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Abstract

Optical interactions with biological tissue provide powerful tools for study, diagnosis, and 

treatment of disease. When optical methods are used in applications involving tissue, scattering of 

light is an important phenomenon. In imaging modalities, scattering provides contrast, but also 

limits imaging depth, so models help optimize an imaging technique. Scattering can also be used 

to collect information about the tissue itself providing diagnostic value. Therapies involving 

focused beams require scattering models to assess dose distribution. In all cases, models of light 

scattering in tissue are crucial to correctly interpreting the measured signal. Here, we review a 

versatile model of light scattering that uses the Whittle–Matérn correlation family to describe the 

refractive index correlation function Bn (rd). In weakly scattering media such as tissue, Bn (rd) 

determines the shape of the power spectral density from which all other scattering characteristics 

are derived. This model encompasses many forms such as mass fractal and the Henyey–

Greenstein function as special cases. We discuss normalization and calculation of optical 

properties including the scattering coefficient and anisotropy factor. Experimental methods using 

the model are also described to quantify tissue properties that depend on length scales of only a 

few tens of nanometers.

Index Terms

Biophotonics; continuous random media; mass fractal; scattering; tissue optics

© 2013 IEEE.

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

NIH Public Access
Author Manuscript
IEEE J Sel Top Quantum Electron. Author manuscript; available in PMC 2015 January 11.

Published in final edited form as:
IEEE J Sel Top Quantum Electron. 2013 September 6; 20(2): 7000514–. doi:10.1109/JSTQE.
2013.2280999.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://ieeexplore.ieee.org


I. Introduction

In Biology and medicine, optical techniques enable non-invasive measurements of living 

tissue. Microscopy is particularly ubiquitous because it enables visualization of individual 

cells and even organelles. There is a continuous effort to resolve ever finer detail to assess 

the most fundamental properties of living organisms. However, resolution in optical imaging 

systems poses a challenge to studying length scales less than the diffraction limit (about half 

the wavelength). Some very clever techniques have been developed to sidestep this issue, 

including STED, STORM, and other super resolution methods [1]. These methods enable 

imaging or reconstruction of extraordinary detail, but typically require contrast agents and 

careful tissue preparation. Therefore, a niche remains available for additional methods of 

quantifying fine length scales. Several methods with potential to fill that niche rely on 

analysis of scattering.

Many applications are critically affected by light scattering in tissue. Sometimes scattering is 

considered a nuisance, and research has been devoted to optical clearing of tissue [2]. At the 

same time, in many imaging techniques, scattering provides the image contrast, for example, 

in confocal microscopy or optical coherence tomography (OCT). Diffuse optical 

tomography is perhaps the best example of using measurement of light propagation in tissue 

to reconstruct tissue features that cannot otherwise be imaged and relies on reconstructing 

tissue properties based on transport theory due to multiple scattering [3]. Models of 

scattering are also important in treatment methods such as photodynamic therapy where 

carefully controlling the distribution of energy is crucial for successful treatment [4].

Clearly, methods of modeling radiative transport in tissue are needed for a wide range of 

applications including treatment or therapy, imaging, and characterization or diagnosis. One 

of the most widely used modeling methods is to numerically solve the radiative transport 

equation using Monte Carlo (MC) simulations. MC works by simulating a large number of 

rays as they propagate by sampling two probability distribution functions: 1) The path length 

traveled between scattering events is described by a decaying exponential associated with 

mean free path (Beer–Lambert law). 2) The angular distribution of scattered light for a 

single scattering event is called the phase function. The shape of the phase function is highly 

dependent on the scattering model. While MC is a powerful simulation method, the results 

are only as good as the model it is based on.

In this paper, we describe the use of a particularly flexible choice for modeling tissue 

scattering. The model assumes that tissue can be described as a continuous random media 

rather than discrete particles, which agrees with observations of material distribution such as 

electron microscopy. The model is based on the Whittle–Matérn (WM) correlation family 

and is highly flexible, encompassing several other models previously used to describe tissue 

including mass fractals and the Henyey– Greenstein (HG) phase function. While direct 

measurements of the refractive index correlation function would provide the best model of 

tissue, such measurements are currently not possible with the necessary resolution of a few 

tens of nanometers. In the meantime, the WM provides a good alternative. We summarize 

the choices to make within this model and show how optical properties are calculated. 

Finally, we demonstrate several techniques where this model provides both excellent 
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agreement with data and also a means to quantify the distribution of length scales well 

below the diffraction-limited resolution.

II. Tissue, Structure, and Refractive Index

Tissue is made up of many interconnected, arbitrarily shaped structures that span a wide 

range of length scales. Many texts can provide an overview of the components of cells or 

tissue [5]. For example, the extracellular matrix (ECM) is composed primarily of collagen 

and elastin fibers ranging in size from 10 to 500 nm in diameter. Cells themselves are of 

various shapes and sizes on the order of tens of micrometers. Cells are in turn comprised of 

smaller structures such as membranes (10 nm) and organelles including the nucleus (5–10 

µm), mitochondria (0.2–2 µm), and many others. Cells also contain a cytoskeleton made of 

filaments from 7 to 25 nm in diameter. The nucleus contains nucleoli (0.5–1.0 µm) and 

DNA in the form of chromatin. The organization of chromatin is the subject of active 

research, but electron microscopy reveals that chromatin is found in the form of 

heterochromatin and euchromatin and appears to have different densities. These form 

globules with length scales of hundreds of nanometers.

