up Curved
Fish”, depending on the location of the curvature, and «Up Curved Tail/Fish” for larvae pre-
senting one of these two defects. Then, for each image and for each phenotype, the ground-
truth was calculated by majority voting, e.g. a zebrafish was assigned the phenotype “Hemosta-
sis” if at least 2 experts assigned that term to the embryo. Overall, 894 images have been manu-
ally acquired and analyzed one by one by the three experts who assigned roughly 7000
independent annotations. This first annotation round revealed the expert’s subjectivity, mostly
due to the lack of rigorous phenotype definitions, most notably for the sensitive ones (e.g.
edema and hemostasis) (overall agreement among the three experts 85-97% compared to the
majority vote). We therefore organized consensus voting sessions: the three experts were asked
to review their previous annotations all together in order to reach agreement on the phenotype
(s) associated to each image. These sessions were repeated in order to have high-confidence
learning sets. Finally, 870 images received a high consensus for the respective defect. Among
these 870 images, 529, corresponding to five independent acquisition days, were integrated
into the learning set. The remaining 341 images (3 additional acquisition days) were integrated
into the test set. 24 images did not receive a consensus for at least one of the respective defects,
and hence were removed from the dataset; they will be discussed later. Examples of all 11 de-
fects are shown on Fig. 2 and a summary of the total number of images for each defect is given
in Table 2 for both learning and test sets.

Binary classification

In a first attempt to obtain automatic classification, we decided to build models for binary clas-
sification of each defect separately. The learning set for each specific defect was composed of
those images presenting the defect (YES) against all the other images (NO).

A collection of binary models was built by varying the different parameters (see Material
and Methods) and the optimal parameter combination was determined for each defect by
cross-validation on the respective learning set. Systematically, T = 10 trees have been built for
each binary test with K = 28 candidate splits performed per node, for all phenotypes. K = 28
was chosen as it is the default value suggested for color images [13] (M = 768, with M the total
number of attributes describing subwindows). We built 10 trees since it is the minimal recom-
mended value as previously assessed [12] (other tests have been performed with K = 128 and
T =100 but the results were not significantly improved). N, was set to its recommended val-
ues: 1 for the classification mode “C” and 1000 for the classification mode “BAGS”. Table 3
shows the best parameter values (the classification mode [“C” or “BAGS”], the size of the ran-
dom subwindows and the test type at each node [“SIMPLETHRES” or “DIFFNEIGHBOR”])
for each binary model as well as the achieved recognition rates on the learning set and the
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Figure 2. Examples of images representing all the analyzed phenotypes. “Without phenotype” defect,
also called “Normal” embryos (A) are without any phenotype. The “Dead” phenotype (B) is shown as totally
necrosed, while the “Chorion” phenotype (C) represents embryos that are still located in their chorion. In
“Down Curved Tail” (D), the tail is obviously oriented downward compared to the horizontal. “Hemostasis” (E)
presents a small amount of blood which can be located everywhere in the embryo (mainly in the head or in
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the pericardial area). “Necrosed Yolk Sac” (F) corresponds to a darker yolk compared to normal. In the
“Edema” phenotype (G), an edema generally surrounds the anteroventral part of the fish. The “Short Tail”
phenotype (H) describes a tail shorter than normal. “Up Curved Fish” (1) and “Up Curved Tail” (J) are two
slightly different phenotypes. There is a curvature on the back of the embryo for “Up Curved Fish” (like a kind
of lordosis), whereas the curvature is located on the tail for the “Up Curved Tail” phenotype.

doi:10.1371/journal.pone.0116989.9002

corresponding results on the corresponding independent test set using optimal binary models.
All combinations of all the values for these parameters have been tested in the cross-validation
step to determine the combination giving the best recognition rate for a given phenotype. The
results (Table 3) reveal that one developmental anomaly, “Dead”, is identified with a near cer-
tainty (99.06%), while others, such as “Necrosed Yolk Sac”, “Up Curved Fish”, “Normal” and
“Chorion” are still well classified (between 90.00%-95.15%). Phenotypes “Up Curved Fish/
Tail”, “Short Tail”, “Down Curved Tail” and “Up Curved Tail” are a bit less well classified (be-
tween 80.43% and 89.94%), while “Hemostasis”, and “Edema” are not well detected at all by
the classification algorithms (resp. 54.57%-73.85%).

