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ABSTRACT A loss-of-function point mutation in a protein
is often rescued by an additional mutation that compensates for
the original physical change. According to one hypothesis, such
compensation would be most effective in maintaining a struc-
tural motif if the two mutated residues were spatial neighbors.
If this hypothesis were correct, one would expect that many
such compensatory mutations have occurred during evolution
and that present-day protein families show some degree of
correlation in the occurrence ofamino acid residues at positions
whose side chains are in contact. Here, a statistical theory is
presented which allows evaluation of correlations in a family of
aligned protein sequences by assigning a scalar metric (such as
charge or side-chain volume) to each type of amino acid and
calculating correlation coefficients of these quantities at differ-
ent positions. For the family ofmyoglobins it is found that there
is a high correlation between fluctuations in neighboring
charges. The correlation is close to what would be expected for
total conservation of local charge. For the metric side-chain
volume, on the other hand, no correlation could be found.

The dramatic increase in available data on protein sequences
has made it clear that certain structural motifs of proteins are
quite commonly represented in multiple forms (1). This is a
consequence of the general feature that, in evolution, se-
quence changes more rapidly than structure (2). If this were
so, then one would expect that, when comparing the various
sequences of an alignment, some of the variations in se-
quences are compensatory. For example, if, in a given
sequence, an amino acid side chain is particularly bulky with
respect to the average at a given position, this might have
been compensated in evolution by a particularly small side
chain in a neighboring position, for preserving the general
structural motif. Similar constraints might hold for other
physical quantities such as amino acid charge or hydrogen
bonding capacity.

Individual examples for such compensatory changes have
been documented (3). If they were sufficiently frequent, one
might be able to identify the mutually compensating partners
by a statistical analysis, since there should be correlations in
the frequency of occurrence of amino acids at the corre-
sponding positions. Indeed, inferences from sequence vari-
ability and correlation analysis have been quite successful
recently in elucidating structural features (4-8). This report
deals with an attempt to quantify the frequency of compen-
satory changes in a given protein family.

Theory and Algorithms

The family of aligned sequences is considered to be a sample
of a hypothetical population of all possible protein sequences
that are able to form a certain three-dimensional motif. It is

viewed as a set of random variables Ai, each of which
represents one position i in the alignment and can assume as
possible outcomes the 20 amino acids. The population is
defined if all the probabilities fi' (the probability of occur-
rence of amino acid type v at position i) are known. For the
general casefij should be considered as functions not only of
the occurrence of an amino acid at position i but also of that
at any other position in the family. In fact, we want to test
whether the given distribution in the sample is significantly
different from the null hypothesis, which is the assumption
that amino acids at different positions in the alignment vary
independently. In that case fi' depends only on the given
position i and type of amino acid v and will be denoted p?. In
the more general case the joint probability P of finding amino
acid v at position i and amino acid , at position j is

[1]

which again is a function of all the occupancies at other
positions. For the null hypothesis it is a product of the
distributions at positions i and j:

,,- :=-pip.. [2]

Each amino acid v has associated with it a physical quantity
q, (such as a side-chain charge) such that we can define the
random variables Q, with

P(Qi= qV) =fil [3]

P(Qj = qP; Qj = qll) =f ,f/.
Then, the expected value E{Q,} is

E{Q,}=> qWfi'= Qj,

and the expected variance o'? is

or3 = E (qVp Qi)2fi.
v

[4]

[5]

[6]

Correlations among positions are conveniently expressed in
terms of correlation coefficients,

pi,j => (qv - Qi)(qiL - Qj) ;s.
V,A oicry

[7]

From a given alignment, we would like to calculate at
positions i and j the sample means mi and mj, as well as
sample variances si and sj and the sample correlation coef-
ficients ri,j. If the sample had independent sequences, the
sample correlation coefficients would be given by:

1 (ql- mi)(qj - mj)
rijN=-sysj
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where the sum extends over all sequences indexed, 1, and q!
and ql represent the physical quantities associated with
amino acids of sequence l at positions i and j, respectively.
Likewise, the standard equations hold for mi, mi, si, and sj (9).
For the null hypothesis (independent positions) and for
independent sequences the expectation value for rij, as
calculated according to Eq. 8, is zero and the expected
variance SI of calculated values ri,j values is given approx-
imately by (9, 10)

S2 1
N-4' [9]

whenN is larger than 4. The quantity N - 4 can be considered
the number of degrees of freedom for estimating S2. Unfor-
tunately, sequences within a family of homologous proteins
(by definition of homology) are not statistically independent,
so it is not easy to estimate S2, when ri,j values are calculated
according to Eq. 8.

