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Abstract

Generalized estimating equation solvers in R only allow for a few pre-determined options for the 

link and variance functions. We provide a package, geeM, which is implemented entirely in R and 

allows for user specified link and variance functions. The sparse matrix representations provided 

in the Matrix package enable a fast implementation. To gain speed, we make use of analytic 

inverses of the working correlation when possible and a trick to find quick numeric inverses when 

an analytic inverse is not available. Through three examples, we demonstrate the speed of geeM, 

which is not much worse than C implementations like geepack and gee on small data sets and 

faster on large data sets.

Introduction

An extension of generalized linear models and quasilikelihood (McCullagh and Nelder, 

1986), generalized estimating equations (GEEs; Liang and Zeger, 1986) are a useful method 

for analyzing clustered (or longitudinal) data which may be correlated within cluster but are 

independent between clusters.

There are two packages on CRAN which will solve GEEs and produce standard errors in R: 

geepack (Højsgaard et al., 2006) and gee (Carey. et al., 2012). gee provides the basic 

functionality necessary for fitting GEEs, while geepack also allows for regression models 

for both the scale and correlation parameters, as described in Yan and Fine (2004). Both of 

these packages rely heavily on a computational engine implemented in C and called by the R 

function wrapper. They use the family object as input and hard code each of the link and 

variance function options within the C code. Whereas this configuration yields 

computational speed, it has two important drawbacks: it does not allow the user to create 

and specify his own link and variance functions, and it is not easy for a programmer with 

only modest programming skills to alter the code for methodological developments related 

to or extending GEE.
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To see why the user may need to define link and variance functions, consider the 

methodology presented in Schildcrout and Rathouz (2010). The authors look at binary 

response data in an outcome dependent sampling situation. Because the response is binary, 

the authors are able to use the offset option in standard GEE software to correct the bias 

from the sampling scheme. However, if the response takes some other form (e.g. counts or a 

continuous response), then we would need to define link and variance functions to correct 

this bias. These link and variance functions involve integrals that need to be computed 

whenever the functions are evaluated at different points.

Our new package, called geeM (the M is to emphasize the use of the Matrix package; Bates 

and Maechler, 2013) is coded completely in R, which grants the user the flexibility to define 

link and variance functions as part of the model specification (McDaniel and Henderson, 

2013). It also allows for easy modification of the code by method developers. The main 

function in the package, geem, takes a list that includes the link function, variance function, 

inverse link function, and the derivative of the inverse link function, as an argument. These 

functions must all be vectorized.

In spite of this, we are still able to solve the estimating equations quickly for many 

problems. To accomplish this, the package relies heavily on the recently developed Matrix 
package for speed. We especially exploit the sparse matrix representation objects contained 

therein, which allow for efficient operations on matrices in which most elements are zero. 

Besides introducing our package, a key aim of this article is to demonstrate in the context of 

a well-known statistical algorithm the power, speed and flexibility of the Matrix package.

We first give the details of the implementation, and then describe some limitations of the 

package. Finally, we show through examples and simulations the relative speed of the new 

R package. Along the way, we point out innovative uses of Matrix package functions.

GEE solutions

To set up the problem, consider Yi, a multivariate ni-vector of responses Yi = (Yi1, . . . , 

Yit, . . . , Yini) with mean vector μi = (μi1, . . . , μit, . . . , μini). Denote E(Yit) = μit. Let Xi = 

(xi1, . . . , xit, . . . , xini)
’ be a ni × p design matrix of covariate vectors corresponding to each 

observation for the ith cluster.

In the typical specification, the expectations are related to the mean by the monotone link 

function,

and the variances are a function of the mean

where ϕ is a dispersion parameter. Let Ai be a diagonal matrix with kth diagonal element 

equal to a (μik). Next we define
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(1)

where Ri(α) is the working correlation matrix for the ith cluster, parameterized by α, which 

may be a vector.

Using these conventions, Liang and Zeger (1986) describe a modified Fisher scoring 

algorithm to estimate regression coefficients β. The generalized estimating equations are 

given by

(2)

where Di = AiΔiXi and Δi is a diagonal matrix with kth entry equal to . Finally, Si = 

Yi – μi.