Two-tier classification

According to our first results, the two defects “Chorion” and “Dead” were identified with a
near certainty. These two specific phenotypes, unlike other defects, are exclusive classes: by def-
inition, fish belonging to these classes have no other phenotypes. We therefore decided to test a
two-tier approach, where we would first sort-out those larvae presenting either the “Dead” or
the “Chorion” phenotype, followed by a detection of the other defects if neither of these two
phenotypes is detected by the classifier.

A three-class classification model was hence first built using the entire learning set to obtain
three mutually exclusive classes: “Chorion”, “Dead” and “Others”. Note that the “Others” class
includes both non-affected (i.e. “Normal”) larvae and those presenting at least one of the other
defects. This first-tier classification model results in 100%, 98.11% and 99.65% of correct recog-
nition rate, respectively for these three classes (Fig. 3), with in particular a very marked increase
in the recognition rate of the “Chorion” phenotype from 90% to 100%. This very high success

Table 2. Number of images by class (+) and (-) for each phenotype, in the learning set (LS) and the test set (TS).

Learning Set (LS) and Test Set (TS): Summary of the Nb of images for each class

Phenotypes

Dead

Chorion

Down Curved Tail
Hemostasis
Necrosed Yolk Sac
Edema

Short Tail

Up Curved Tail

Up Curved Fish

Up Curved Tail/Fish
Normal

doi:10.1371/journal.pone.0116989.t002

LS

Nb of (+) images

Nb of (-) images

TS

Nb of (+) images

Nb of (-) images

114 415 53 288
18 511 5 336
11 518 16 325
57 472 83 258
167 362 11 330
160 369 54 287
49 480 149 192
32 497 17 324
64 465 13 328
96 433 29 312
160 369 82 259
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Table 3. Summary of the classification results in cross-validation on the learning sets and on the independent test sets using the “All binary” or

“Two-tier” method.

Phenotype Mode

(%)
Chorion BAGS 25-75
Dead BAGS 10-75
Down Curved BAGS 50-90
Tail
Necrosed Yolk BAGS 0-100
Sac
Edema BAGS 10-90
Short Tail BAGS 25-90
Up Curved Fish C 25-75
Up Curved Tail BAGS 25-90
Up Curved Tail/l C 0-90
Fish
Hemostasis BAGS 25-90
Normal BAGS 10-75

Subw size Test Type

SIMPLETHRES

SIMPLETHRES

DIFFNEIGHBOR

SIMPLETHRES

DIFFNEIGHBOR

DIFFNEIGHBOR

SIMPLETHRES

DIFFNEIGHBOR

SIMPLETHRES

DIFFNEIGHBOR

SIMPLETHRES

CV Rate on LS with “All
binary”

99.63% Chorion: 100% “-”:
99.26%
99.73% Dead: 99.74% “-”:
99.74%
85.13% Down: 95.38% “-”:
74.87%
92.36% Necr.: 99.63% “-:
85.09%

92.07% Edem.: 95.09% “-”:

89.06%

91.25% Short: 94.16% “:
88.33%

96.19% UpFish: 99.04%
“”. 93.33%

87.0% UpTail: 94.0% “”:
80.0%

94.84% UpFishTail:
98.84% “”: 91.56%
79.82% Hemo: 86.67% “:
72.98%

97.54% Norm.: 98.87% “-:
96.23%

Rate on TS with “All
binary”

90.00% Chorion: 80% “-":
100%

99.06% Dead: 98.11% “-™:
100%

82.68% Down: 68.75% “-”:
96.61%

95.15% Necr.: 100% “-:
90.30%

73.85% Edem.: 75.92% “-:

71.78%

89.94% Short: 89.26% “-”:
90.62%

92.04% UpFish: 92.31%
2 91.77%

86.54% UpTail: 76.47% “":

96.60%

80.43% UpFishTail:
72.41% “”: 88.46%
54.57% Hemo: 28.91% “-”:
80.23%

91.09% Norm.: 98.78% “-”:

83.40%

Rate on TS with “Two-tier”

Chorion: 100.00% Dead:
98.11% Others: 99.65%

Dead: 98.11% Chorion: 100%
Others: 99.65%

85.80% Down: 75.0% “-”:

