
Turki and Roshan BMCGenomics 2014, 15:969
http://www.biomedcentral.com/1471-2164/15/969

SOFTWARE Open Access

MaxSSmap: a GPU program for mapping
divergent short reads to genomes with the
maximum scoring subsequence
Turki Turki1,2* and Usman Roshan2*

Abstract

Background: Programs based on hash tables and Burrows-Wheeler are very fast for mapping short reads to
genomes but have low accuracy in the presence of mismatches and gaps. Such reads can be aligned accurately with
the Smith-Waterman algorithm but it can take hours and days to map millions of reads even for bacteria genomes.

Results: We introduce a GPU program called MaxSSmap with the aim of achieving comparable accuracy to
Smith-Waterman but with faster runtimes. Similar to most programs MaxSSmap identifies a local region of the
genome followed by exact alignment. Instead of using hash tables or Burrows-Wheeler in the first part, MaxSSmap
calculates maximum scoring subsequence score between the read and disjoint fragments of the genome in parallel
on a GPU and selects the highest scoring fragment for exact alignment. We evaluate MaxSSmap’s accuracy and
runtime when mapping simulated Illumina E.coli and human chromosome one reads of different lengths and 10% to
30% mismatches with gaps to the E.coli genome and human chromosome one. We also demonstrate applications on
real data by mapping ancient horse DNA reads to modern genomes and unmapped paired reads from NA12878 in
1000 genomes.

Conclusions: We show that MaxSSmap attains comparable high accuracy and low error to fast Smith-Waterman
programs yet has much lower runtimes. We show that MaxSSmap can map reads rejected by BWA and NextGenMap
with high accuracy and low error much faster than if Smith-Waterman were used. On short read lengths of 36 and 51
both MaxSSmap and Smith-Waterman have lower accuracy compared to at higher lengths. On real data MaxSSmap
produces many alignments with high score and mapping quality that are not given by NextGenMap and BWA. The
MaxSSmap source code in CUDA and OpenCL is freely available from http://www.cs.njit.edu/usman/MaxSSmap.

Keywords: Alignment, Divergent, GPU, NGS

Background
In next generation sequencing experiments we may
encounter divergent reads in various scenarios. These
include structural variation studies, comparison of dis-
tantly related genomes, absence of same species reference
genome, sequence error in long reads, genome variation
within same species, ancient DNA mapping, and mRNA-
seq experiments [1-10]. Programs [11,12] based on hash
tables and Burrows-Wheeler transform are very fast but

*Correspondence: tturki@kau.edu.sa; usman@cs.njit.edu
1Computer Science Department, King Abdulaziz University, P.O. Box 80221
Jeddah, Saudi Arabia
2Department of Computer Science, New Jersey Institute of Technology, GITC
4400, University Heights, Newark, USA

have low accuracy on such reads that tend to contain
many mismatches and gaps [1,13]. The Smith-Waterman
algorithm [14] can map divergent reads accurately but
is considerably expensive. Even high performance multi-
core and Graphics Processing Unit (GPU) implementa-
tions can take hours and days to align millions of reads
even to bacteria genomes. As a solution we introduce a
GPU program calledMaxSSmap with the aim of achieving
comparable accuracy to Smith-Waterman on divergent
reads but with faster runtimes.
We divide the genome into same size disjoint fragments

and then map a read to all fragments in parallel on a GPU
with the maximum scoring subsequence score [15,16]. A
GPU can run several hundred threads at the same time
and allows for massive parallelism in computer programs

© 2014 Turki and Roshan; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

http://www.cs.njit.edu/usman/MaxSSmap
mailto: tturki@kau.edu.sa
mailto: usman@cs.njit.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Turki and Roshan BMCGenomics 2014, 15:969 Page 2 of 14
http://www.biomedcentral.com/1471-2164/15/969

(see http://www.gpucomputing.net). The maximum scor-
ing subsequence is roughly the same as Smith-Waterman
except that it does not consider gaps.
Once we identify the first and second highest scoring

fragments — we need the second to eliminate repeats —
we perform Needleman-Wunsch alignment of the read to
the identified region of genome. We present a GPU pro-
gram called MaxSSmap that implements this idea along
with several heuristics and shortcuts that lead to faster
runtimes without sacrificing accuracy.
On reads with fewer than 10% mismatches our program

offers no advantage over hash-table approaches. Programs
like NextGenMap that use hash-tables in their first phase
can map such reads very quickly with high accuracy com-
pared to other leading programs [13]. Thus we focus on
reads with divergence between 10% and 30% as well as
gaps of lengths up to 30 both in the read and genome.
We compare MaxSSmap to two fast Smith-Waterman

programs. The first is the recently published Smith-
Waterman library for short read mapping and protein
database search called SSW [17]. This uses a fast Single-
Instruction-Multiple-Data Smith-Waterman algorithm to
align a given read to the entire genome. The authors of
the program demonstrate improved and comparable run-
times to state of the art fast Smith-Waterman programs
for mapping DNA sequences to a genome. In addition this
produces output in SAM format and has also been applied
it to real data in the context of realigning unmapped reads
[17]. The second is a fast GPU Smith-Waterman program
for protein sequence database search called CUDA-SW++
[18]. We note that this is not designed for mapping DNA
sequence reads. However, we adapt it to short read map-
ping by considering fragments of the genome as database
sequences and read as the query.
Exact Smith-Waterman methods take much longer than

hash-table and Burrows-Wheeler based programs to align
millions of reads to genome sequences. In this setting we
study several meta-methods that first align reads with a
fast program and thenmap rejected ones with a slower but
more accurate one such as MaxSSmap and SSW.
We study accuracy and runtime for mapping simulated

Illumina E.coli and human reads of various lengths to the
E.coli and human chromosome one. Our focus is on reads
with 10% to 30%mismatches and gaps up to length 30.We
show that MaxSSmap attains comparable high accuracy
and low error as CUDA-SW++ and SSWbut is several fold
faster than the two programs respectively. We show that
MaxSSmap can map reads rejected by NextGenMap [13]
with high accuracy and low error and much faster than
if Smith-Waterman were used. We also study MaxSSmap
on various read lengths and demonstrate applications on
real data by mapping ancient horse DNA reads to modern
genomes and unpaired mapped reads in 1000 genomes
subject NA12878.

Below we provide basic background and describe our
program in detail. We then present our experimental
results on simulated and real data.

Implementation
We provide implementations of our program for CUDA
versions 4.2 and 6.0 and for OpenCL version 1.1.
We use a freely available open source library called
SimpleOpenCL (from https://code.google.com/p/simple-
opencl/ that provides an OpenCL interface that sigin-
ficantly reduces the amout of host code. We use the
libOpenCL.so library from CUDA 6.5 release for run-
ning the OpenCL implementation onNVIDIAGPUs. Our
OpenCL implementation has a Makefile to compile on
AMD and Intel GPUs as well.

Methods
Background
Before we describe MaxSSmap we provide background
on the maximum scoring subsequence and GPUs, CUDA,
and OpenCL.

Maximum scoring subsequence
The maximum scoring subsequence for a sequence of real
numbers {x1, x2, . . . , xn} is defined to be the contiguous
subsequence {xi, . . . , xj} that maximizes the sum xi+ . . .+
xj (0 ≤ i, j ≤ n). A simple linear time approach will
find the maximum scoring subsequence [15,16]. To apply
this to DNA sequences consider two of the same length
aligned to each other without gaps. Each aligned character
corresponds to a substitution whose cost can be obtained
from a position specific scoring matrix that accounts for
base call probabilities, or a substitution scoring matrix, or
a trivial match or mismatch cost. The maximum scoring
subsequence between the two DNA sequences can now
be obtained through this sequence of substitution scores
[15,16].