These various structures span several orders of magnitude in size and are composed of a 

wide range of materials. While the exact refractive index of each component in living tissue 

is not known, the heterogeneity of material nonetheless results in a range of refractive index 

values with a complicated spatial distribution. It is this heterogeneity that gives rise to 

scattering. Fig. 1 shows an image of tissue highlighting the dramatic range of length scales 

and the interconnected nature of the material. This interconnected material means that 

refractive index is a continuous function of position and supports the modeling of tissue as a 

continuous random medium like that of turbulence [6], [7].

When it comes to modeling light scattering, the exact distribution for a particular ensemble 

of material is less important than the statistical properties. What matters most is the shape of 

the excess refractive index correlation function Bn (rd) discussed below. By considering the 

spectral density of the SEM image, an artificial medium can be generated that has the same 

correlation function as the SEM as shown in the lower left of Fig. 1. A medium can also be 

generated from the WM model using the method described in [8, Ch. 2] and an example is 

shown in the lower right of Fig. 1 with remarkable similarity. Caution should be taken in 

and quantitative comparison would not be valid since the SEM does not directly represent 

refractive index, but qualitatively the SEM represents the structure of tissue containing a 

wide range length scales.

While it is not yet possible to directly measure refractive index at the resolution of the 

smallest length scales mentioned above, there are ways to relate local mass density to 

refractive index. Since mass density can in principle be determined at high resolution using 

electron microscopy techniques, mass density can be converted to refractive index using the 

Gladstone–Dale relation [9], [10]:

(1)
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where ρ is the density of the solute [g/ml] and α is the refractive increment, usually α ≈0.17 

ml/g.

Future research using electron microscopy methods may enable direct measurement of mass 

density and thus refractive index at high resolution so that scattering may be more accurately 

modeled and related to specific components of tissue. In the meantime, we must be satisfied 

with empirical models that provide good fits to observable data.

A. Models of Tissue Scattering

Scattering in tissue is the result of light interacting with random variations in refractive 

index. To better understand scattering in tissue, it is helpful to develop and evaluate models 

of light propagation in a medium comprised of a spatially random distributions of refractive 

index. This distribution could be in the form of a continuous function of refractive index 

(like atmospheric turbulance) or in the form of discrete particles. Many models of tissue 

scattering approximate tissue as a collection of randomly placed spheres or spheroids [11]–

[13]. This is plausible considering that organelles such as nuclei, mitochondria, lysosomes, 

vacuoles, and even whole cells are approximately spherical (or spheroidal) in shape. The 

scattering from such isolated particles can be analytically described by the Mie solution to 

scattering from spheres [14], [15]. Scattering from a random medium made up of many such 

spheres (i.e., a cloud of rain-drops) is calculated by then incoherently summing the 

scattering from many spheres according to the number density. However, in many cases, it is 

hard to argue that the shape is spherical so Mie theory is inherently limited.

Another ubiquitous model of tissue scattering is based on the empirical observation that 

tissue scattering is usually anisotropic. That is, a very small volume of tissue scatters more 

light in the forward direction at small angles than in the backward direction. A simple model 

of such anisotropic scattering was developed by Henyey and Greenstein to describe 

scattering of interstellar dust and is now referred to as the HG phase function [16]. 

Counterintuitively, the phase function has little to do with the phase of a scattered ray. 

Instead, the term is historical and refers to the apparent brightness of celestial bodies such as 

the moon or planets as they pass through their phases. The function is a normalized intensity 

as a function of the angle between incident and scattered direction.

Observing tissue scattering using methods such as goniometer and integrating sphere, 

Jacques et al. found the HG function provided a good model to match their observations 

[17]. It has since become one of the most common models of tissue scattering. However, 

this model is limited in that it does not include the dipole factor (discussed in Section IV-A) 

that leads to a nonmonotonically decreasing function of angle that is typically observed in 

scattering [11], [18] and it does not provide a physical connection to the structures which 

generated it.

Other models of tissue scattering have been put forth and used with success and include 

delta-Eddington proposed by Joseph et al. [19] and discussed in detail by Prahl [20] that 

uses the sum of a Dirac-δ function and cos θ dependence to describe the phase function, and 

the P3-approximation [21] that takes the first three terms in an expansion of the solution to 

the radiative transport equation.
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In choosing a model for tissue scattering, it is a good idea to use the simplest model that 

matches the experimental method employed to avoid over fitting. For example, when using 

an integrating sphere and the inverse adding doubling (IAD) method [20], the experimental 

data are well modeled by the HG function. However, as experimental methods evolve, some 

measurements cannot be explained with such a simple model, and it is necessary to invoke a 

more complex model of scattering.

B. As New Methods Emerge, Better Models Are Needed

One challenge facing those wishing to model tissue scattering is determining what model to 

use. Any model of scattering will inherently contain approximations. Choosing the right 

model is all about choosing the most appropriate set of approximations.

Fig. 2 shows an example where a simple model of scattering based on the HG function is not 

sufficient to explain the experimental data. In these data, radiative transport is measured 

with enhanced backscattering (EBS) at length scales ranging from much less than the 

transport mean free path  to much greater than , which for this tissue is about 200 µm. 

EBS measures the probability distribution P(rs) of ray exit distances relative to the point of 

entry in a scattering medium, in other words the spatial impulse response of diffuse 

reflectance [22].

Most methods that measure radiative transport via backscattering are only sensitive to 

separations larger than  where the propagation of light can be accurately modeled using the 

diffusion approximation [23]. The figure shows that the different models tend to converge at 

these larger length scales, while small distances exhibit more significant differences because 

in this region, P(rs) is dominated by low order scattering and is, therefore, more sensitive to 

the shape of the phase function. The model curves are calculated by using the scattering 

model in MC simulations of scattering to build a catalog of curves for ranges of parameters. 