96.61%

90.15% Necr.: 90.91% “-":
89.39%

75.24% Edem.: 75.92% “-”:
74.56%

89.12% Short: 86.58% “-":
91.67%

95.42% UpFish: 100% “-":
90.85%

85.45% UpTail: 76.47% “-"
94.44%

78.55% UpFishTail: 68.96% “-:
88.14%

51.31% Hemo: 8.43% *:
94.19%

91.09% Norm.: 98.78% “-":
83.40%

For each phenotype (column 1), the optimal mode of classification (“BAGS” or “C”) (second column), the size of the extracted random subwindows
(expressed in percentage of the size of the original image) (third column) and the kind of test type used for each node (SIMPLETHRES or
DIFFNEIGHBOR)(fourth column) are given. “CV rate on LS” gives the results for each phenotype obtained in cross-validation on the corresponding
learning sets (LS) with these parameters in the following form: global recognition rate, recognition rate of the specific phenotype, recognition rate of the
corresponding “negative” phenotype. “Rate on TS” gives the results obtained with the same parameters on the corresponding independent test sets,
respectively with the “All binary” or with the two-tier approach (three-class model followed by binary classification). Recognition rates are in % of the

corresponding set.

doi:10.1371/journal.pone.0116989.t003

rate allowed us to consider the subsequent classification of the remaining phenotypes after put-
ting aside the “Chorion” and “Dead” images.
Thus, images previously classified as “Others” by this first-tier classification algorithm com-
posed the new datasets for detection of the remaining defects. New learning and test sets were
constructed to build and evaluate new models for each phenotype by removing all the manually
annotated “Dead” and “Chorion” images for the learning set and all the predicted “Dead” and
“Chorion” images for the test set (S1 Table). Each new binary classification model was built for
each of the remaining individual defects with the same parameters than those found optimal
when building the corresponding defect model with “Dead” and “Chorion” images included.
These models were applied to the new test sets, previously passed through the three-class
model (S2 Table).
To compare the results of the “all binary” models and the two-tier approach using the three-
class model followed by the new binary models, we aggregated the results of the two tiers into
confusion matrices in order to obtain the global, final recognition rates. Indeed, false positive

images for “Dead” and “Chorion” in the three-class test were missing from the “Others” phe-

notype, i.e. from the new test set for binary classification and thus represent false negatives for
all true defects that they may contain. Conversely, false negative images for “Dead” and
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Three-class Model

[98.11%] [99.65%] [100%]

Remaining
Phenotypes

Dead

Binary
Classification

Figure 3. Two-tier pipeline. Schematic overview of the Two-tier approach for classification, also showing the recognition rates observed on the test set for
the three-class model.

doi:10.1371/journal.pone.0116989.9003

“Chorion” might actually be identified as false positives in the binary tests. This problem is
minimal (only two images) due to the high recognition rates of the three-class model, but has
to be considered when assessing the overall efficiency of the method. Taking these corrections
into account, confusion matrices were constructed manually for the entire test set and for each
defect (Table 3).

The observed classification accuracy for each phenotype reveals that this procedure signifi-
cantly increased the recognition rates for “Chorion” (90% to 100%), slightly increased the rec-
ognition rates for “Down Curved tail” (82.68% to 85.80%), and “Edema” (73.85% to 75.24%),
whereas it decreased recognition rates for “Necrosed Yolk Sac” (95.15% to 90.15%) and slightly
decreased the recognition rates for “Up Curved Tail/Fish” (80.43% to 78.55%) and “Hemosta-
sis” (54.57% to 51.31%) while leaving the others unchanged. Thus, we achieve really good re-
sults for “Dead”, “Chorion” and “Up Curved Fish” (95% > RecogRate > 100%), “Necrosed
Yolk Sac” and “Normal” (90% > RecogRate > 95%), and good results for “Down Curved Tail”,
“Up Curved Tail” and “Short Tail” defects (85% > RecogRate > 90%). Thus, the results are sat-
isfying on the whole except for three phenotypes which remain really problematic: “Up Curved
Tail/Fish”, “Edema” and “Hemostasis”.