Graphics processing units (GPUs)
The GPU is designed for running in parallel hundreds of
short functions called threads. Threads are organized into
blocks which in turn are organized into grids. We use one
grid and automatically set the number of blocks to the
total number of genome fragments divided by the number
of threads to run in a block. The number of threads in a
block can be specified by the user and otherwise we set it
to 256 by default.
The GPU memory is of several types each with differ-

ent size and access times: global, local, constant, shared,
and texture. Global memory is the largest and can be as
much as 6GB for Tesla GPUs. Local memory is the same
as global memory but limited to a thread. Access times for
global and local memory are much higher than the those
for a CPU program to access RAM.However, this time can

http://www.gpucomputing.net
https://code.google.com/p/simple-opencl/
https://code.google.com/p/simple-opencl/


Turki and Roshan BMCGenomics 2014, 15:969 Page 3 of 14
http://www.biomedcentral.com/1471-2164/15/969

be considerably reduced with coalescent memory access
that we explain below. Constant and texture are cached
global memory and accessible by any thread in the pro-
gram. Shared is on-chipmaking it the fastest and is limited
to threads in a block.
More details about the GPU architecture can be found

in the NVIDIA online documentation [19] and recent
books [20,21].

CUDA andOpenCL
CUDA is a programming language that is developed by
NVIDIA. It is mainly C with extensions for programming
only on NVIDIA GPUs. OpenCL [22] is a framework
for writing computer programs that execute on different
platforms that include GPUs and CPUs.

MaxSSmap algorithm
Overview
Our program, that we call MaxSSmap, follows the same
two part approach of existing mappers: first identify a
local region of the genome and then align the read with
Needleman-Wunsch (or Smith-Waterman) to the iden-
tified region. The second part is the same as current
methods but in the first part we use the maximum scoring
subsequence as described below.
MaxSSmap divides the genome into fragments of a fixed

size given by the user. It uses one grid and automatically
sets the number of blocks to the total number of genome
fragments divided by the number of threads to run in a
block. The number of threads in a block can be specified
by the user and otherwise we set it to 256 by default.

First phase of MaxSSmap In Figure 1 we show an
overview of the MaxSSmap program. Each thread of the
GPU computes the maximum scoring subsequence [15]
of the read and a unique fragment with a sliding window
approach. In order to map across junctions between frag-
ments each thread also considers neighboring fragments

when mapping the read. When done it outputs the frag-
ment number with the highest and second highest score
and considers the read to be mapped if the ratio of the
second best to best score is below .9 (chosen by empirical
performance). This reduces false positives due to repeats.
We later define a mapping quality score that is based on
this ratio.

Second phase ofMaxSSmap After the fragment number
is identified we consider the region of the genome start-
ing from the identified fragment and spanning fragments
to the right until we have enough nucleotides as the read
sequence. In the second part we align the read sequence
with Needleman-Wunsch to the genome region from the
first part. The default settings for match, mismatch, and
gap costs that we also use in this study are set to 5, -4,
and -26.

Incorporating base qualities and position specific
scoring matrix We also consider the base qualities of
reads in both phases of the program. This can be done eas-
ily by creating a position specific scoring matrix for each
read that also allows for fast access using table lookup [18].
For example let x be the probability that the base at posi-
tion i is correctly sequenced. This can be calculated by the
phred score [23] that is provided with the reads. The score
of a match against the nucleotide at position i ismatch×x
and mismatch ismismatch × x

3 .

Mapping qualities, read lengths, SAM output, and
source code MaxSSmap outputs in SAM format that is
widely used for mapping DNA reads to genomes [24].
In the MAPQ field of SAM [24] we use the formula
−100 log2 p where p is the probability of alignment being
incorrect.We define this to be the ratio of the scores of the
second highest and top scoring fragments. ForMaxSSmap
we consider the read mapped only if mapping quality is
above −100 log2 .9 = 15.2. MaxSSmap can also map reads

Figure 1 Overview of the MaxSSmap program. In this figure the genome is divided into six fragments which means six threads will run on the
GPU. Thread with ID 0 maps the read to fragment 0, slides it across fragment 0, and stops when it has covered all of fragment 0. We account for
junctions between fragments and ensure that the read is fully mapped to the genome.



Turki and Roshan BMCGenomics 2014, 15:969 Page 4 of 14
http://www.biomedcentral.com/1471-2164/15/969

of various lengths present in one fastq file. There is no
need to specify the read length. However, the maximum
read length is limited to 2432 base pairs (bp) in the cur-
rent implementation (see paragraph on shared memory
below). The source code is freely available from http://
www.cs.njit.edu/usman/MaxSSmap.
We implement several novel heuristics and take advan-

tage of the GPU architecture to speed up our program
which we describe below.

GPU specific heuristics
Coalescent global memory access Coalesced memory
access is a key performance consideration when program-
ming on GPUs (see the CUDA C Best Practices Guide
[25]). Roughly speaking, each thread of a GPU has its own
unique identifier that we call thread_id. In order to have
coalescent memory access our programmust have threads
with consecutive identifiers access consecutive locations
in memory (roughly speaking). We achieve this by first
considering the genome sequence as rows of fragments
of a fixed size. We then transpose this matrix to yield a
transposed genome sequence that allows coalescentmem-
ory access. The transposed genome is transferred just
once in the beginning of the program from CPU RAM to
GPU global memory. It has negligible overhead time com-
pared to the total one for mapping thousands of reads. See
Figure 2 for a toy genome ACCGTAGGACCA and frag-
ment length of three. If the genome is not a multiple of the
fragment length we pad the last fragment with N’s. Our
GPU program runs a total of numfragments threads. In the
example shown in Figure 2 there are four fragments. And
so our program would run four threads simultaneously
with identifiers zero through three. Each thread would
access the transposed genome sequence first at location
thread_id, then at thread_id+numfragments, followed by
location thread_id + 2numfragments, and so on.

Byte packing for faster global memory access In the
GPU we store the genome sequence in a single array of

Figure 2 Genome sequence in transpose format to enable
coalescent memory access. In MaxSSmap threads with IDs 0
through 3 would at the same time read characters A, G, G, and C of
the transposed genome to compare against the read. Since the four
characters are in consecutive memory locations and so are the thread
IDs, our program makes just one read from global memory instead of
four separate ones.

int4 type instead of char. This leads to fewer global mem-
ory accesses and thus faster runtimes. To enable this we
append ‘N’ characters onto the genome and query until
both lengths are multiples of 16. This also requires that
the fragment length be a multiple of 16.

Look ahead strategy to reduce global memory penal-
ties As mentioned earlier MaxSSmap uses a sliding win-
dow approach from left to right to map a read to a given
fragment on the genome. In its implementation we com-
pute the score of the read in the current window and
sixteen windows to the right at the same time. There-
fore instead of shifting the window by one nucleotide
we shift it by sixteen. This leads to fewer global mem-
ory calls and also allows us to unroll loops. See file
MaxSSMap_shared_int4_fast.cu in the source code for
exact implementation.

Shared memory We store the query in shared memory
to allow fast access. As mentioned earlier the GPU access
time to shared memory is fastest. This, however, imposes
a limitation on the read length because shared memory
size is much smaller than global memory. The Fermi Tesla
M2050 GPUs that we use in this study have a maximum
of 49152 bytes shared memory per block. The data struc-
ture stores the query in a profile format and so occupies a
total of (readlength + 16) × 4 × 5 bytes. The 4 accounts
for number of bytes in a float, 5 is for bases A, C, G, T, and
N, and 16 is for additional space used by the look-ahead
strategy and to eliminate if-statements in the code. Thus
the maximum allowable DNA read length of the current
implementation is 2432 bp (largest multiple of 16 below
the cap size of 2441 bp). The query length can be increased
at the expense of running time by storing the query in con-
stant memory, which is of size 65536 byes, or in global
memory.