Fits to experimental data are obtained by interpolating the model simulation space to 

produce a lookup table. The dashed red line corresponds to the best fit obtained using the 

HG phase function, while a much better fit is obtained using the WM model with D = 3.75 

highlighting the need for more a more advanced model for measurement methods that are 

capable of discriminating between different correlation functional forms.

III. Rayleigh–Gans–Debye Approximation

One of the most useful approximations that can be made in scattering from biological tissue 

is that of “weak” scattering. In this approximation, it is assumed that the scattered field is 

much less significant than the incident field. This approximation is also known as Rayleigh–

Gans–Debye (RGD) scattering, the first Born approximation, or single scattering 

approximation. Here, we will use “RGD scattering” for brevity. This approximation can be 

used to describe discrete particles as well as continuous media and has been extensively 

investigated by Ishimaru for other refractive index correlation functions, so we will follow 

his derivation for continuous random media [24]. Excellent discussions of RGD scattering in 

particles are provided by Hulst and van de Hulst [25] as well as Bohren and Huffman [15].
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A brief conceptual summary of the RGD approximation is as follows: When a plane wave 

traveling in free space passes through a particle, the dipoles that make up the particle are 

excited and begin to oscillate reradiating electromagnetic energy according to the Rayleigh 

or dipole radiation pattern [26]. In the RGD approximation, the scattered field is 

insignificant relative to the incident field, so secondary scattering events can be ignored. 

This is equivalent to saying that the electric field arriving at any point inside the particle is 

approximately the same as the incident field. In other words, there is no phase delay or 

refraction inside the particle. The phase of each dipole is then determined by its position 

along the z-axis (direction of incident wave). The total effect of all the dipoles can then be 

treated by coherently summing the field from each dipole to obtain the scattering amplitude 

function f(θ, ϕ). This summation can be mathematically written as an integral of relative 

excess refractive index as a function of position nΔ(r⃗) = (n(r⃗) − 〈n〉)/〈n〉, where 〈n〉 is the 

expected value or average refractive index. The spherical wave can be written as a complex 

exponential so that the operation takes the form of a Fourier transform. We are typically 

interested in the intensity of scattering, since this is the observable quantity. The intensity is 

proportional to the square of the amplitude scattering function, which is the Fourier 

transform of nΔ(r). By applying the Wiener–Khinchin theorem, we see that the scattered 

intensity per unit volume as a function of angle (known as the differential scattering cross 

section σ(θ, ϕ)) is proportional to the spectral density Φs (ks), which is the Fourier transform 

of the autocorrelation of the excess refractive index Bn (rd):

(2)

where  is a displacement vector between any two points in the medium. When the medium 

is statistically isotropic, Bn ( ) is radially symmetric and can be represented as a 1-D 

function of scalar displacement rd. The result simplifies to the product of a dipole factor 1 − 

sin2 (θ) cos2 (ϕ) multiplied by the spectral density evaluated at ks = 2〈n〉k sin(θ/2), where k 

is the freespace wavenumber:

(3)

Note that this relation works for a suspension of particles as well as continuous media. For 

particles, the weak scattering approximation is valid when 

, where a is the particle radius. That is to say, the excess 

refractive index must be small and the phase delay as the wave traverses the particle must be 

much less than the wavelength.

It is important to note that while the RGD scattering approximation is often referred to as the 

single scattering approximation, this does not mean that it cannot be used to model large 
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volumes such as clouds or tissue where multiple scattering takes place. What is required in 

the case of a particle is that single scattering is valid for a single particle. When a medium is 

composed of many such particles, light transport can be very accurately computed 

numerically by methods such as MC [27]. The key is to accurately compute the angular 

probability for each scattering event and then propagate rays according to mean free path 

with subsequent scattering events. Interestingly, the same is true for continuous media.

The RGD approximation should, therefore, not be used to model an entire region of tissue, 

but rather to statistically model a representative volume just large enough to cause one 

scattering event. Multiple scattering can then be treated as decoupled events that can be 

summed according to the mean free path and scattering function using computational 

methods like MC. Such simulations can be made even more accurate by using the Extended 

Huygens–Fresnel principle to account for the propagation of coherence in the case of 

multiple scattering, and an excellent review of such treatment developed by Anderson and 

Thrane is provided in [28, Ch. 17].

A. Validity of the RGD Approximation for Continuous Media

Unlike a particle, there is no clear boundary in continuous media over which the concept of 

single scattering can be applied. Instead, in continuous media, the single scattering 

approximation must be valid for a representative small volume of material. By 

representative, we mean that the volume must be large enough to represent statistical 

ensemble of the medium, but small enough that single scattering approximation holds. As 

long as the volume can be defined for which small changes in the volume result in the same 

differential scattering cross section per unit volume, the RGD approximation is valid. One 

could also say that ls > Ln must be true, where ls is the mean free path and Ln is the outer 

length scale of the correlation beyond which the medium is not significantly correlated. In 

other words, a wave of propagating light must, on average, pass through enough media to be 

statistically representative before being scattered. This was rigorously investigated using 

finite-difference time domain and the validity criterion can be written as 

[29].

B. An Illustrative Example: Suspension of Spheres

While we are most interested in modeling continuous media in this paper, it is instructive to 

follow through an example using a suspension of spheres. We can then compare the 

resulting scattering functions to those obtained with the Mie solution. Incidentally, it is just 

such media in the form of polystyrene microsphere suspensions that are often used as tissue 

phantoms in research labs.