We mentioned previously that 24 images did not reach consensus among expert annota-
tions and were therefore not included in the learning and the test sets used in the previous ex-
periments. However, we decided to use these images as a further test of our method on a set of
particularly difficult images to see whether the experts could agree “a posteriori “with the anno-
tation proposed for them by our classifiers.

These 24 images were hence run through the two-tier annotation pipeline. Their automatic
annotations were then confronted for each image with the expert opinions, without revealing
their previous opinions. The three-class model classifies all 24 images in the “Others” class, no
“Chorion” or “Dead” embryo was present in this set, in perfect agreement with the experts.
Agreement was also reached for 12 (out of 24) images with “Necrosed Yolk Sac”, 0 for “Down
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Table 4. Automatic classification of “difficult” images and “a posteriori” expert agreement.

Dead

Chorion

Necrosed Yolk Sac
Down Curved Tail
Short Tail

Up Curved Tail
Normal

Up Curved Fish
Up Curved Fish/Tail
Edema
Hemostasis

Classified as (+) by algorithm Expert agree False negative?
0 0 0
0 0 0
12 12 2
0 0 1
11 11 L
4 4 1
2 2 0
22 8 2
8 4 8
22 11 0
12 3 2

24 “non consensus” images were first classified using the “Two-tier” method and then evaluated by experts for possible agreement. The second column
shows the number of images that automatic classification identified as having the corresponding phenotype (+). These images were visualized by an
expert and he provided an “a posteriori” opinion on the classification performed automatically. The number of images where he agreed with the automatic
classification are shown on the third column. Finally, all images were again screened by the expert for all phenotypes to identify possible “false negative”
images, their number is given in the last column.

doi:10.1371/journal.pone.0116989.t004

Curved Tail”, 11 for “Short Tail”, 4 for “Up Curved Tail” defects, respectively and 2 for the
“Normal” phenotype. (Among all these, only 4 defects were spotted by the experts as potential
false negatives.) For “Up Curved Fish” and “Up curved Fish/Tail”, the experts agreed on, re-
spectively 8/22 and 4/8 annotated positive ones. As expected, agreement was low for “edema”
11/22 and “hemostasis” (3/12). These results are summarized in Table 4.

Model validation

Finally, in order to simulate a real-life toxicological experiment, new tests were performed to
obtain several independent test sets, composed of new images collected manually using the
same stereomicroscope and exactly the same parameters. The lethality and teratogenicity of the
tested substances caffeine and theophylline have been previously characterized on zebrafish
embryos after treatment between 48 and 72 hpf [14], while 3,4-dichloroaniline (DCA) is rec-
ommended as a toxicity standard in the OECD guidelines for the zebrafish embryotoxicity test
[27]. Description of these compounds is given in in Table 5.

Zebrafish embryos were intoxicated following the same protocol as previously described.
We used theophylline (0.5mM, 1mM, 2mM, 5mM, 6mM), caffeine (0.5mM, 1mM, 3mM,
5mM, 7mM) and 3,4-dichloroaniline (4mg/l, 4.5mg/l, 5mg/l, 6mg/l, 7mg/1, 30mg/1, 40mg/1,
50mg/l, 60mg/l, 70mg/1) with an untreated control batch in each case. Then, new images were

Table 5. Chemicals used to intoxicate embryos to build the validation set.

Chemical

Caffeine

Theophylline
3,4-Dichloroaniline (DCA)

Stock Solution Company Molecular weight
82,4mM Sigma Aldrich 194.19

40,85mM Sigma Aldrich 180

200mg/I Sigma Aldrich 162.02

Name, concentration of stock solution, provider, chemical formula, and molecular weight are given.

doi:10.1371/journal.pone.0116989.t005
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Table 6. Summary of the classification results on validation set after being classified by the Two-tier approach.

Predicted « Chorion » Predicted « Dead » Predicted « Others » Recognition Rate
True « Chorion » 108 11 0 108/119 = 90,8%
True « Dead » 18 197 0 197/215 = 91,6%
True « Others » 1 18 838 838/857 = 97,8%

The number of predicted phenotypes and overall prediction rates are given for each of the three “true” subsets.

doi:10.1371/journal.pone.0116989.t006

acquired manually, following the same protocol as previously (see Manual Image Acquisition
section). Overall, 1191 images have been acquired and submitted to our two-tier classification
pipeline without any retraining. For clarity, this new test set will be called “Validation Set”.
Ground truth was established by manual observation of images.