Parallel multi-threaded CPU implementation ofMaxSSmap
We have also implemented a parallel multi-threaded CPU
implementation of MaxSSmap with the OpenMP library
[26] (OpenMP available from http://www.openmp.org).
Each thread maps the given read to a unique fragment of
the genome. The number of threads is automatically set to
the genome size divided by the specified fragment length.
Thus if the fragment length is 4800 then for E.coli (approx-
imately 5 million bp) it runs about 1042 threads on the
available CPU cores. This also uses the look ahead strategy
as described above. However, the coalescent and shared
memory techniques don’t apply to this version since they
are specific to a GPU.

Programs compared and their versions and parameters
The literature contains many short read alignment pro-
grams that have been benchmarked extensively [11,12].

http://www.cs.njit.edu/usman/MaxSSmap
http://www.cs.njit.edu/usman/MaxSSmap
http://www.openmp.org


Turki and Roshan BMCGenomics 2014, 15:969 Page 5 of 14
http://www.biomedcentral.com/1471-2164/15/969

Instead of considering many different programs we select
the widely used program BWA [27] that uses the Burrows-
Wheeler transform.We also select NextGenMap that uses
hash-tables and is shown to be accurate on reads upto 10%
mismatches compared to other leading programs [13]. We
use the multi-threaded version of BWA and enable the
GPU option in NextGenMap.
Other GPU programs for mapping short reads [28-31]

are implementations of CPU counterparts designed for
speedup and achieve the same accuracy. Since they offer
no improvement in accuracy they would perform poorly
on divergent reads. Furthermore, the CPU program run-
times are already in seconds vs. minutes and hours for
exact methods (such as ours and Smith-Waterman) and so
we exclude these programs from the paper.
From the category of exact mapping programs we use

SSW [17] that uses a fast Single-Instruction-Multiple-
Data (SIMD) Smith-Waterman algorithm to align a given
read to the entire genome and the fast GPU Smith-
Waterman program CUDA-SW++ [18]. As noted earlier
this is designed for protein sequence database search and
not for aligning to large genome sequences. However, we
adapt it to short read mapping by considering fragments
of the genome as database sequences and read as the
query.
Below we describe program parameters and how we

optimized them where applicable. The exact command
line of each program is given in the Online Additional
file 1 at http://www.cs.njit.edu/usman/MaxSSmap.

MaxSSmap For MaxSSmap we consider fragment
lengths of 48 for E.coli genome, 480 for human chromo-
some one, 4800 for horse and whole human genomes, and
match and mismatch costs of 5 and -4 respectively. In the
exact alignment phase where we perform Needleman-
Wunsch we consider the same match and mismatch cost
and a gap cost of -26. We selected fragment lengths to
optimize runtime. We considered sizes of 16, 32, 48, 64,
and 80 for the E.coli genome, lengths of 160, 240, 320, 400,
and 480 for human chromosome one, and lengths of 2400,
3600, 4800, 6000, and 7200 for the horse genome. For the
whole human genome we used the same fragment size as
for the horse genome. The match and mismatch costs are
optimized for accuracy on the 251bp length E.coli reads.
For other genomes we recommend the user to experiment
with different fragment sizes starting with a small value.
As explained earlier the MaxSSmap fragment length
must be a multiple of 16 because of byte packing to allow
storage of the genome in an array of int4 instead of char.

MaxSSmap_fast In this faster version of MaxSSmap we
consider every other nucleotides in the read sequence
when mapping to the genome. This heuristic reduces

runtime considerably than if we were to compare all
nucleotides in the read sequence.
See files MaxSSMap_shared_int4_fast.cu in the source

code for exact implementation.

SSW This is a recent Smith-Waterman library that uses
Single-Instruction-Multiple-Data (SIMD) to achieve par-
allelism. It has been shown to be faster than other SIMD
based Smith-Waterman approaches [17]. It has also been
applied to real data as a secondary program to align reads
rejected by primary programs [17].

CUDA-SW++ CUDA-SW++ [18] is originally designed
for protein database search. It performs Smith-Waterman
alignment of the query to each sequence in the database
in parallel. We simulate short read mapping with it by
dividing the genome into same size disjoint fragments and
considering each fragment of the genome as one of the
database sequences and the read as the query. We set
CUDA-SW++ to output the two top highest scoring frag-
ments and their scores. If the ratio of the second best score
to the best one is above .9 we do not consider the read
mapped. We set the fragment length to 512 and 2400 for
the E.coli genome and horse genomes, the gap open and
extension costs to -26 and -1, and thematch andmismatch
costs to 5 and -4. These values yielded highest accuracy
for the simulated reads. We modified the code so that the
blosum45 matrix uses +5 for match and -4 for mismatch.
We choose 512 fragment length for E.coli because lower
ones reduce the runtime marginally but the accuracy goes
down considerably whereas higher fragment lengths don’t
yield higher accuracy and increase runtime. The gap,
match, and mismatch costs are optimized for accuracy on
the 251bp E.coli reads. For the horse genome we couldn’t
run CUDA-SW++ with higher fragment lengths of 4800
and so we selected 2400.

BWA-MEM We use BWA-MEM version 0.7.5a with
multi-threaded enabled (-t 12) and other options set to
their default values.

NextGeneMap We use NextGeneMap version 0.4.10
with the options -g 0 that enables the GPU and everything
else default.

Meta-methods We consider four meta-methods that
first apply a NextGenMap and then a more accurate
aligner for rejected reads.

• NextGenMap + MaxSSmap
• NextGenMap + MaxSSmap_fast
• NextGenMap + CUDASW++
• NextGenMap + SSW

http://www.cs.njit.edu/usman/MaxSSmap


Turki and Roshan BMCGenomics 2014, 15:969 Page 6 of 14
http://www.biomedcentral.com/1471-2164/15/969

We use the same options for each program in the meta-
method as described above.

Experimental platform
All programs were executed on Intel Xeon X5650
machines with 12GB RAM each equipped with three
NVIDIATeslaM2050GPUs with 3GB global memory and
49152 byes of shared memory. We used CUDA release 4.2
to develop MaxSSmap and to compile and build the GPU
programs. For our OpenCL implementation we use ver-
sion 1.1. In Table 1 we list the architecture on which we
run each program.

Data simulation
We use the program Stampy [1] (version 1.0.22) to
simulate reads with realistic base qualities. We use
the E.coli genome K12 MG1665 (4.6 million bp)
from which Stampy simulates reads and Illumina
MiSeq 251bp reads in SRR522163 from the NCBI
Sequence Read Archive (http://www.ncbi.nlm.nih.gov/
Traces/sra) from which Stampy simulates base qualities.
For the human reads we use the human chromo-
some one sequence from the Genome Reference Con-
sortium (http://www.ncbi.nlm.nih.gov/projects/genome/
assembly/grc/) version GRCh37.p13. We use Illumina
MiSeq 250bp reads in ERR315985 through ERR315997
from the the NCBI Sequence Read Archive from which
Stampy simulated base qualities.
We simulate one million 251 bp E.coli reads and 250bp

human chromosome one reads of divergences 0.1, 0.2, and
0.3 with and without gaps ranging upto length 30. The
gaps are randomly chosen to occur in the read or the
genome. Roughly speaking each divergence corresponds
to fraction of mismatches in the reads after accounting
for sequencing error. For example .1 divergence means on
average 10%mismatches excluding sequencing errors. See
Table 2 for exact Stampy command line parameters for
simulating the data.

Measure of accuracy and error
For Stampy simulated reads the true alignment is given
in a CIGAR string format [24]. Except for CUDA-SW++

Table 1 Architecture for each program compared in our
study

Program Architecture

MaxSSmap GPU

MaxSSmap_fast GPU

CUDA-SW++ GPU

SSW SIMD single CPU (GPU unavailable)

NextGenMap GPU

BWA-MEM Multi-threaded 12 CPUs

we evaluate the accuracy of all programs with the same
method used in [1]. We consider the read to be aligned
correctly if at least one of the nucleotides in the read is
aligned to the same one in the genome as given by the
true alignment. It’s not unusual to allow a small window of
error as done in previous studies (see [12] for a thorough
discussion).
CUDA-SW++ does not output in SAM format. Instead

it gives the top scoring fragments and the score of the
query against the fragment. To evaluate its accuracy we
divide the true position by the fragment size which is 512
for E.coli and 2400 for horse genome in our experiments.
We then consider the read to be mapped correctly if the
difference between the CUDA-SW++ fragment and the
true one is at most 1.