Here, an attempt is made to solve this problem partially by
considering sequences pairwise. It is easily shown that for
independent sequences an unbiased estimate for ri,j can be
obtained by

1 1 (qi - ql2)(qjl - qj2)
rij =-~ E sisj [10]

where the sum extends over Npairs (index 1). The subscripts,
as in Eq. 8, refer to positions i andj along the sequence, and
the superscripts refer to the two sequences forming a given
pair. The sample variances si and sj are, likewise, calculated
by

Si 2N ( [11]

When sequences have a high degree of homology, then many
of the terms in the sums of Eqs. 10 and 11 are zero, since the
associated amino acids are identical. We interpret identities
in amino acids in the sense that no mutation has occurred in
evolution at the given position between sequences 11 and 12
and disregard the corresponding terms in the analysis. If, on
the other hand, a mutation has occurred, we consider the two
outcomes as independent. In practice this is implemented by
dividing the sums in Eqs. 10 and 11 not by N, the number of
pairs considered, but by Nij and Ni, respectively, the number
of terms at positions i (and j) without identities in the amino
acids:

1 1 (q 1 - q'2)(qj1 - q j2)
ri = [lOa]
1Ni,j 2 1 sisj

s - >(q1 ' - q 2)2. [lla]
I2Ni

This introduces an error, since identity in amino acids also
can occur by multiple mutations. But this error is relatively
small. In essence, the procedure considers not the original set
of random variables Ai with probability distributionf/yt, but
a modified one (A*) with joint probability distributionsf*'t,
where all values which satisfy v = ,u are set to zero, and the
remaining ones are renormalized. For the case of the null
hypothesis the errors made by this replacement can be
readily estimated when the amino acid profiles at positions
involved are known. It is small, since errors partially cancel
in determining ri, values because they affect numerator and
denominator of Eq. lOa similarly.

The procedure described so far (using Eqs. lOa and lla)
allows for statistical dependence among the partners of a
given pair and provides relatively unbiased estimates for the
sample correlation coefficients. It should be pointed out that
strongly biased results are obtained when Eqs. 10 and 11 are
used on sequences with a high degree of homology. If the
pairwise amino acid identity averaged over all positions and
pairs is p, then

Ni (1 p)N [12]

Ni,j (1 - p)2N. [13]

Thus, by comparison of Eqs. 10 and 11 with Eqs. lOa and lla
it can be seen that the biased estimates ofs?and rij values are
only approximately (1 - p) times the unbiased ones.
Use of Eqs. lOa and lla avoids these underestimates.

Statistical dependence is reintroduced, however, when one
averages the contributions from many sequence pairs, be-
cause the sequences of one pair are partially homologous to
those of other pairs. This does not falsify estimates of si and
rij values, because averaging of unbiased estimates does not
introduce bias. However, it implies that there is not a simple
relationship between the number of averages Nij, taken at
positions i andj, and the number of degrees of freedom (N -
4) required in Eq. 9 to estimate the expected variance SI of
the ri, values. We need to know SI, however, in order to
decide whether a given rij value is significantly different from
zero.

It is found in the numerical analysis that SI depends
strongly on the degree of conservation at the positions
considered and that it decreases when more terms Nij are
available, as suggested by Eq. 9. We therefore assume, in
analogy to Eq. 9, that position specific quantities SI ij can be
defined

sr,,j [14]aNi,1- 4
where a is a coefficient such that (aNi, - 4) represents the
apparent number of degrees of freedom. This coefficient can
be obtained from the scatter in the distribution of all rij
values, since the overwhelming majority of these should
represent independent positions (only very few out of all
possible partners should be neighbors). For this purpose, the
variance of all ri, values S2 and the mean N of Nij values is
determined. An approximation for a can be obtained by
inverting Eq. 14:

a (4 + 1/S2)/N. [15]

Strictly, a might also depend on the position considered. k
However, when all available ri,, values are subdivided into
classes with different Nij and the analysis is performed
classwise, no major trend is observed.
The statistical analysis of a family of proteins is started by

creating a table of pairs (the "pair list"). It was found (see
below) that pairs for which the partners have overall amino
acid identities between 60% and 95% are most appropriate for
the analysis. Therefore, as a first step, a matrix of all pairwise
overall identities is set up. Second, sequences are eliminated
that have partners appreciably more similar than the 95%
criterion. This leaves a number N, of sequences for the
analysis. Then, the subset of those pairs fulfilling the 60-95%
criterion is created, and this is narrowed by random elimi-
nation to contain not more than 3 times Ns pairs in order to
speed the calculation. Results are not improved substantially
by including more pairs.
Once a pair list has been created, the analysis employs a

"scale file" that assigns physical quantities to amino acids.
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Variances according to Eq. lla are calculated for those
positions where Ni in Eq. lla is larger than zero. Subse-
quently, all possible rij values are calculated according to Eq.
lOa. The rij values are accepted as valid if the variances
associated with positions i and j are valid and if Ni,, is larger
than zero. Finally, the mean and variance of all rij values are
calculated. In this calculation individual values are weighted
according to the inverse of their expected variance (Eq.
14)-i.e., by weight = aNjj - 4. The analysis considers only
those values with weights larger than zero. Thus, the proper
weighting requires a knowledge of a, which, on the other
hand, is determined, according to Eq. 15, from the result of
the statistical evaluation. This problem is solved iteratively.
When 1 is used as a starting value for a, three or four
iterations converge on a stable value which, in the case of the
calculations described below, was in the range 0.2-0.4.