Three-class model

The validation set images were passed through the 3 class model to sort into “Chorion”,
“Dead” and “Others” phenotypes. The results (Table 6) reveal an overall accuracy of 93.39%
with a slight (about 10%) confusion between “Chorion” and “Dead” phenotypes. Most impor-
tantly, no image classified by experts as “Chorion” or “Dead” are injected into the “Others”
phenotype, thus showing the reliability of our system concerning the exclusion of these two ex-
clusive phenotypes.

Binary classification models

To go on simulating a real life toxicological experiment, only images classified by the three-
class model as “Others” were injected into the various, previously constructed binary models.
The proportions of each observed defect at the different compound concentrations are shown
in S3-S5 Tables, both by manual (M) or automatic (A) observation. Comparison between
manual and automatic classification reveals in general a good agreement with the exception

of “Edema” and “Hemostasis”, as already expected. One remarkable exception is the abnormal-
ly high proportion (28/99) of “Necrosed Yolk Sac” observed in the untreated control for DCA
(S5 Table), which seems to remain constant at all concentrations.

Toxicological studies generally focus on the dose-response curves for survival and teratoge-
nicity in order to deduce, respectively LC50 and EC50 values as well as the teratogenicity index
TI (=LC50/EC50). Teratogenicity in this case means the presence of any defect in the surviving
embryos. Comparing the manual and automatic dose response curves (Fig. 4), we observe a re-
markable agreement of the obtained graphics. Furthermore, comparison of the deduced LC50,
EC50 and TI values for the manual and automatic analyses and, for caffeine and theophylline
with those previously published under the same conditions, reveals an excellent agreement,
clearly within the range of experimental error (Table 7). Actually, conclusions about the effects
of these compounds on zebrafish embryo development could have been directly deduced from
the curves built from the automatic observations.

Discussion

Various recent works tackled the problem of automated analysis of zebrafish phenotypes fol-
lowing toxicological treatments [28-31]. One study determined the mortality rate due to vari-
ous toxicant concentrations using images of treated embryos by extracting image features (e.g.
variance of pixel values) to distinguish two very obvious classes, dead or alive embryos.
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Figure 4. Dose-response curves for caffeine, theophylline and DCA. Survival and morphological defects of larvae intoxicated from 2dpf to 3dpf. The
fraction of surviving larvae is represented by the “Survival” curve on each graph by a LC50 curve. The EC50 (teratogenicity) curve is drawn according to the
results given by the “Normal” phenotype, as the fraction of surviving larvae. A, C, E graphs have been obtained on the basis of manual observations, whereas

B, D and F graphs are based on automatic analysis.

doi:10.1371/journal.pone.0116989.9004
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Classification using the Matlab Gait-CAD toolbox was shown to be in good correlation with
that from experts [28], however more complex defects were not addressed. Another work de-
scribes a way to automatically obtain images of zebrafish embryos using a motorized micro-
scope, but leaves classification into phenotypes manual [29]. Other authors [30] developed an
automatic system for data acquisition and embryo analysis in multi-well plates, however exten-
sive manual intervention is still needed on a case-by-case basis to produce analysis routines
using several image segmentations. More recently, an approach was proposed based on auto-
matically acquired images, using a high-throughput microscope, followed by automatic classifi-
cation into three basic phenotypes (hatched, unhatched and dead) using an algorithm based on
MPEG-7 image descriptors and Support Vector Machines [32]. Our group proposed an auto-
matic method to localize points of interest in zebrafish images that were taken manually [33].
Finally, a multi-thread system was presented that can simultaneously process multiple zebra-
fish larvae placed in a capillary, coupled to image recognition algorithms that fully automate
manipulation of the animals, including their orientation and positioning regions of interest
within the microscope’s field of view, however no solution to detect specific defects of the lar-
vae is proposed [34, 35]. Recently, a method was described to extract body curvature along the
length of an adult, swimming zebrafish from video data from a dorsal view {Cheng, 2014
#4248}. Another study describes automatic data acquisition of transgenic fluorescent larvae
coupled to extraction of the body length as a single end-point for rapid assessment of a chemi-
cal’s toxicity {Lantz-McPeak, 2014 #4253}. Taken together, these studies essentially illustrate
the difficulty to consider more specific and complex phenotypes. It clearly appears that the aim
of a fully automatic procedure to capture images of zebrafish larvae and classify/quantify their
phenotypes is not yet reached [6]. Existing solutions for image capture have to be adapted for
high throughput applications, usability and cost-effectiveness. Defect recognition capabilities
remain restricted, either by the narrow number of basic phenotypes considered, by the manual
intervention still required for image classification or by a weak validation performed on a very
small number of samples and/or image acquisition sessions.