Results
We study the accuracy and runtime of all programs
and the four meta-methods described earlier. In all
experiments below we use the CUDA 4.2 executable of
MaxSSmap when comparing it against other programs.
We include a subsection that specifically compares the

Table 2 Stampy (version 1.0.22) parameters to simulate
reads

Genome Stampy parameters

E.coli (format genome) -G ecoli ecoli_K12_MG1665.fasta

(hash) -g ecoli -H ecoli

(simulate) -g ecoli -h ecoli -S SRR522163_1.fastq

Human
(format genome)

-G hs_ref_GRCh37.p13_chr1

hs_ref_GRCh37.p13_chr1.fa

(hash) -g hs_ref_GRCh37.p13_chr1

-H hs_ref_GRCh37.p13_chr1

(simulate) -g hs_ref_GRCh37.p13_chr1

-h hs_ref_GRCh37.p13_chr1

-S ERR315985_to_ERR315997_1.fastq

Divergence

.1 –substitutionrate=.1

.2 –substitutionrate=.2

.3 –substitutionrate=.3

.1+gaps –substitutionrate=.1 –simulate-minindellen=-30

–simulate-maxindellen=30 –insertsize=250

–insertsd=25

.2+gaps –substitutionrate=.2 –simulate-minindellen=-30

–simulate-maxindellen=30 –insertsize=250

–insertsd=25

.3+gaps –substitutionrate=.3 –simulate-minindellen=-30

–simulate-maxindellen=30 –insertsize=250

–insertsd=25

http://www.ncbi.nlm.nih.gov/Traces/sra
http://www.ncbi.nlm.nih.gov/Traces/sra
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/


Turki and Roshan BMCGenomics 2014, 15:969 Page 7 of 14
http://www.biomedcentral.com/1471-2164/15/969

CUDA 4.2, CUDA 6.0, and OpenCL implementations of
MaxSSmap. We measure their performance for mapping
simulated Illumina E.coli and human reads to the E.coli
and human chromosome one respectively. We then com-
pare them on reads of different lengths and demonstrate
applications on real data.

Comparison of MaxSSmap and Smith-Waterman for
mapping divergent reads to E.coli genome
We begin by comparing MaxSSmap and MaxSSmap_fast
to SSW and CUDA-SW++. We map 100,000 251bp simu-
lated E.coli reads to the E.coli genome. We simulate these
reads using the Stampy [1] program (described earlier).
As mentioned earlier, MaxSSmap offers no advantage

over hash-table approaches on reads with fewer than 10%
mismatches. Programs like NextGenMap [13] designed
formapping to polymorphic genomes can align such reads
very quickly with high accuracy. Thus we consider three
levels of divergence in the reads: 0.1, 0.2, and 0.3. Roughly
speaking each divergence corresponds to the percentage
of mismatches in the data.
In Table 3(a) we see that the MaxSSmap accuracy is

comparable to SSW and CUDA-SW++ except at diver-
gence 0.3 with gaps (our hardest setting). Table 3(b)
shows that the MaxSSmap and MaxSSmap_fast runtimes
are at least 44 and 60 times lower than SSW and 5.8
and 8 times lower than CUDA-SW++. This is where
the real advantage of MaxSSmap lies: high accuracy and
low error comparable to Smith-Waterman on reads up
to 30% mismatches and gaps yet at a lower cost of
runtime.
At high divergence and with gaps we expect Smith-

Waterman to fare better in accuracy and error than our
maximum scoring subsequence heuristic. For example at
divergence 0.3 with gaps SSW is 5.1% and 14% better than
MaxSSmap and MaxSSmap_fast in accuracy.
Recall thatMaxSSmap detects and rejects repeats which

are likely to be errors. We use the same technique in the
CUDA-SW++ output. However, SSW does not appear to
have such a strategy and so we see a higher error for it.

Comparison of meta-methods for mapping divergent E.coli
reads
We now compare the accuracy and runtime of four meta-
methods that use NextGenMap in the first phase of map-
ping and MaxSSmap, MaxSSmap_fast, CUDASW++, and
SSW to align rejected reads in the second phase. We study
the mapping of one million 251 bp reads simulated E.coli
reads to the E.coli genome.
In Table 4 we see that the accuracy of NGM+

CUDASW++ and NGM+SSW are comparable to NGM+
MaxSSmap but runtimes are much higher. For example at
divergence 0.2 with gaps NGM+SSW takes over 48 hours
to finish and NGM+CUDASW++ takes 756 minutes,

Table 3 Comparison of MaxSSmap andMaxSSmap_fast to
a GPU and a SIMD high performance Smith-Waterman
implementation

(a) Percent of 100,000 251 bp reads mapped correctly to the
E.coli genome. Shown in parenthesis are incorrectly mapped
reads and remaining are rejected

Div MaxSSmap_fast MaxSSmap CUDASW++ SSW

Reads without gaps

.1 95 (0.4) 96 (0.4) 94 (0.9) 97 (3)

.2 95 (0.6) 95.3 (0.6) 94 (1) 97 (3)

.3 90 (1.1) 94.2 (0.9) 93 (1.3) 96 (4)

Reads with gaps

.1 92 (1.5) 93.1 (1.9) 94 (0.9) 97 (3)

.2 90 (1.7) 92.5 (2.1) 92 (1) 96 (4)

.3 81 (2.8) 89.9 (3.5) 92 (1.4) 95 (5)

(b) Time in minutes to map 100,000 251 bp reads to the E.coli
genome

Div MaxSSmap_fast MaxSSmap CUDASW++ SSW

Reads without gaps

.1 20 28 164 1288

.2 20 28 164 1275

.3 20 28 164 1255

Reads with gaps

.1 20 28 163 1283

.2 20 28 162 1266

.3 20 28 162 1235

These are simulated Illumina reads and contain realistic base qualities generated
from Illumina short reads. Each divergence represents the average percent of
mismatches in the reads. So 0.1 means 10%mismatches on the average. The
gaps are randomly chosen to occur in the read or the genome and are of length
at most 30.

whereas NGM+MaxSSmap and NGM+MaxSSmap_fast
finish in 109 and 68 minutes respectively. At divergence
0.3 with gaps both NGM+MaxSSmap and NGM+
MaxSSmap_fast finish within four hours whereas both
NGM+CUDASW++ and NGM+SSW take more than 24
hours. We choose the two fastest meta-methods for com-
parison to BWA and NextGenMap.

Comparison of fastest meta-methods to NextGenMap and
BWA for mapping divergent E.coli and human
chromosome one reads
In Tables 5 and 6 we compare the accuracy and run-
times of NextGenMap and BWA to NGM+MaxSSmap
and NGM+MaxSSmap_fast. Both meta-methods achieve
high accuracy and low error at all settings but at the
cost of increased runtime compared to NextGenMap and
BWA. On E.coli reads of divergence 0.1 and 0.2 with gaps
NextGenMap+MaxSSmap_fast yields an improvement of
14% and 32% over NextGenMap while adding 37 and 66



Turki and Roshan BMCGenomics 2014, 15:969 Page 8 of 14
http://www.biomedcentral.com/1471-2164/15/969

Table 4 Comparison of meta-methods

(a) Percent of one million 251 bp reads mapped correctly to the E.coli genome. Shown in parenthesis are incorrectly mapped

reads and remaining are rejected

Div NextGenMap+ NextGenMap+ NextGenMap+ NextGenMap+

MaxSSmap_fast MaxSSmap CUDASW++ SSW

Reads without gaps

.1 96 (1.3) 97 (1.4) 97 (1) 97 (2.8)