To begin, we must consider Bn (rd) for a suspension of spheres. For a sphere of radius a, the 

autocorrelation function can be computed analytically, so Bn (rd) is simply scaled by the 

variance of the refractive index:

(4)
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We must next calculate the expected value of refractive index 〈n〉 and the variance  of the 

relative excess refractive index nΔ = n/〈n〉 − 1. These values depend on the refractive index 

of the spheres ns, surrounding medium nm, and the volume fraction Cv occupied by spheres

(5)

(6)

The Fourier transform of this function can be calculated analytically

(7)

and substituted into (3) to calculate the differential scattering cross section. If we plot the 

results and compare to the Mie solutions as in Fig. 3, we can see excellent agreement for 

very small particles (top left) or very small refractive index contrast (bottom left). The 

accuracy begins to decrease as particle size increases a little (top right). For weaker 

refractive index contrast, the particle size can get much larger before the agreement breaks 

down (bottom row). This is consistent with the requirements of the single scattering 

approximation described in Section III-A.

IV. Quantifying Structure With a Refractive Index Correlation Function

Scattering from a medium can be computed analytically or numerically for a known 

distribution of dipoles or, equivalently, a known distribution of refractive index. This is 

rarely if ever the case for biological tissue. It is, therefore, of interest to determine statistical 

average scattering from a random medium where the exact distribution of index is unknown, 

but the statistical properties are known, or can be approximated. One way to describe the 

average scattering properties of a random medium is to describe the average shape of 

differential scattering cross section from a small representative volume of material. As seen 

in Section III, an expected value of the differential scattering cross section σ(θ, ϕ) can be 

directly calculated from the refractive index correlation function Bn (rd).

A. WM Correlation Family

The best model of tissue scattering would be based on a direct measurement of refractive 

index correlation over the entire range of lengths scales to which scattering is sensitive. This 

is currently not possible, and so lacking a catalog of refractive index correlation functions in 

tissue, we can choose to model the correlation function using a functional form to 

approximate the actual statistical correlation function.

Several correlation functions have been used to model continuous random media. Chapter 

16 in Ishimaru’s text describes exponential correlation that leads to the Booker–Gordon 

formula, the Gaussian model, and the Kolmogorov spectrum also known as the von Kármán 

spectrum which is based on a power law with a specific power [24], [30]. A number of 
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papers have proposed a fractal model for tissue [6], [7]. Mass fractals are characterized by 

power law correlation functions where the mass fractal dimension is related to the power. 

Interestingly, all of these models as well as the HG function can be described by the WM 

correlation family [30], which is the product of a power law and a modified Bessel function 

of the second kind of order (D − 3)/2,

(8)

The fact that the WM family of correlation functions is so flexible and encompasses many 

other models makes it an attractive choice. The parameter D controls the shape of function 

and can be used to represent a wide range of plausible correlations including:

1. Gaussian: D → ∞;

2. exponential: D = 4;

3. stretched exponential: 3 < D < 4;

4. Kolmogorov/von Karman: D = 11/3;

5. HG: D = 3;

6. power law:D < 3.

Examples of the functional form for several values of D are shown in Fig. 4. Note that when 

D < 3, the medium can be considered a mass fractal and the parameter D takes on the special 

meaning of mass fractal dimension.

Fig. 5 shows an example of the differential scattering cross section σ(θ, ϕ) (3) calculated for 

vertically polarized light and D = 3. For this case, the shape around the equator at σ (θ, ϕ = 

90°) corresponding to the shape of the HG phase function. However, an important difference 

is the inclusion of the dipole factor. When incident light is unpolarized, the phase function 

can be calculated by averaging over ϕ resulting in a phase function with a minimum at θ = 

90° [31]. This extension of the HG phase function more accurately reflects physical 

measurements. For example, Mourant reported goniometer measurements of tissue along 

with fitting of the HG function, but the HG phase function could not match the 

measurements in the backscattering direction [11], [18].

B. Normalization

The WM correlation family is useful because it can take on so many different functional 

forms. This does, however, create some challenges in terms of normalizing the function. The 

convention typically used in signal processing is that correlation functions are normalized 

such that the value at the origin (rd = 0) is equal to 1, while in statistical disciplines, it is 

equal to the variance—in our case, the variance of excess refractive index . However, 

since power laws are unbounded at the origin, this convention is impossible to implement 

for D < 3. Therefore, no single normalization can be used to satisfy convention in the 

bounded case D > 3 and the unbounded case D < 3.
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The WM function has three parameters: D, An, and Ln. The shape is determined by D, while 

the latter two can be thought of as scaling parameters. Ln scales the horizontal axis, while An 

scales the vertical axis. Ln also represents a transition point beyond which the function 

decays as an exponential. There are several options for the normalization coefficient An, and 

each has advantages and disadvantages.

It should be noted that these normalization options only affect the interpretation of the 

coefficient  as the variance of refractive index. The function Bn (rd) is not arbitrary and 

actually represents a physical function that could, in principle, be physically measured. In 

media where the best fit of Bn (rd) is for D ≤ 3, the actual physical value of  is still finite, 

but the power law only extends down to some small length scale below which the shape is 

irrelevant. This is sometimes called the inner scale of turbulence. When this inner scale is 

much smaller than the wavelength, the error in Φs between the unbounded model function 

and the actual refractive index correlation function is small [31]. Nevertheless, it is useful to 

explore several options for normalizing Bn (rd).