Here, we propose a robust and high-performance automatic computer-based methodology
to detect specific defects in images of zebrafish populations. Our approach succeeds in auto-
mated classification of embryo populations thanks to optimizations of algorithms based on
machine learning and image processing. We show that the use of supervised learning algo-
rithms for the classification of various defects is sensible.

Our final pipeline consists of a two-tier approach starting with a three-class classification
model first sorting out images of “Dead” or “Chorion” embryos, before detecting other defects.
These two phenotypes are highly relevant for toxicological studies, they are exclusive of other
defects, and their identification with our methods is highly reliable. Moreover, the “Chorion”
phenotype at this stage represents a clear delay in the developmental process, while more severe
developmental timing defects (e.g. in epiboly, segmentation, . . .) might actually result in a
“Dead” larvae. This step is similar to the one proposed previously [32] for classifying hatched,
unhatched and dead embryos. When we evaluated our algorithms using these publicly available
images (as JPEG files), following the protocols described above, we obtained slightly better re-
sults than their model: internal cross-validation on their training set (1.12%%1.09 vs 2.6%+0.95
error rate), and evaluation on their independent test set (3.12% vs 6.25% error rate, average
processing time per image with single-threaded code: 0.3927s). When we tested our three-class
model on our own validation set, obtained in completely independent experiments, we ob-
served an occasional confusion between “Dead” and “Chorion”. Observation of the misclassi-
fied images shows that the confusion between “Chorion” and “Dead” phenotypes can be
attributed to cases where the embryo is already half necrosed while still in the chorion (S2 Fig.).
Manual observation may reveal some movement or heart beat of the embryo, leading to the
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Table 7. Comparison of the deduced LC50, EC50 and Tl for caffeine, DCA and theophylline.

log(LC50)

Manual
Caffeine 0.82 £ 0.03
DCA 1.74 £ 0.02
Theophylline 0.62 £ 0.07

log(EC50) log(Tl) log(TI) Litt
Auto Manual Auto Manual Auto
0.81 £ 0.02 -0.9+0.7 -0.8+1.0 1.72+ 0.73 1.61£ 1.0 1.26+0.05
1.75+£0.02 0.62 £ 0.02 0.56 £ 0.03 1.12+ 0.04 1.19+ 0.05 Not available
0.59 + 0.07 -0.11 £ 0.05 -0.16 £ 0.01 0.73£ 0.12 0.75%£ 0.1 1.06+£0.04

This table presents all the log(LC50) and log(EC50) values processed on the manual observations and on the values processed by our classification
pipeline. These values are compared for each chemical and finally log(Tl) (Tl = teratogenic index) are calculated this way: log(Tl) = log(LC50)-log(EC50).
According to the bibliography and also to the results given by our automatic classification, we can conclude that caffeine theophylline and DCA clearly
revealed their teratogenicity (log(Tl) > 0) on the basis of the results achieved by the automatic analysis.

doi:10.1371/journal.pone.0116989.t007

classification alive and “Chorion”, but the partial necrosis in the still image misleads the classi-
fication algorithm into “Dead”. Inclusion of video/time-lapse into the classification process
could help to avoid such mistakes, however we feel that such an approach would introduce
complication with little benefit. Conversely, some dead embryos remain in a highly curled pos-
ture that may be assimilated by the classification algorithm as an unhatched, “Chorion” em-
bryo. This confusion did however not significantly affect the survival and teratogenicity dose-
response curves, as these rare mistakes compensated for each other. Most importantly, this
confusion had no impact on the “Other” phenotype, thus allowing proper progression of our
pipeline with the other defect identifications.