.2 95 (1.5) 96.7 (1.5) 96 (1) NA

.3 91 (1.4) 94.8 (1.3) 93 (1.5) NA

Reads with gaps

.1 92 (1.5) 95.7 (1.4) 97 (1) 97.2 (2.8)

.2 92 (2.1) 94 (2.5) 95 (2) NA

.3 82 (2.9) 90.5 (3.5) 92.5 (1.6) NA

(b) Time inminutes tomap onemillion 251 bp reads to the E.coli genome

Div NextGenMap+ NextGenMap+ NextGenMap+ NextGenMap+

MaxSSmap_fast MaxSSmap CUDASW++ SSW

Reads without gaps

.1 25 34 197 1397

.2 57 77 537 NA

.3 148 204 1343 NA

Reads with gaps

.1 38 60 413 2601

.2 68 109 756 NA

.3 162 222 1528 NA

See Table 3 caption for details about reads. NA denotes time greater than 48 hours which is our cutoff time on this data.

minutes to the NextGenMap time of 1.5 and 2 minutes
respectively. On human chromosome 1 reads of the same
settings NextGenMap+MaxSSmap_fast correctly aligns
an additional 2% and 13% reads than NextGenMap alone
at the cost of 3.2 and 582 extra minutes. The MaxSSmap
runtimes for human chromosome 1 are higher than for
E.coli because there are many more fragments to con-
sider in the former. The runtimes for both meta-methods
also increases with higher divergence because there are
many more reads rejected by NextGenMap at those
divergences.
NextGenMap has higher accuracy than BWA as shown

here in Tables 5 and 6 and in previous studies [13] while
BWA is the fastest program amongst all compared. We
ran BWA in a multi-threaded mode that utilizes all CPU
cores and all other methods on the GPU. We found that
running NextGenMap on the GPU was faster than its
multi-threaded mode.

Comparison of methods on reads of various lengths
The simulated sequences in our above results are based
upon Illumina MiSeq sequences of lengths 250 and
251 bp. Here we study simulated reads of lengths 36, 51,

76, 100, and 150 based on real E.coli sequences from
the Illumina Genome Analyzer II (36 bp), HiSeq 1000
(51 bp), HiSeq 2000 (76 and 100 bp), and MiSeq (150 bp).
We obtained the sequences from datasets ERR019652
(36 bp), SRR1016504 (51 bp), SRR1016920 (76 bp),
ERR376625 (100 bp), and SRR826444 and SRR826446
(150 bp) in the NCBI Sequence Read Archive (http://
www.ncbi.nlm.nih.gov/Traces/sra). We simulated 1 mil-
lion reads of each length from the E.coli genome and
of divergence 0.1 with gaps (up to length 30) with
Stampy as described earlier. Recall that Stampy sim-
ulated base qualities based upon the real data in the
input.
In Table 7 we compare the accuracy and runtimes of

BWA, NextGenMap, NextGenMap+MaxSSmap_fast, and
NextGenMap+MaxSSmap. As the read length increases
we see that NextGenMap and the meta-methods increase
in accuracy and decrease in error. BWA is the most con-
servative and has lowest error at all lengths especially on
the shortest read lengths.
At reads lengths of 100 and above NextGen-

Map+MaxSSmap has about 10% higher accuracy than
NextGenMap and 1% more error.

http://www.ncbi.nlm.nih.gov/Traces/sra
http://www.ncbi.nlm.nih.gov/Traces/sra


Turki and Roshan BMCGenomics 2014, 15:969 Page 9 of 14
http://www.biomedcentral.com/1471-2164/15/969

Table 5 Comparison of meta-methods to NextGenMap and
BWA

(a) Percent of one million 251 bp reads mapped correctly to
the E.coli genome. Shown inparenthesis are incorrectlymapped
reads and remaining are rejected

Div BWA NextGenMap NextGenMap+ NextGenMap+

MaxSSmap_fast MaxSSmap

Reads without gaps

.1 89 (1.1) 87 (1) 96 (1.3) 97 (1.4)

.2 24 (0.5) 72 (1) 95 (1.5) 96.7 (1.5)

.3 0.6 (0) 26 (0.5) 91 (1.4) 94.8 (1.3)

Reads with gaps

.1 85 (3) 78 (1) 92 (1.5) 95.7 (1.4)

.2 20 (0.5) 60 (1) 92 (2.1) 94 (2.5)

.3 0.5 (0) 19 (0.4) 82 (2.9) 90.5 (3.5)

(b) Time in minutes to map one million 251 bp reads to the
E.coli genome

Div BWA NextGenMap NextGenMap+ NextGenMap+

MaxSSmap_fast MaxSSmap

Reads without gaps

.1 0.7 1.2 25 34

.2 0.5 1.9 57 77

.3 0.4 2.1 148 204

Reads with gaps

.1 0.7 1.5 38 60

.2 0.5 2.1 68 109

.3 0.4 2.1 162 222

See Table 3 caption for details about reads.

Comparison to parallel multi-threaded CPU
implementation of MaxSSmap
We also study the runtimes of the parallel multi-threaded
CPU implementation of MaxSSmap as described earlier.
We examined three fragments lengths of 4800, 48000, and
480000. Each yields 1042, 104, and 11 threads to run on
available CPU cores. We ran this program on Intel Xeon
CPU which has a total of 12 cores.
We tested this for mapping a 100,000 251 bp E.coli reads

and found fragment length of 4800 to be the fastest. We
then mapped 100,000 251 bp E.coli reads which took 224
minutes. In comparison the GPU MaxSSmap takes 20
minutes. Thus we find the multi-threaded version to be 10
times slower.

Applications on real data
We consider two scenarios in real data where unmapped
divergent reads may occur. The first is in the mapping of
ancient fossil DNA to modern genomes and second is the
alignment of unmapped reads when comparing a human
genome to the standard reference.

Table 6 Comparison of meta-methods to NextGenMap and
BWA

(a) Percent of one million 250 bp reads mapped correctly to
the human chromosomeone genome. Shown in parenthesis are
incorrectly mapped reads and remaining are rejected

Div BWA NextGenMap NextGenMap+MaxSSmap_fast

Reads without gaps

.1 96(3) 99 (1) 99 (1)

.2 33 (6) 86 (6) 94 (6.2)

.3 0.8 (6) 37 (9) 88 (10.5)

Reads with gaps

.1 89 (3) 96 (2) 98 (2)

.2 28 (5) 79 (6) 92 (6.5)

.3 0.7 (0.5) 30 (7) 80 (9.4)

(b) Time in minutes to map one million 250 bp reads to the
human chromosome one genome

Div BWA NextGenMap NextGenMap+MaxSSmap_fast

Reads without gaps

.1 1.6 7.1 10.3

.2 0.8 44 626

.3 0.6 65 3992

Reads with gaps

.1 1.5 9.8 176

.2 0.7 51 1126

.3 0.6 66 4611

See Table 3 caption for details about reads.