Instead of using a summation, we can instead put all of this in matrix form. Let , X 

be a N × p matrix with the Xi matrices stacked on top of one another, Δ and A be N × N 

diagonal matrices with the appropriate entries from Δi and Ai on the diagonal, and S be a N-

vector μ generated by stacking up the Si's. Finally, R(α) is a N × N block diagonal matrix 

with the individual Ri(α) matrices as blocks. With these definitions, our GEE representation 

is

(3)

Implementation details

The geeM package is coded entirely in R. This allows for easier modification by 

methodologists considering variants and extensions of GEE, as well as increased flexibility 

for some specific analyses.

Uses of the Matrix package

Creating large matrices to solve the estimating equations leads to large sparse matrices. The 

Matrix package allows us to easily exploit this sparsity with its sparse matrix 

representations, which store only the non-zero elements of a matrix. Without the memory 

savings from these representations, even moderately sized problems would lead to huge 

memory demands.

Further, we benefit from an impressive gain in the speed of operating on these large sparse 

matrices. Multiplication is the largest burden computationally, and the speed gains in very 

large, very sparse matrices are immense. This is accomplished by a separately defined %*% 

method for objects in the “sparseMatrix” class. When multiplication is of the form BTC or 

BTB we can take advantage of the crossprod function.
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In the modified Fisher scoring algorithm, we have many opportunities to take advantage of 

the “sparseMatrix” class. Two diagonal matrices are used, A and Δ, which we create using 

the Diagonal function. We also have the working correlation matrix, R(α), which is a sparse 

symmetric block diagonal matrix because observations within clusters may be correlated but 

observations between clusters are independent.

Additionally, the Fisher scoring algorithm requires that we compute the inverse of the 

working correlation matrix, R(α). Because we never need R(α) directly, we only compute 

R(α)−1 and build it directly for any given α. For that we use the sparseMatrix function, to 

which we supply three vectors of the same length: an integer vector i of row positions of 

non-zero entries, an integer vector j of column positions of non-zero entries, and a vector × 

of entries.

Analytic inverses

For three common correlation structures, independence, exchangeable, and AR-1, analytic 

inverses are available. In these cases we use these analytic inverses to create R(α)−1.

In the AR-1 case, we are able to quickly construct the inverse correlation matrix as a linear 

combination of three basic matrices, with coefficients depending on the value of α 

(Sutradhar and Kumar, 2003). The inverse can be constructed as

where L, M, and N are all block diagonals, the blocks of which take the forms

and
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These basic matrices are constructed only once at the beginning of the code and saved for 

later use.

The exchangeable correlation matrix is a little more complicated because the entries in the 

inverse depend on the cluster size (Sutradhar and Kumar, 2003). The analytic inverse can be 

computed as

where

Ini is the ni × ni identity matrix, and Jni is an ni × ni matrix of ones. In the implementation, 

we compute a vector with every entry in the correlation matrix (a vector of length ) 

and create the new matrix with the sparseMatrix function.

Numeric inverses

For all other correlation structures, we use the solve command in R. To describe the method, 

let us suppose that we have k different cluster sizes, n1, . . . , nk, in descending order.

We first construct the working correlation matrix for all clusters of size n1, then take the 

upper left corner of this matrix to construct correlation matrices of appropriate size for 

clusters of size n2, . . . , nk. We then calculate the inverses of each of these k matrices. 

Finally, we construct the block diagonal working correlation matrix for the whole sample 

using the inverses of the appropriate size.

This technique exploits the fact that the inverse of a block diagonal matrix is the inverse of 

the blocks, allowing us to reduce the number of invocations of the solve function to k, the 

number of unique cluster sizes.

Using this technique, we have support for M-dependence (M should be specified by the 

user), unstructured correlation, fixed correlation, and user-defined correlation structures. 

Under M-dependence, two observations, xit and xit’ have correlation α|t–t’|if |t–t’| ≤ M and 0 

otherwise. Under unstructured correlation, the correlation, the correlation between xit and 

xit’, is asummed to be αtt’. The fixed correlation option requires that the user provides a 
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correlation matrix giving the correlations between all observations in the largest cluster. For 

a user-defined correlation structure, the function accepts a square matrix of the size of the 

largest cluster which defines the entries in the correlation matrix assumed to be the same.