The binary models performed in general really well. Two defects, “Up Curved Tail” and
“Necrosed Yolk Sac” ranged between 85-88% agreement with experts. Inspection of the classi-
fied images indicated that this relatively low agreement rate between automatic and expert clas-
sification for these two sensitive phenotypes might actually reflect the subjectivity of expert
classification (S3 Fig.), rather than a failure of automatic classification. Thus, automatic classifi-
cation might be useful to obtain a more objective evaluation as compared to human analysis.
This could be especially true for low concentrations of toxicants, where the observed defects
might be less severe and thus more dependent on subjective evaluation. Finally, two defects
caused serious problems to the learning algorithms, “Edema” and Hemostasis”. This lack of
recognition probably results from the more localized nature of these defects, as compared to
the other, more general phenotypes. We are presently pursuing an approach using the localiza-
tion information given by the expert annotation in the CYTOMINE environment to further re-
fine our classification algorithms, either by focusing on the precise location of the defect or by
focusing the learning phase on sub-images of the defect.

In the binary classification models, we included “Normal” as a specific phenotype, which
was recognized at rates ranging between 90-95% and was used for drawing the dose-response
curves in the validation experiment. Another logical way to evaluate the presence of this quite
specific phenotype would be to consider that each image that has never been classified in the
positive class for any phenotype belongs to the “Normal” class. However, in the tests that we
performed using this method, it appeared that this procedure tends to accumulate errors made
by the other classifiers and thus could result in extensive over- or under-estimation of the pro-
portion of “Normal” phenotypes (data not shown). Especially the bad recognition of “Edema”
and “Hemostasis” could interfere by delivering high numbers of false positives or negatives. Di-
rect recognition of the “Normal” phenotype seems to be more robust against this bias. Note
that, following OECD guidelines, under-estimation of the “Normal” phenotype in control, un-
treated populations might result in purely rejecting the experiment and thus time-consuming,
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costly and unnecessary repetition of the experiment. The binary model for recognition of the
“Normal” phenotype seems to be the best solution in our setting.

In conclusion, our two-tier automatic classification pipeline already gives promising results
in the analysis of 9 different defects out of 11 tested, allowing to anticipate that other morpho-
logical abnormalities could also be classified. In the future, we will focus on extending our clas-
sification method to other, more subtle or more localized defects.

One important question arising at this point is whether our pipeline is portable to other lab-
oratories. We could show, using the validation set, that the method is very robust within a sin-
gle laboratory, using the same equipment, settings and personal to obtain images at very
different time points. This robustness is probably due to the fact that we used images obtained
on 5 different acquisition days for the learning sets, thereby eliminating bias introduced by un-
recognized differences in acquisition conditions. Direct use of the established models would
probably require the use of the same, or similar instrumentation and settings in another labora-
tory. Alternatively, the CYTOMINE web-based application [11] can be used to gather specific
new learning sets of appropriate quality, hence specific models could be constructed using the
procedures described here. We are currently developing a user-friendly interface to make this
functionality available to outside users. Another interesting application of such an objective
classifier, trained over a representative set of labs or over a certain time span in a single lab,
could be to monitor/arbitrate the variability in practice and performance between laboratories
or in one laboratory over time.

The high success rate of our classification pipeline opens the way to automatic recognition
of other features. Machine learning does not require any preconception concerning the feature
to be recognized, thus integration of novel phenotypes will only be limited by the ability of ex-
perts to build appropriate learning sets. In high-content screening applications on cultured
cells, fluorescent images are extensively used and automatic analysis has been discussed [36].
The transparency of zebrafish larvae is also used for fluorescent applications, thus we could
possibly extend our analysis method to this kind of images. Furthermore, our method is not
specific to zebrafish, we could envisage a general approach which could be extended to other
organisms (e.g.: drosophila melanogaster, C. elegans).

Supporting Information

S1 Fig. Source code of the automatic image preprocessing. This macro has been written in
JAV A meta-language in the Image] environment.
(TIFF)

S2 Fig. Examples of images annotated as “Chorion” and “Dead” phenotypes misclassified
by the two-tier approach. This Fig. shows the confusion made by the two-tiered approach be-
tween “Chorion” and “Dead” classes for some sensitive images. In column “A”, three images
are annotated as belonging to the “Dead” class and classified by the two-tiered approach as
“Chorion” because of their rounded shape and in some cases, the not totally necrosed embryo.
On the other hand, column “B” shows examples of images annotated as “Chorion” but classi-
fied as “Dead” because of the necrosed aspect of the embryos.