Ancient horse DNAmapping tomodern genomes
For the first case we consider reads obtained from an
ancient horse bone [32]. In a previous study the param-
eters of the BWA program were optimized to maximize
mapped reads from this set to the horse and human
genomes [33]. We consider one set of reads from the
same study in dataset SRR111892 obtained from the NIH
Sequence Read Archive (http://www.ncbi.nlm.nih.gov/
Traces/sra). These reads are produced by the Illumina
Genome Analyzer II sequencer and have an average
length of 67.7 and standard deviation of 8.4 We obtained
the human genome from the Genome Reference Con-
sortium (http://www.ncbi.nlm.nih.gov/projects/genome/
assembly/grc/) version GRCh37.p13 and the horse
genome Equus_caballus EquCab2 (GCA_000002305.1)
from Ensemble (http://useast.ensembl.org/Equus_
caballus/Info/Index).
Highly divergent sequences are likely to be present

in this dataset and as we have seen in the previous
section short read lengths of up to 76 are challenging
even with 10% mismatches and gaps. Thus we con-
sider only reads of the maximum length of 76 in this
dataset. We map the first 100000 such reads with BWA,

http://www.ncbi.nlm.nih.gov/Traces/sra
http://www.ncbi.nlm.nih.gov/Traces/sra
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
http://useast.ensembl.org/Equus_caballus/Info/Index
http://useast.ensembl.org/Equus_caballus/Info/Index


Turki and Roshan BMCGenomics 2014, 15:969 Page 10 of 14
http://www.biomedcentral.com/1471-2164/15/969

Table 7 Percent of onemillion reads of lengths 36, 51, 76, 100, and 150 and of divergence 0.1 with gapsmapped correctly
to the E.coli genome

Read BWA NGM NGM+ NGM+ NGM+

length MaxSSmap_fast MaxSSmap CUDA-SW++

36 1.2 (0) 33.3 (10.5) 34 (16.5) 43.8 (18.1) 53.2 (17.1)

51 11.4 (0.2) 50.5 (3) 53.3 (8.8) 71.2 (7.5) 79.5 (6.2)

76 38.4 (.7) 70.2 (1.5) 76.5 (4.3) 92.9 (2.7) 96.6 (1.8)

100 62.4 (1) 82.6 (1.4) 91 (2.2) 96.8 (1.9) 98.1 (1.5)

150 76 (1.1) 82.5 (1.2) 92 (2.2) 93.8 (2.2) 94.7 (2.1)

Time inminutes tomap reads

36 0.09 0.3 26.6 37.8 315.9

51 0.11 0.5 26.6 38.2 284.9

76 0.15 0.6 19.8 28.4 201.9

100 0.22 0.7 14.8 21 129.9

150 0.34 0.9 19.6 29.2 173.8

Shown in parenthesis are incorrectly mapped reads and remaining are rejected. We denote NextGenMap by NGM.

NextGenMap, NextGenMap+MaxSSmap_fast, NextGen-
Map+MaxSSmap, and NextGenMap+CUDASW++ to the
horse and human genomes. We consider the human
genomes to identify ancient human DNA fragments in the
sample [9].
In Table 8 we see that NextGenMap aligns 16% and 14%

of the reads to the horse and human genomes whereas
NextGenMap+MaxSSmap aligns a total of 23.1% and 21%
respectively. BWA in comparison aligns 2.2% and 0.16%
with default parameters and has similar accuracy with
optimized parameters given in a previous study [33].
We evaluated NextGenMap+CUDA-SW++ for map-

ping reads to the horse genome by running it for
a maximum of 168 hours (one week). In that time

period CUDA-SW++ considered 56800 of the 84036
NextGenMap rejected reads to be aligned (about 68%) and
mapped 11.8% of them. Based on this we estimate it would
take 247 hours for CUDA-SW++ to consider all of the
NextGenMap rejected reads. And it would align a total of
11.8% of 84036 reads which equals 9916. This added to the
NextGenMap mapped reads gives a total mapping rate of
26%.
To better understand these numbers we simulated

100,000 horse 76 bp reads of divergence 40% and gaps
with Stampy and with base qualities simulated from the
same real dataset (SRR111892) used here. These settings
were chosen to achieve a ballpark mapping rate with the
real data. We find that NextGenMap aligns 18% of total

Table 8 Percent of 100,000 ancient horse DNA reads (SRR111892) of length 76 bpmapped to the horse genome
Equus_caballus EquCab2 (GCA_000002305.1) and human reference genome

Horse genome

BWA NextGenMap NextGenMap+ NextGenMap+ NextGenMap+

MaxSSmap_fast MaxSSmap CUDASW++

2.2 16 20.5 23.1 26 (estimated)

Time inminutes tomap reads

0.6 2.4 1609.6 2836 14820 (estimated)

Human genome

BWA NextGenMap NextGenMap+ NextGenMap+ NextGenMap+

MaxSSmap_fast MaxSSmap CUDASW++

0.16 14 18.6 21 NA

Time inminutes tomap reads

0.82 2.9 2375.5 4108 NA

We ran NextGenMap+CUDA-SW++ for a maximum of 168 hours and estimated the time to align all rejected reads. Also shown is time in minutes.



Turki and Roshan BMCGenomics 2014, 15:969 Page 11 of 14
http://www.biomedcentral.com/1471-2164/15/969

reads with only 0.4% correctly mapped while BWA maps
no reads at all. These are similar to the mapping rates
on the real data. This suggests these are difficult settings
for NextGenMap and BWA. When we apply MaxSSmap
to reads missed by NextGenMap it aligns an additional
8.8% (similar to the real data) with 3.3% correct. To reduce
the error to zero we raise the MaxSSmap mapping qual-
ity threshold from the default 15.2 to 62. Raising it gives
fewer but higher quality mapped reads. This gives 0.112%
mapped reads all of which are correct.
With this in mind we return to the real data and apply

NextGenMap+MaxSSmap with the higher mapping qual-
ity cutoff (of 62) in the hopes of obtaining all correct
alignments. The higher threshold gives 9 additional reads.
In the Additional file 1 we give the SAM output of these
alignments. Most have at least 30% mismatches and chal-
lenging for both BWA and NextGenMap.

Mapping unaligned reads fromNA12878 to human reference
For our second scenario we consider the popular human
genome sequence NA12878 and study the mapping of
one of its dataset SRR16607 to the same human refer-
ence used above. We map the first 100000 paired reads
in SRR016607 (101 bp) with NextGenMap, NextGen-
Map+MaxSSmap_fast, and NextGenMap+MaxSSmap
(fragment length set to 4800). In the latter two methods
we re-align the pairs withMaxSSmap_fast andMaxSSmap
where at least one read in the pair was unmapped by
NextGenMap or the mapped pair positions were outside
the mapping distance threshold of 500 base pairs.
In Table 9 wemeasure the number of paired reads whose

mapped positions are within 500 base pairs. Although
the nominal insert size of this dataset is 300 with a stan-
dard deviation of 77 (as given in the NIH SRA website)
we found many mapped pairs in the output that were
within 500 base pairs and so we use this threshold. These
mapped pairs are called concordant reads [1]. We see
that NextGenMap aligns 83.5% of the reads concordantly

Table 9 Percent of 100,000 paired human reads from
NA12878 in 1000 genomes (SRR016607) of length 101 bp
mapped concordantly to the human genome

NextGenMap NextGenMap+ NextGenMap+

MaxSSmap_fast MaxSSmap

83.5 (0) 85.8 (0.7) 87.6 (1.2)

Time inminutes tomap paired reads

1.5 1295.9 2242.4

Concordant reads are pairs that are mapped within 500 base pairs. Also shown
in parenthesis are discordant reads (mapped positions at least 500 bp apart) and
the time in minutes. In NextGenMap+MaxSSmap we re-align pairs with
MaxSSmap where at least one read in the pair was unmapped by NextGenMap
or the pair is discordant. Thus, NextGenMap shows zero discordant pairs
because we re-align them with MaxSSmap.

whereas NextGenMap+MaxSSmap_fast and NextGen-
Map+MaxSSmap align 85.8% and 87.6%. Both methods
mapped 0.7% and 1.2% pairs discordantly (mapped posi-
tions at least 500 bp apart). NextGenMap mapped 9.4%
of the pairs discordantly but we don’t report this here
because we re-align those reads with MaxSSmap.

Comparison of CUDA and OpenCL executables of
MaxSSmap
We compare the CUDA and OpenCL MaxSSmap exec-
tuables for mapping reads to E.coli, horse, and human
genomes. Both implementations produce similar output
and the same accuracies and error rates given earlier. In
Table 10 we see that the CUDA 6.0 runtimes are lowest
followed by OpenCL and CUDA 4.2. The differences are
small when mapping to E.coli but larger for the horse and
human genomes.