1) Whittle and Matérn Normalization—Bn (0) = 1 for D > 3: A brief description of the 

history of the WM function and some closely related functions used in modeling 

atmospheric turbulence is provided by Guttorp and Gneiting [30]. These authors describe the 

normalization that Whittle and Matérn used. In this case, the function is normalized to 1 

( ) at rs = 0 for values of D > 3 that result in a bounded function. In other words,  is 

the variance for D > 3, and just a parameter for D <3:

(9)

The advantage of this normalization is that it is normalized at the origin when it is bounded, 

as any actual correlation function should be. The disadvantage is that as D gets smaller and 

approaches 3, the narrow shape of the function forces the magnitude to zero at any finite 

value of rd. This, in turn, results in the total scattering cross section collapsing to zero. 

Additionally, the function is identically zero for D = 3, and so we lose the ability to model 

the HG function. Guttorp and Gneiting argue that (D − 3)/2 must be greater than 0 for this 

correlation to be valid (eliminating the need for the absolute value of the gamma function). 

This is true in that  cannot be defined when D ≤ 3, but many interesting cases occur for 

these values of D, including a power law corresponding to mass fractals. When D ≤ 3, the 

function Bn (rd) approaches a power law for small rd and so is infinite at the origin.

2) Normalized at a Minimum Length Scale—  One possible 

normalization is to attempt to mimic reality. When D < 3, Bn (rd) approximates a power law 

corresponding to a mass fractal organization of material. In nature, fractals occur that exhibit 

self-similarity over a range of scales and, therefore, are described by a power law correlation 

function. However, the range of scales over which the true function closely follows a power 

law is not infinite. For example, in tissue, one may observe length scales corresponding to 

the size of a cell. Zooming in, one observes a similar organization in organelles, but at a 
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length scale an order of magnitude smaller. Zooming in yet further, one might observe 

globule organization of macromolecules. This approximate self-similarity over several 

magnitudes of length scales is what gives rise to a power law correlation function. However, 

this power law cannot extend to infinitely small length scales. At some small scale, only 

molecules are left and the very definition of refractive index becomes difficult to interpret. If 

the actual correlation function were known, the mode could be fit by defining a minimum 

length scale rmin and normalize the function at this value:

(10)

Provided that rmin is chosen correctly, the value of the model function at rmin can be close to 

the true value . The advantage of this normalization is that there is an intuitively satisfying 

notion that the correlation always starts at  for some arbitrarily small value regardless of 

the value of D. One problem with this normalization is that it introduces a fourth parameter 

rmin that must be arbitrarily chosen. Since rmin is arbitrary, the value of  is also arbitrary 

which makes interpretation of  difficult since it is no longer a material property but 

depends on the chosen rmin. For a power law, a small change in the chosen value of rmin 

could result in a large change in the model’s value of  and it does not necessarily 

correspond to the actual variance of the real medium.

3) Normalized to Value c at rd = Ln—Since the previous normalization can lead to a 

misinterpretation of the meaning of , one alternative is to simply normalize the model at a 

finite value of rd that is already defined in the model, namely Ln. The normalization constant 

c is not interpreted as variance of refractive index; it is simply the value that scales the 

model to match the actual medium:

(11)

This normalization has the advantage that the it is well behaved for all values of D. Of 

course, the function is infinite at rd = 0 for value of D ≤ 3 as expected. When D > 3, the 

function is indeterminate at rd = 0, but the limit is bounded, so this poses no problem for 

modeling scattering. The disadvantage is that relating this scaling parameter to  requires 

an extra step, but this can be easily dealt for values of D > 3:

(12)

When D ≤ 3,  could be determined for the actual medium, but is not explicitly part of the 

model.

These first three choices do not depend on scattering: they simply describe the properties of 

a medium. There are, however, a few additional options for normalization that amount to 
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normalizing the spectral density independent of the scale of Bn (rd). These retain the 

dependence on the shape of Bn (rd), but not the magnitude.

4) Normalized Spectral Density— : Another option is to normalize the 

spectral density Φs such that . In this case, the function takes the form of a 

Pearson distribution type VII:

(13)

The advantage is that the spectral density is never unbounded for any value of D. One 

disadvantage is that because Φs is a probability function, it has no dependence on the 

variance of refractive index . This choice of normalization requires D > 1 and has zeros, 

singularities, or is indeterminate at rd = 0 for values of D = 2, 3, 4.

5) Rayleigh Scattering Normalized—

(14)

Another option is to normalize such that the scattering coefficient µs converges to the same 

value for any value of D in the Rayleigh limit where Ln ≪ λ. This is appealing in that as the 

correlation function becomes much smaller than the wave-length, there should not be any 

dependence of the shape of the correlation function (or particle). This normalization is then 

equivalent to saying that all small particles look the same to long waves and scattering 

depends only on the mean free path independently of the shape of the correlation function. 

The disadvantage is that the scattering coefficient is indeterminate for values of D = 2, 4.