Note that in all correlation structures, if any variables are missing, then those rows are 

dropped. So, if rows have missing data, or a given subject has fewer than the maximum 

number of observations, then the leading principal submatrices of the appropriate 

dimensions are used. This may not preserve the desired correlation structure. The desired 

structure can be recovered by including rows with weights of zero for those time points with 

missing data.

Estimation of correlation parameters

For all supported correlation structures, we use simple moment estimators. These are the 

exact same estimators used by SAS proc genmod (SAS Institute Inc., 2010) and are 

estimated solely from the Pearson residuals.

Missing values

The weights argument can be used to handle missing values in the response by creating a 

new row for the missing observation and assigning a weight of 0. This will maintain the 

desired correlation structure and is equivalent to how SAS proc genmod handles missing 

data. Observations with a weight of 0 do not contribute to estimation of the coefficients or 

the variance and only observations with a positive weight are used to calculate the 

correlation parameters. Any observation with an NA in the response or predictors is 

automatically assigned a weight of 0.

Limitations

The geeM package calculates the inverse correlation matrix directly, possibly resulting in a 

less stable algorithm than gee and geepack which solve systems of equations instead of 

inverting directly. Therefore it is possible that the geeM package may have problems with 

numerical stability on some problems, especially for correlation structures for which 

inverses are calculated numerically. We have not seen any such issues in testing at this 

point.

Another issue has to do with how the calculations are completed. In testing the largest 

dataset (presented later as the birth outcomes data) we found that geeM was more likely to 

have memory problems than gee or geepack. This is probably because geeM creates large 

sparse matrices for computing its estimates as opposed to the technique in Liang and Zeger 

(1986), which involves summing over many more small dense matrices.

Speed comparisons

All speed comparisons were run on a computer with an Intel Core 2 Duo 3.0 GHz processor 

and 4 GB of RAM. Windows 7 was the operating system and R version 2.15.1 was used.

For these comparisons, we fit the same model to the same data set multiple times in order to 

gain some stability in the estimates of run time. The packages geepack and gee test 
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convergence differently than geeM, so the tolerance used for geeM was chosen to be no less 

strict than the other two. Because geeM assesses convergence relative to the magnitude of 

parameters, this requires some knowledge of the values of the fitted parameters.

Ohio data set

geepack contains a data set on the wheezing status of children in Ohio. The data are 537 

clusters each with 4 observations. The response (resp) is a binary variable with 1 

corresponding to wheezing and 0 not. We fit the model resp ~ age + smoke + age:smoke, 

where age is the age of the child and smoke is an indicator of maternal smoking at the first 

year of the study. In this case we use a logit link and the μ(1 − μ) variance function.

Table 1 shows the speed results under four different correlation structures. The average 

speed (Avg.) is calculated based on fitting the same data 5 times for each method and the 

relative speed (Rel.) is the average speed of each method divided by the average speed of the 

fastest method.

This is a relatively small data set, so all solvers perform very quickly in this case. The 

longest average time for any of them is 0.20 seconds, so speed does not appear to be too 

much of an issue here.

Simulated count data

For a slightly larger data set, we simulated count data from an overdispersed Poisson 

distribution. There are 10,000 clusters with 5 observations in each cluster. The formula we 

use is count ~ time. Here we use the log-linear link and the identity variance function.

Table 2 shows the speed results under four different working correlation structures. The 

average speed (Avg.) is calculated based on fitting the same data 5 times for each method 

and the relative speed (Rel.) is the average speed of each method divided by the average 

speed of the fastest method.

Birth outcomes data

Finally, we move to a large data set. These data contains the information on birth outcomes 

from Abrevaya (2006). We use gestational age as the continuous response, and mother's age 

as the only covariate. We use the Gaussian family for the link and variance functions.

The data contain 141,929 clusters of size 2 or 3 each. This results in a total of 296,218 

observations. It is worth noting that for a data set this size, all other programs except R 

needed to be shut down. If too many other programs are open, geeM may take a much 

longer time or even run out of memory.