Discussion
In our experimental results we have demonstrated the
advantage of MaxSSmap over Smith-Waterman for map-
ping reads to genomes. In scenarios where accurate re-
alignment of rejected and low-scoring reads are required
MaxSSmap and MaxSSmap_fast would be fast alterna-
tives to Smith-Waterman. Such conditions are likely to
contain reads with many mismatches and gaps which
would get rejected by programs based on hash-tables and
Burrows-Wheeler.
We demonstrate two such scenarios on real data. In

both cases we see an increase in mapped reads by
MaxSSmap. While this increase comes at the cost of
considerable runtime it is still much faster than the
Smith-Waterman alternative. Furthermore, the output
of NextGenMap+MaxSSmap reveals many high scoring
alignments well above the mapping quality threshold that
warrant further study.
The MaxSSmap alignments of horse DNA reads to the

horse and human genomes contain 39.3% and 39.4% mis-
matches on the average. In the human genome paired
read study we find the MaxSSmap concordant aligned
pairs to contain 19.1% mismatches on the average. In
both cases these are challenging divergences for BWA and
NextGenMap as we saw in the simulation studies.
Our real data applications in this paper are brief and

deserve a wider study in a separate paper. For exam-
ple when we aligned unmapped pairs in NA12878 to
the human genome we obtained 4.1% more pairs with
MaxSSmap. We will search for variants in these align-
ments as part of future work. Also in future work we
plan to study MaxSSmap on metagenomic reads where
divergence rates can be high as well.
Our results on both real and simulated data are an

insight into missed reads that are rejected by BWA and
NextGenMap. We see that the high mismatch rate and



Turki and Roshan BMCGenomics 2014, 15:969 Page 12 of 14
http://www.biomedcentral.com/1471-2164/15/969

Table 10 Running time comparison of CUDA and OpenCL implementations of MaxSSmap (denoted byMSS)

(a) Time in minutes to map 100,000 251 bp reads to the E.coli genome. See Table 3 caption for details about reads

Div MSS_fast MSS MSS_fast MSS MSS_fast MSS

CUDA 4.2 CUDA 6.0 OpenCL

Reads without gaps

.1 20 28 17 27 17 27

.2 20 28 17 27 17 27

.3 20 28 17 27 17 27

Reads with gaps

.1 20 28 17 27 17 27

.2 20 28 17 27 17 27

.3 20 28 17 27 17 27

(b) Time in minutes to map paired human reads from NA12878 in 1000 genomes (SRR016607) of length 101 bp to the human

genome. We denote NextGenMap by NGM andMaxSSmap by MSS. See Table 8 for more details about reads

NGM+ NGM+ NGM+ NGM+ NGM+ NGM+

MSS_fast MSSmap MSS_fast MSS MSS_fast MSS

CUDA 4.2 s OpenCL

1295.9 2242.4 1183.5 2092.7 1252.7 2159.9

(c) Time inminutes tomap 100,000 ancient horse DNA reads (SRR111892) of length 76 bp to

the horse genome Equus_caballus EquCab2 (GCA_000002305.1). See Table 9 for more details

about reads

NGM+ NGM+ NGM+ NGM+ NGM+ NGM+

MSS_fast MSSmap MSS_fast MSS MSS_fast MSS

CUDA 4.2 CUDA 6.0 OpenCL

1609.6 2836 1515 2689.8 1561.8 2736.8

The output from the three methods give the same accuracies and errors as given earlier but the running times vary. We find the CUDA 6.0 implementation to have the
lowest runtimes followed by OpenCL and CUDA 4.2.

gaps are the main reasons why these reads are unmapped
in the first place. Without more exact approaches like
MaxSSmap and Smith-Waterman it would be much
harder to align such reads.
The ratio of the NextGenMap+CUDASW++ to the

NextGenMap+MaxSSmap runtimes varies and can
depend upon number of reads to align. In Table 4 where
reads lengths are fixed at 251 bp we see that this ratio is
5.8 at divergence 0.1 without gaps where both MaxSSmap
and CUDA-SW++ align approximately 12,000 reads (that
number rejected by NextGenMap in Table 5). As the
divergence increase to 0.3 with gaps both programs align
about 800,000 reads and there the ratio of their runtimes
is 6.9.
Our program is not without limitations. We find that at

very short reads of lengths 36 and 51 the improvements
given byMaxSSmap are small compared to higher lengths.
However, read lengths of 125 and above are not uncom-

mon especially since current Illumina machines such
as MiSeq, HiSeq, and NextSeq generate reads of at

least this length (see http://www.illumina.com/systems/
sequencing.ilmn)
We find the runtimes are much higher for human and

horse chromosomes than for E.coli just because there are
many more genome fragments for the former. This could
be lowered by spreading reads across multiple GPUs. We
also see that the accuracy of MaxSSmap is lower than
Smith-Waterman as we cross into higher divergence of 0.3
with gaps.

Conclusion
We introduce a GPU program called MaxSSmap for map-
ping reads to genomes.We use the maximum scoring sub-
sequence to identify candidate genome fragments for final
alignment instead of hash-tables and Burrows-Wheeler
transform.We show that MaxSSmap has comparable high
accuracy to Smith-Waterman based programs yet has
lower runtimes and accurately maps reads rejected by a
hash-table based mapper faster than if Smith-Waterman
were used. We also study MaxSSmap on different read

http://www.illumina.com/systems/sequencing.ilmn
http://www.illumina.com/systems/sequencing.ilmn


Turki and Roshan BMCGenomics 2014, 15:969 Page 13 of 14
http://www.biomedcentral.com/1471-2164/15/969

lengths and demonstrate applications on real data by
mapping ancient horse DNA reads to modern genomes
and unmapped paired reads from NA12878 in 1000
genomes.

Availability and requirements
Project name:MaxSSmap
Project home page: http://www.cs.njit.edu/usman/
MaxSSmap
Operating system(s): Linux (tested on Red Hat Enter-
prise Linux 6.2)
Programming language: CUDA versions 4.2 and 6.0 and
OpenCL version 1.1
Other requirements: CUDA toolkits version 4.2 or 6.0,
GNU gcc C compiler (tested on version 4.4.7) to compile
OpenCL executable
License: The MIT License

Additional file

Additional file 1: Program command lines and high quality ancient
horse DNA aligned reads given by MaxSSmap.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
UR designed and implemented MaxSSmap. TT and UR conducted all
experiments. Both authors read and approved the final manuscript.

Acknowledgements
We thank Peicheng Du, Jeffrey Rosenfeld, and anonymous reviewers for
helpful suggestions to our paper. This research was performed on a GPU
cluster at UNC Charlotte thanks to Dennis R. Livesay and a GPU machine at
NJIT thanks to Shahriar Afkhami. Funding was provided by the National
Science Foundation Assembling Tree of Life grant 0733029.

Received: 1 October 2014 Accepted: 6 November 2014
Published: 15 November 2014

References
1. Lunter G, Goodson M: Stampy: A statistical algorithm for sensitive

and fast mapping of illumina sequence reads. Genome Res 2011,
21(6):936–939. doi:10.1101/gr.111120.110.

2. Wang Z, Gerstein M, Snyder M: RNA-seq: a revolutionary tool for
transcriptomics. Nat Rev Genet 2009, 10(1):57–63.
doi:10.1093/bioinformatics/btn025.

3. Reynoso V, Putonti C:Mapping short sequencing reads to distant
relatives. In Proceedings of the 2nd ACM Conference on Bioinformatics,
Computational Biology and Biomedicine. BCB ’11, Chicago, Illinois, USA:
ACM; 2011:420–424.

4. Collins LJ, Biggs PJ, Voelckel C, Joly S: An approach to transcriptome
analysis of non-model organisms using short-read sequences.
Genome Inf 2008, 21:3–14.

5. Seabury CM, Bhattarai EK, Taylor JF, Viswanathan GG, Cooper SM,
Davis DS, Dowd SE, Lockwood ML, Seabury PM: Genome-wide
polymorphism and comparative analyses in the white-tailed deer
(odocoileus virginianus): a model for conservation genomics.
PLoS ONE 2011, 6(1):15811.