V. Calculating Optical Properties From Differential Scattering Cross Section

Armed with a method to calculate the differential scattering cross section per unit volume 

σ(θ, ϕ), we can calculate the optical parameters typically used to characterize a scattering 

medium. These parameters include the scattering coefficient µs = 1/ls which is the inverse of 

mean free path ls. The scattering coefficient is equal to the total scattering cross section per 

unit volume and is easily obtained by integrating,

(15)

The anisotropy coefficient g = 〈cos θ〉 is the average of the cosine of the scattering angle,

(16)

Anisotropy determines the degree to which scattering is forward directed where g = 1 

corresponds to completely forward scattering, 0 < g < 1 corresponds to scattering that is 

forward directed, and g = 0 corresponds to isotropic scattering. Another parameter 
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commonly used to describe media such as tissue that are typically strongly forward 

scattering with values of g ≈ 0.9 is the reduced scattering coefficient, Also of interest is the 

backscattering coefficient,

(17)

Also of interest is the backscattering coefficient,

(18)

When the WM model is used, these relationships can be calculated analytically in terms of 

the model parameters. This was shown by Sheppard [32] and later extended by Rogers et al. 

to include the effect of the dipole factor [31]. What is particularly interesting is the spectral 

relationship of the optical properties that can be readily measured. For example, the spectral 

dependence of  can be measured and then related to the model parameter D. For 

example, in biological tissue, the fact that g is large indicates that the medium contains 

structure large compared to the wavelength, or kLn ≫ 1. In this regime,  for D < 

4.

VI. Experimental Methods for Quantification of Model Parameters

There are a number of experimental methods capable of measuring scattering properties of 

tissue, for example, Goniometer, integrating sphere (with the IAD method), Confocal, OCT/

ISOCT, and P(rs)/EBS. Of these, the first two require significant tissue preparation to create 

a thin uniform slab of tissue that is then measured in transmission and reflection. Although 

Hall et al. showed that thicker tissue samples can be used if multiple scatting is corrected 

using MC [33], prepared tissue is still required. The remaining methods are attractive 

because they can be used in reflection and so have potential to be used in vivo. Jacques et al. 

recently demonstrated quantification of properties including  and anisotropy g using 

confocal and OCT methods [34]. As illustrated in Fig. 2, some methods such as EBS are 

particularly sensitive to the shape of σ(θ, ϕ) and, therefore, enable measurement of 

parameter D.

While EBS measurement of P(rs) provides an excellent quantification of tissue properties 

and demonstrates the advantages of a more complex 3 parameter model, one limitation is the 

assumption that the medium is statistically homogeneous. We know that tissue is often a 

layered medium, so methods capable of quantifying the optical properties locally at different 

positions and depths would be of great utility. One such method is based on OCT and allows 

assessment of properties in an imaging modality, a technique referred to as inverse 

spectroscopic OCT (ISOCT).

The unique advantage of ISOCT is that it is capable of imaging tissue structures in 3-D 

space, while simultaneously providing complete quantification of the optical properties and 

(by assuming the WM model) the correlation functional form [35], [36]. The depth resolving 

capability in OCT is realized by interferometry between the reference field and the sample 
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scattering field. The primary contrast is the coherent elastic scattering from the tissue 

heterogeneity on which the WM scattering model applies. In addition, OCT requires a 

broadband source to eliminate the 2π ambiguity, providing an opportunity to analyze the 

scattering spectrum from a scattering medium such as tissue.

The signal in OCT can be approximated to be proportional to the backscattering coefficient 

µb [see (18)]. Also the signal decay along the penetration depth is exponential and scales 

with µs. Thus, the OCT image intensity can be modeled as [35]

(19)

where I0 is the illumination intensity, r is the reflectance of the reference arm, L is the 

temporal coherence length of the source, z is the penetration depth, and the mean refractive 

index of the medium is 〈n〉 ≈ 1.38. Further, a short-time Fourier transform (STFT) can be 

performed to obtain the spatially resolved spectra, and thus, the wavelength dependence of 

µb and µs can be obtained. By combining the power law dependence of µb with the absolute 

values of µb and µs, the three parameters of the model An, D, and Ln can be determined [35]. 

This allows calculation of anisotropy factor g from (16).

Fig. 6 shows an example of imaging optical and physical properties in a stratified tissue. Fig. 

6(a) shows a traditional OCT image of rat buccal tissue. Three distinct layers can be 

identified: keratinized epithelium, stratified squamous epithelium, and submucosa. For each 

layer, we assume a statistically homogeneous scattering medium and then applied the 

ISOCT algorithm on each layer. Fig. 6(c) and (d) shows the capability of imaging D, the 

ratio of µb and µs, and the anisotropy factor g in a spatially resolved 3-D volume.

The advantage of ISOCT lies in the fact that the spatially resolved spectrum reflects the 

random interference of the scattering field within the resolution volume, even though the 

axial resolution was sacrificed by performing STFT due to the trade-off between the spectral 

bandwidth and temporal resolution. The random interference gives rise to the granular 

“speckle” pattern in the OCT B-scan image. On one hand, many treat OCT speckle as an 

artifact and developed various ways to eliminate it. On the other hand, speckle can be 

informative because the random interference can be modeled by Bn (rd) for structures even 

below the image resolution limit.

Consider a simple example where there are two reflective surfaces along the axial direction 

with position of zs and zs + Δz; the combined reflected field from these surfaces (E1 + E2) 

interferes with the reference field (Er) which is reflected by a mirror located at zr. For 

simplicity, we arbitrarily set all the reflectance values to unity. Thus, the interference part of 

the spectral intensity is written as

(20)

where k is the wave number, Re(·) indicates the real part of a complex number, and 

superscript * indicates the complex conjugate. The equation shows that interference between 

a reference and two reflections separated by a small phase difference (small z) creates 
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spectral oscillations modulated by a beat frequency determined by the two surface 

separation. When the separation is within the axial resolution, the OCT intensity profile 

cannot differentiate (resolve) any slight changes in separation. However, a change in the 

separation that is not resolved does change the spectra. In this way, spectral analysis 

provides more information about the statistical separation, which of course for a random 

medium is related to the correlation function Bn (rd).