(TIFF)

S3 Fig. Examples of sensitive images for “Necrosed Yolk Sac” and “Up Curved Tail” pheno-
types. This Fig. shows examples of images where the impact of the subjectivity of the experts
during image annotation could explain the weak classification results for the two phenotypes
“Necrosed Yolk Sac” and “Up Curved Tail”. Columns “A” and “B” show examples of images
annotated as belonging, respectively to the “Necrosed Yolk Sac” and the “no_Necrosed Yolk
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Sac” classes. These images are actually very similar even if they were annotated as belonging to
opposite classes. The same observation is made for images in columns “C” and “D”. Images in
“C” are annotated by experts as belonging to the “Up Curved Tail” class whereas images in “D”
are annotated as not belonging to the “Up Curved Tail” class.

(TIFF)

S1 Table. Number of images in the Learning (LS) and Test Sets (TS) for binary classifica-
tion in the Two-tier approach. After removal of the “Dead” and “Chorion” phenotypes from
the Learning Set and after removal of the images classified as “Chorion” or “Dead” by the
three-class model from the Test Set, there are less images than previously (Table 2).

(DOCX)

$2 Table. Results of binary model classification on the independent Test set for the two-tier
approach. Binary classification models were built for each of the remaining individual defects
with the same parameters used to build the models with “Dead” and “Chorion” and these opti-
mized models were applied to the new test set, previously passed through the three-class
model. The numbers are given without correcting for the impact of the classification rates of
the “Chorion” and “Dead” phenotypes in the three-class model.

(DOCX)

$3 Table. Summary of the proportions of each observed defect (resp. Caffeine—
Theophylline—DCA) at the different compound concentrations, both by manual (M) or
automatic (A) observation. (D) = “Dead”, (C) = Chorion, (DT) = “Down Curved Tail”,

(H) = “Hemostasis”, (NY) = “Necrosed Yolk Sac”, (E) = “Edema”, (ST) = “Short Tail”,

(UF) = “Up Curved Fish”, (UFT) = “Up Curved Fish/Tail”, (UT) = “Up Curved Tail”,

(N) = “Normal”. Each proportion is given as the number of larvae affected by the correspond-
ing phenotype relative to the number of surviving fish. This latter number is very low at close
to lethal concentrations, therefore dose-response curves and statistical analysis cannot be de-
duced in these cases.

(DOCX)

$4 Table. Summary of the proportions of each observed defect (resp. Caffeine—Theophyl-
line—DCA) at the different compound concentrations, both by manual (M) or automatic
(A) observation. (D) = “Dead”, (C) = Chorion, (DT) = “Down Curved Tail”, (H) = “Hemosta-
sis”, (NY) = “Necrosed Yolk Sac”, (E) = “Edema”, (ST) = “Short Tail”, (UF) = “Up Curved
Fish”, (UFT) = “Up Curved Fish/Tail”, (UT) = “Up Curved Tail”, (N) = “Normal”. Each pro-
portion is given as the number of larvae affected by the corresponding phenotype relative to
the number of surviving fish. This latter number is very low at close to lethal concentrations,
therefore dose-response curves and statistical analysis cannot be deduced in these cases.
(DOCX)

S5 Table. Summary of the proportions of each observed defect (resp. Caffeine—
Theophylline—DCA) at the different compound concentrations, both by manual (M)

or automatic (A) observation. (D) = “Dead”, (C) = Chorion, (DT) = “Down Curved Tail”,
(H) = “Hemostasis”, (NY) = “Necrosed Yolk Sac”, (E) = “Edema”, (ST) = “Short Tail”,

(UF) = “Up Curved Fish”, (UFT) = “Up Curved Fish/Tail”, (UT) = “Up Curved Tail”,

(N) = “Normal”. Each proportion is given as the number of larvae affected by the correspond-
ing phenotype relative to the number of surviving fish. This latter number is very low at close
to lethal concentrations, therefore dose-response curves and statistical analysis cannot be de-
duced in these cases.

(DOCX)
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