6. Liang C, Schmid A, Lopez-Sanchez M, Moya A, Gross R, Bernhardt J,
Dandekar T: JANE: efficient mapping of prokaryotic ests and variable

length sequence reads on related template genomes. BMC
Bioinformatics 2009, 10(1):391.

7. Au KF, Underwood JG, Lee L, Wong WH: Improving pacbio long read
accuracy by short read alignment. PLoS ONE 2012, 7(10):46679.
doi:10.1371/journal.pone.0046679.

8. Lieberman TD, Flett KB, Yelin I, Martin TR, McAdam AJ, Priebe GP,
Kishony R: Genetic variation of a bacterial pathogen within
individuals with cystic fibrosis provides a record of selective
pressures. Nat Genet 2014, 46:82–87. doi:10.1038/ng.2848.

9. Prufer K, Stenzel U, Hofreiter M, Paabo S, Kelso J, Green R: Computational
challenges in the analysis of ancient dna. Genome Biol 2010, 11(5):47.
doi:10.1186/gb-2010-11-5-r47.

10. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G: De novo assembly and
genotyping of variants using colored de bruijn graphs. Nat Genet
2012, 44:226–232.

11. Fonseca NA, Rung J, Brazma A, Marioni JC: Tools for mapping
high-throughput sequencing data. Bioinformatics 2012,
28(24):3169–3177.

12. Hatem A, Bozdag D, Toland A, Catalyurek U: Benchmarking short
sequence mapping tools. BMC Bioinformatics 2013, 14(1):184.
doi:10.1186/1471-2105-14-184.

13. Sedlazeck FJ, Rescheneder P, von Haeseler A: NextGenMap: Fast and
accurate read mapping in highly polymorphic genomes.
Bioinformatics 2013, 29(21):2790–2791.
doi:10.1093/bioinformatics/btt468.

14. Smith TF, Waterman MS: Identification of commonmolecular
subsequences. J Mol Biol 1981, 147(1):195–197.

15. Bentley J: Programming Pearls. Boston, Massachussets: Addison-Wesley;
1986.

16. Bates JL, Constable RL: Proofs as programs. ACM Trans Program Lang Syst
1985, 7:113–136.

17. Zhao M, Lee W-P, Garrison EP, Marth GT: SSW library: An simd
smith-waterman c/c++ library for use in genomic applications.
PLoS ONE 2013, 8(12):82138.

18. Liu Y, Maskell D, Schmidt B: CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing
units. BMC Res Notes 2009, 2(1):73. doi:10.1186/1756-0500-2-73.

19. NVIDIA: CUDA C Programming Guide 4.0. 2011. [http://developer.
nvidia.com/cuda-toolkit]

20. Sanders J, Kandrot E: CUDA by Example: An Introduction to General-Purpose
GPU Programming. 1st edn. Boston, Massachussets: Addison-Wesley
Professional; 2010.

21. Kirk DB, Hwu W-mW: ProgrammingMassively Parallel Processors: A
Hands-on Approach. 1st edn. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.; 2010.

22. Stone JE, Gohara D, Shi G: OpenCL: A parallel programming standard
for heterogeneous computing systems. IEEE Des Test 2010,
12(3):66–73. doi:10.1109/MCSE.2010.69.

23. Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated
sequencer traces using phred. i. accuracy assessment. Genome Res
1998, 8(3):175–185.

24. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, Subgroup GPDP: The sequence alignment/map
format and samtools. Bioinformatics 2009, 25(16):2078–2079.

25. NVIDIA: CUDA C Best Practices 4.0. 2011. [http://developer.nvidia.com/
cuda-toolkit]

26. Dagum L, Menon R: OpenMP: An industry-standard API for
shared-memory programming. IEEE Comput Sci Eng 1998, 5(1):46–55.
[http://dx.doi.org/10.1109/99.660313]

27. Li H, Durbin R: Fast and accurate short read alignment with
burrows–wheeler transform. Bioinformatics 2009, 25(14):1754–1760.
doi:10.1093/bioinformatics/btp324.

28. Klus P, Lam S, Lyberg D, Cheung M, Pullan G, McFarlane I, Yeo G, Lam B:
BarraCUDA - a fast short read sequence aligner using graphics
processing units. BMC Res Notes 2012, 5(1):27.
doi:10.1186/1756-0500-5-27.

29. Schatz M, Trapnell C, Delcher A, Varshney A: High-throughput
sequence alignment using graphics processing units. BMC
Bioinformatics 2007, 8(1):474.

http://www.cs.njit.edu/usman/MaxSSmap
http://www.cs.njit.edu/usman/MaxSSmap
http://www.biomedcentral.com/content/supplementary/1471-2164-15-969-S1.pdf
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://dx.doi.org/10.1109/99.660313


Turki and Roshan BMCGenomics 2014, 15:969 Page 14 of 14
http://www.biomedcentral.com/1471-2164/15/969

30. Liu Y, Schmidt B, Maskell DL: CUSHAW: a cuda compatible short read
aligner to large genomes based on the burrows–wheeler transform.
Bioinformatics 2012, 28(14):1830–1837.
doi:10.1093/bioinformatics/bts276.

31. Liu C-M, Wong T, Wu E, Luo R, Yiu S-M, Li Y, Wang B, Yu C, Chu X, Zhao K,
Li R, Lam T-W: SOAP3: ultra-fast gpu-based parallel alignment tool
for short reads. Bioinformatics 2012, 28(6):878–879.

32. Orlando L, Ginolhac A, Raghavan M, Vilstrup J, Rasmussen M,
Magnussen K, Steinmann KE, Kapranov P, Thompson JF, Zazula G,
Froese D, Moltke I, Shapiro B, Hofreiter M, Al-Rasheid KAS, Gilbert MTP,
Willerslev E: True single-molecule dna sequencing of a pleistocene
horse bone. Genome Res 2011, 21(10):1705–1719.
doi:10.1101/gr.122747.111.

33. Schubert M, Ginolhac A, Lindgreen S, Thompson J, AL-Rasheid K,
Willerslev E, Krogh A, Orlando L: Improving ancient dna readmapping
against modern reference genomes. BMC Genomics 2012, 13(1):178.
doi:10.1186/1471-2164-13-178.

doi:10.1186/1471-2164-15-969
Cite this article as: Turki and Roshan:MaxSSmap: a GPU program for
mapping divergent short reads to genomes with the maximum scoring
subsequence. BMC Genomics 2014 15:969.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Methods
	Background
	Maximum scoring subsequence
	Graphics processing units (GPUs)
	CUDA and OpenCL

	MaxSSmap algorithm
	Overview
	First phase of MaxSSmap
	Second phase of MaxSSmap
	Incorporating base qualities and position specific scoring matrix
	Mapping qualities, read lengths, SAM output, and source code

	GPU specific heuristics
	Coalescent global memory access 
	Byte packing for faster global memory access
	Look ahead strategy to reduce global memory penalties
	Shared memory

	Parallel multi-threaded CPU implementation of MaxSSmap

	Programs compared and their versions and parameters 
	MaxSSmap
	MaxSSmap_fast
	SSW
	CUDA-SW++
	BWA-MEM
	NextGeneMap
	Meta-methods


	Experimental platform
	Data simulation
	Measure of accuracy and error

	Results
	Comparison of MaxSSmap and Smith-Waterman for mapping divergent reads to E.coli genome
	Comparison of meta-methods for mapping divergent E.coli reads
	Comparison of fastest meta-methods to NextGenMap and BWA for mapping divergent E.coli and human chromosome one reads
	Comparison of methods on reads of various lengths
	Comparison to parallel multi-threaded CPU implementation of MaxSSmap
	Applications on real data
	Ancient horse DNA mapping to modern genomes
	Mapping unaligned reads from NA12878 to human reference

	Comparison of CUDA and OpenCL executables of MaxSSmap

	Discussion
	Conclusion
	Availability and requirements
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgements
	References