Fig. 7 illustrates the concept by simulating OCT and ISOCT for the two surfaces. In one 

case, two surfaces were located 50 µm apart from the reference and separated by 100nm; in 

the second case, the separation was enlarged to 300 nm [see Fig. 7(a)]. The interference 

spectrum is simulated from 630 to 850 nm and the OCT A-line signal is reconstructed in 

Fig. 7(b). Further, the ISOCT spectra at z = 50 µm is numerically extracted by STFT and 

compared for the two cases in Fig. 7(c). It is clear that the conventional OCT A-line signal 

in Fig. 7(b) has almost identical form, while the beating spectra obtained in ISOCT shows 

the difference in these two cases. While the details for continuous media are more complex, 

this simple example illustrates the basic concept that small length scales need not be 

resolved to be quantified spectroscopically.

VII. Structural Length-Scale Sensitivity

One of the advantages of performing tissue characterization using optical spectroscopy is the 

ability to detect and quantify structures smaller than the diffraction limit, even though such 

structures cannot be resolved using conventional microscopy. This ability arises from the 

fact that scattering contrast is largely dependent on the spatial distribution of refractive index 

at structural length-scales smaller than the diffraction limit. Still, the question arises: which 

range of structural length-scales can optical spectroscopy sense?

While this problem appears straight-forward, the answer is complicated in part by the fact 

that there is a nonlinear relation between the spatial refractive index distribution nΔ(r⃗) and 

σ(θ). As a result, it is not possible to independently assess the contribution of different 

structural length-scales to σ(θ) in order to determine the sensitivity range. Instead, it 

becomes necessary to consider the interaction between structural length-scales of all sizes at 

once.

One way to approach such a problem is through the perturbation study first presented in 

[37]. Under this approach, we begin with a continuous random media specified by the WM 

model (other models or actual data can easily be considered as well). We then perturb the 

medium by convolving with a 3-D Gaussian function in order to remove small structural 

length-scales and observe how the scattering characteristics change in the perturbed 

medium. This approach treats a medium as “blurred” below a particular length scale and 

then determines the length for which a notable change in optical properties occurs.

Mathematically, the volume normalized Gaussian function can be expressed as

(21)
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where W is the full-width at half-maximum. Conceptually,G(r⃗) represents some process 

(e.g., drug treatment, carcinogenesis, etc.) which transforms the original medium by 

removing structures smaller than W.

Applying the convolution theorem, the modified medium can be expressed as

(22)

where 𝓕 indicates the Fourier transform operation and the superscript l indicates that lower 

spatial frequencies are retained. The autocorrelation of  is then [37]

(23)

where  is the power spectral density for  and can be expressed analytically as

(24)

While (23) has no closed-form solution, it can be evaluated numerically in order to observe 

the functional form.

Similarly, the upper bound of sensitivity can be determined by filtering larger structural 

length-scales. However, the upper bound is highly dependent on the shape of the correlation 

function, for example, on D in this model. Conceptually, the upper bound is related to the 

point at which the value of the correlation function is insignificant in the presence of the rest 

of the correlation function. This point depends on the magnitude of the function at small 

length scales. Further, introduction of large length scales that scatter significantly will 

always affect the scattering measurements, but their presence will also change the 

correlation function at all smaller length scales, and so cannot be considered a perturbation. 

It is therefore not particularly meaningful to characterize the upper limit.

A. Length Scale Sensitivity of EBS

As a demonstration of the shape of the functions described by (23) and (24), we begin with a 

general approximation of tissue structure using D = 3 (i.e., HG case) and Ln = 0.452 µm 

(chosen such that g = 0.9 at λ = 0.550 µm with 〈n〉 = 1.38). After perturbing this medium 

with Gaussian’s of different width, Fig. 8 shows the resulting change in shape of  and 

.

Under the structural length-scale perturbation analysis, we see a reduction in  at 

smaller values of rd as the width of G(r⃗) widens [see Fig. 8(a)]. The location at which 

 diverges from Bn (rd) occurs at ~ Wl. Conceptually, this indicates a loss of 

correlation at structural length-scales smaller than Wl. After Fourier transformation of 

 to obtain , this loss of short structural length-scales correlation corresponds to 

a reduction in scattered power at higher spatial light frequencies [see Fig. 8(b)].
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In order to relate the curves in Fig. 8 to observable light scattering characteristics, we first 

evaluate σ(θ, ϕ) according to (3) and then calculate µs, µb, g, and  according to (15)–(18). 

Fig. 9 shows the percent change in the four optical properties under the structural length-

scale perturbation analysis. Defining a 5% change level as the threshold for detecting an 

alteration in the measured optical properties, we find that µs is sensitive to length scales 

above 0.082 µm,  is sensitive above 0.029 µm, and µb is sensitive above 0.017 µm.

Next, we extend this analysis to quantify the sensitivity of the shape of P(rs). In order to do 

this, we performed a series of MC simulations using the open source code detailed in [38]. 

For these simulations, we implemented the modified scattering phase functions described by 

 and tracked the reflected intensity in bins from  to 5 with 0.005 

resolution.

Fig. 10 shows the shape of  calculated under the structural length-scale 

perturbation analysis. The curves are plotted as a function of the unitless  in order to 

isolate the change in shape from the change in . There is a prominent change in the shape 

of  for values of  less than 1. It is well known that within this regime 

 is extremely sensitive to the shape of the phase function [39]. We determine the 

structural length-scale sensitivity limit of  by finding the values of Wl for which 

the value of  at any  changes by more the 5%. Using this criterion, 

is sensitive to length scales above 0.018 µm.