Correlation coefficients are also displayed graphically in
the form of dot matrix plots. In such "maps" the x axis and
y axis represent amino acid positions i and j, respectively.
The values of correlation coefficients are encoded by the
sizes of the symbols. Under the assumption that the physical
quantity under study (charge or side-chain volume) of neigh-
boring positions is negatively correlated, such plots would
display neighborhood relationships if only negative values
significantly different from zero were plotted. To do so,
signal-to-noise ratios were calculated for each point as the
ratio of rij over Sr,,i,j (Eq. 14). They were plotted as dots
proportional in size to their values, in case they were nega-
tive, and if they exceeded a certain threshold. During the
calculation of signal-to-noise ratios, values were discarded if,
according to Eq. 14, they would result in a negative 5rjj
Results and Discussion

As a test case, the family of myoglobins was analyzed. An
alignment containing 68 myoglobin sequences was obtained
from A. Lesk (Medical Research Council Laboratory, Cam-
bridge, U.K.). When the pair list (see above) was formed, 26
sequences were eliminated because they had >97% amino
acid identities to other sequences of the family, so that the
analysis was performed on a total of 42 myoglobins.

Initially, the side-chain volume was analyzed by using
values as given by Klapper (11). It was possible to evaluate
2357 correlation coefficients. The overall mean rjj of these
was close to zero:

r,j= 0.028 ± 0.53 (mean ± SD). [16]

This was expected, since for the vast majority of position
pairs, the amino acids in question are not neighbors; there-
fore, they should be uncorrelated. From the standard devi-
ation one can calculate (Eq. 9) an apparent number ofdegrees
of freedom of 3.6.
When the average correlation coefficient Ti-j* was calcu-

lated for only those position pairs known to be neighbors
from x-ray crystallography, the result was

rij* = -0.001 ± 0.53 (n = 93). [17]

Here, neighbors were defined as the set of those position
pairs whose side chains had at least one atomic contact.

This result is disappointing, since one would expect that
fluctuations in side-chain volume should be compensated in
the neighborhood for preservation of overall structure. How-
ever, Lesk and Chothia (12) have shown that such compen-
sation may occur not at the nearest neighbor, but also by
slight displacement of secondary structure elements or by
compensation at places further away.

Side-chain charge, on the other hand, should require a
more localized compensation. This was, indeed, found to be

the case. When rij values were analyzed for the quantity
side-chain charge (D and E, -1; K and R, +1; H, +0.5), again
the mean of all r,j values was indistinguishable from zero.
The mean of all known neighbors (as defined above), how-
ever, was

ri,* = -0.405 ± 0.49 (n = 40). [18]

The standard error of the mean is 0.08, so there is highly
significant negative correlation among neighboring charged
residues. Significance of the result is corroborated by the
finding that the value drops to close to zero if the list of
neighbors is scrambled before the mean is calculated. The
negative correlation stems partially from neighbors (in three-
dimensional space) which are far apart along the chain, but
partially also from chain neighbors. When the average rij was
calculated from only those neighbors that were more than 4
residues apart from each other, a value of -0.25 ± 0.45 (n =
8) was obtained. The complement (neighbors closer than 5
residues) yielded an average of -0.57 + 0.45 (n = 31).
The results obtained for side-chain charges show a remark-

ably high correlation, given the fact that a given fluctuation
need not be compensated by a specific neighbor. In the list of
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FIG. 1. Mean correlation coefficient between neighboring
charged residues and signal-to-noise ratio as a function of analysis
parameters. Negative mean correlation coefficient, n-j* (see Eq. 18),
between charges of neighboring residues was calculated for different
sets of sequence pairs. Signal-to-noise ratio is ri,,*/Sr, as calculated
numerically from all rij values. In A, sequence pairs were selected
with overall amino acid identities larger 5% and smaller than the
value given by the abscissa. In B, sequence pairs were selected with
overall amino acid identities <50% and larger than the value given by
the abscissa. The number ofsuch position pairs, over which averages
were taken, ranged from 23 (90%o identity) (A) to 90. See text for
further explanation. SQRT, square root.
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FIG. 2. Dot matrix plot of correlation coefficients among side-chain charges. A dot was plotted whenever the absolute value of the
signal-to-noise ratio (see text for explanation) of a correlation coefficient between positions index i and j exceeded the value of 1.7. The size
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maps the amino acid scale considered both full charges and also partial charges for side chains with a pK close to 7. Relative values: 1 for H,
K, and R; -1 for D and E; -0.5 for C and Y; 0 for all other ones. The alignment included not only myoglobins but also hemoglobin a chains
and hemoglobin chains (a total of 212 sequences). The grid and the lettering indicate secondary structure elements according to Lesk and
Chothia (12).