Table 3 shows the speed results under four different working correlation structures. The 

average speed (Avg.) is calculated based on fitting the data 5 times for each method and the 

relative speed (Rel.) is the average speed of each method divided by the average speed of the 

fastest method.
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Illustrative use

Before concluding, we provide examples of how to use the geem function. Here we fit the 

ohio data with different link and variance functions. In this case, we use a skewed logit link 

function, as described in Prentice (1976), which allows us to remove the symmetry 

constraint imposed by the logit and probit link functions. According to Prentice, this type of 

skewed logit link may provide a better fit to dose response data. The inverse link function 

takes the form

where k is known. When k = 1 we have the logistic model, when k < 1 the distribution is 

negatively skewed, and when k > 1 the distribution is positively skewed. In the example, we 

let k = 2 and choose μ(1 − μ) as the variance function. When defining these four functions, it 

is essential that they all be vectorized, that is, they accept a vector argument and return a 

vector of the same length.

k <- 2 linkfun <- function(p) { log((p^(1/k))/(1 - p^(1/k))) }

variance <- function(p) { p * (1-p) }

linkinv <- function(eta) { (exp(eta)/(1 + exp(eta)))^k

}

mu.eta <- function(eta) { k * (exp(eta))^(k-1) / (1 + exp(eta))^(k+1) }

FunList <- list(linkfun, variance, linkinv, mu.eta) geem(resp ~ age + smoke + age:smoke, 

id=id, data = ohio, family = FunList, corstr = “unstructured”)

If we just want to use the binomial family to fit the ohio data, then the call is:

geem(resp ~ age + smoke + age:smoke, id=id, data = ohio, family = binomial, corstr = 

“unstructured”)

Conclusion

This paper describes a pure R implementation of a generalized estimating equation solver 

relying heavily on the Matrix package. Coding in R allows for the use of user-defined link 

and variance functions, giving a useful kind of flexibility.

The Matrix package is what enables a fast implementation. Sparse matrix representations 

give ways to efficiently build the large, sparse matrices needed to solve the GEEs without 

using too much memory. Operations on these sparse matrices are also much faster.

Much of the work in fitting GEEs comes from matrix inversion or solving a system of 

equations. For three correlation structures, we are able to analytically invert the largest 
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matrix. For the rest of the correlation structures, we rely on inversion of a relatively small 

number of blocks to find the inverse.

Unfortunately, this technique of gaining speed in matrix inversion can cause problems. 

Because we invert matrices instead of solving systems, it is possible that the function may 

be less numerically stable.

Finally, we show that, in some cases, the geeM package is faster than gee or geepack. In 

other cases it is not much slower, with geeM tending to run faster on larger data sets.
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Table 1

Speed comparisons for ohio data set.

Independence AR-1 Exchangeable Unstructured

Avg. (s) Rel. Avg. (s) Rel. Avg. (s) Rel. Avg. (s) Rel.

geeM 0.ll l.83 0.ll 1.00 0.ll l.33 0.l6 l.ll

gee 0.07 l.l7 0.l2 l.07 0.08 l.00 0.l5 l.00

gee pack 0.06 l.00 0.l8 1.53 0.l2 l.48 0.20 l.34
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Table 2

Speed comparisons for the simulated count data set.

Independence AR-1 Exchangeable Unstructured

Avg. (s) Rel. Avg. (s) Rel. Avg. (s) Rel. Avg. (s) Rel.

geeM 1.36 1.00 1.56 1.00 1.58 1.00 2.30 1.00

gee 2.16 1.59 4.06 2.60 2.45 1.55 3.26 1.42

geepack 1.55 1.14 3.27 2.10 2.95 1.86 5.64 2.46
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Table 3

Speed comparisons for the birth outcomes data.

Independence AR-1 Exchangeable Unstructured

Avg. (s) Rel. Avg. (s) Rel. Avg. (s) Rel. Avg. (s) Rel.

geeM 5.28 1.00 9.87 1.00 7.33 1.00 8.18 1.00

gee 10.02 1.90 29.39 2.98 20.09 2.74 21.49 2.63

geepack 9.66 1.83 23.67 2.40 22.59 3.08 25.67 3.14
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