crystallographic contacts a given amino acid had 7.6 neigh-
bors. However, many of these did not carry a charge in any
ofthe sequences available. Among those positions displaying
fluctuations in charge, there were on average 3.6 neighbors
which also did so. Thus, if a change in charge at a given
positiowiwere required to be locally compensated by one of
the fluctuating neighbors, one would expect an average
probability of 0.28, not very different from the correlation
coefficient found.
The analysis presented so far was performed on the basis of

a pair list that comprised sequence pairs with overall amino
acid identities between 60% and 95%. Fig. 1 shows that this
appears to be the optimal range of sequence similarities. Here
the boundaries ofthe range in amino acid identities used for the
analysis were varied. Both the mean correlation coefficient of
neighbors rij* (see Eq. 18) and the signal-to-noise ratio (ri7j/
Sr) were plotted. In Fig. 1A the upper boundary of pairwise
identities was fixed to 95% and the lower boundary was varied
between 50% and 90%o. It is seen that the signal-to-noise ratio
rises slightly between 50%o and 7%o values but drops precip-
itously when the analysis is restricted to pairs more similar
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than 70%o. In Fig. 1B the lowerboundary was fixed to 50%o, and
the upper boundary was varied between 88% and 98%. The
signal-to-noise ratio is relatively constant between 92% and
98%, which shows that including pairs with partners more
similar than 95% does not improve the result.

In spite of the high correlation coefficient (Eq. 18), it is not
possible to identify with reasonable confidence the neighbors
of a given position. Such identification would require a
signal-to-noise ratio (rij/SrSij) of =2. To achieve this a set of
sequences -6 times larger (about 250 sequences) than the
present one would be required.

Nevertheless, structural information may be obtained from
the correlation coefficients for cases when it is possible to
average over elements of secondary structure, such as par-
allel or antiparallel helices, where periodicities in the corre-
lation coefficients are expected (see below). Also, a struc-
tural model that provides a list of neighbors could be tested
by calculating the average correlation coefficient among all
predicted neighbors. If conditions were otherwise similar to
those of the case studied for Eq. 18, a mean very much
different from zero would be expected for a correct model.
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"Contact map," in which a dot is plotted for each position pair that are known from crystallography to be in contact.
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Another way of averaging is by visual inspection of the
result. This can be done by viewing dot matrix plots like those
of Fig. 2. For the following a larger set of sequences and a
more complete metric was used (see Fig. 2 legend for details).
As detailed in the Theory and Algorithms section, the plots
show only those correlation coefficients considered to be
significantly negative, at positions according to their indices.
The sizes of the symbols encode an estimate for signal-to-
noise ratio. In such a plot neighbors along the polypeptide
chain are located close to the diagonal. Fig. 2A shows that
there is a somewhat higher density of symbols along the
diagonal. This pattern represents the neighborhood relation-
ships along the polypeptide chain. No such density is seen in
Fig. 2B, which shows, as an exception, positive correlations.
The globins contain seven helical segments, some of which
form antiparallel contacts. Depending on the angle between
the helices, side-chain contacts with a periodicity of 3 or 4 are
expected (12). Such contacts should show up as densities of
points along lines perpendicular to the diagonal. Some indi-
cation of this can be seen in Fig. 2A. The features gain some
clarity, however, when appropriate filtering procedures, ex-
ploiting the expected periodicities, are applied. In Fig. 3A
each point in the map is replaced by a weighted average
among its neighbors. The weights, as indicated in the legend
to Fig. 3, emphasize periodicities of 3 and 4. With this
procedure, the diagonal (representing contacts along the
chain and across helical turns) becomes much clearer. Also,
some streaks perpendicular to the diagonal appear. Not all of
these are significant (since the filtering procedure induces
streak-like distortions); however, a comparison with a con-
tact map displaying all crystallographic contacts (Fig. 3B)
shows clearly that certain features of the contact map are
reproduced by the map of correlation coefficients.
The analysis presented here shows that there is significant

correlation among residues in the family of myoglobin se-

quences. It also indicates that these correlations may be useful
in identifying neighborhood relationships among sequence
position without prior knowledge of three-dimensional struc-
ture.
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