A summary of the structural length-scale sensitivity of various scattering characteristics is 

shown in Table I. Assuming the best-case scenario of conventional optical microscopy with 

violet wavelength illumination (λ = 0.400 µm), the diffraction limit is at ~ λ/2 = 0.200 µm. 

In each case, quantification of the various scattering characteristics provides sensitivity to 

structures smaller than the diffraction limit.

To visualize the meaning of the length scale sensitivity, a continuous random medium that 

has a desired Bn (rd) can be generated using the method described by Capoglu [8]. Since 

conventional microscopy is diffraction limited, the microscopically measured medium 

would at best result in a blurred version of the actual medium with features on the order of 

λ/2. Fig. 11(a) provides a demonstration of the range of length scales that a conventional 

microscope would visualize for a single random medium realization. For this same 

realization, Fig. 11(b) shows the range of length scales that the EBS method would detect 

using a spatial resolution corresponding to the lower sensitivity of . While the EBS 

method does not directly resolve the smallest length scales, changes in the shape of 

 nonetheless provide a means to quantify fine structure that is not possible with 

standard imaging methods.

We note that the sensitivities provided in this section assume that the experimental 

instrument used to measure such scattering characteristics has sufficiently high signal-to-

noise ratio to distinguish a 5% change in value. Given a specific instrument noise level, the 
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analysis presented in this section can be repeated with a different threshold value to 

determine the structural length-scale sensitivity of that particular instrument.

In the above numerical analysis, we used a particular operation by convolving the medium 

with 3-D Gaussian function to smooth window. The rationale is that suppression of small 

length scales without otherwise altering the correlation functional form provides a 

reasonable comparison. However, it is not be the only way to introduce the perturbation. 

Other methods such as adding random noise or changing the functional shape may be more 

appropriate depending on the application and can be performed to assess the length scale 

sensitivity.

Experimental confirmation of the sensitivities provided in this section is dependent on the 

fabrication of a continuous medium model whose distribution of length-scales is well 

controlled. Such phantoms have proven difficult to construct. As such, in the following 

section, we use a superposition of polystyrene micro-spheres to simulate a power-law 

distribution of length-scales.

B. Length Scale Sensitivity of ISOCT

ISOCT can be used to measure the value of D by determining the power law dependence of 

µb on wavelength. In this case, the length scale sensitivity is not exactly the same as that of 

µb itself. If Bn (rd) is perturbed as before by removing small lengths scales, the value of µb 

drops quickly, but the spectral dependence changes more slowly requiring a change at 

slightly larger length scales to produce a measurable change in D using ISOCT, although 

other methods of measuring D may have different sensitivity.

To demonstrate this experimentally, a phantom study consisting of various sizes of 

polystyrene microspheres was designed to verify the nanometer scale sensitivity. The 

volume fraction of the spheres is a power law relationship with their diameters as in Fig. 

12(a). To determine the smallest length scale to which D measured with ISOCT is sensitive, 

a series of phantoms was constructed by successively excluding the smallest microspheres 

included in the previous phantom. For example, the first phantom (No.1) consisted of 

microspheres from 30nm to 1 µm. The second phantom (No. 2) consisted of microspheres 

from 40 nm to 1 µm by excluding 30 nm size spheres. The third phantom (No. 3) consisted 

of microspheres from 60 nm to 1 µm by excluding 30 and 40 nm spheres, and so on.

The values of D were measured with ISOCT and compared with Mie theory prediction as in 

Fig. 12(b). As expected, an increase in the measured value of D was observed as smaller 

sphere sizes were excluded. When 40 nm spheres were removed, D was measured to be 1.78 

± 0.06 compared to that from the first phantom (No. 1) 1.57 ± 0.04. The increase of 0.21 is 

above the experimental uncertainty of ±0.2 for measuring D, which corroborates that the 

perturbation at ≈40 nm can be detected by measuring D with ISOCT, a value well below the 

resolution limit for OCT. The error bars in Fig. 12(b) indicate the standard error for the 

measurements of a particular phantom, while the experimental uncertainty of ±0.2 

corresponds to the 90% confidence interval for linear regression described in earlier work 

[35].
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The pseudocolor encoded OCT images from above phantom studies demonstrated the 

advantages of the ISOCT method. While the conventional OCT B-scan images in Fig. 13(a) 

exhibit no discernible differences, the increase in D is readily appreciated for changes of 

length scale at 60 nm (No. 3) and 80 nm (No. 4) in Fig. 13(b). These phantoms also 

highlight the fact that Bn (rd) is a statistical property of the medium. Locally, voxels will 

have a deterministic correlation function that differs from adjacent voxels. The value of a 

particular pixel is not particularly meaningful. But upon averaging, the local correlation 

functions converge to the expected value. This is the reason for the spatial variation seen in 

the statistically homogeneous sphere suspension shown here. Spatial averaging results in 

more precise values, but at the cost of spatial resolution. Ideally, imaging is used as in Fig. 6 

to map tissue structure, and then, contiguous regions or layers are segmented to report 

average values of optical properties within a region or layer.

The nanometer scale sensitivity of ISOCT in biological tissue was previously demonstrated 

using scanning electron microscopy (SEM) [36]. As shown in Fig. 14(a), high-resolution 

SEM images were taken from ex vivo human rectal mucosa as well as ISOCT measurements 

shown in Fig. 14(b). Two types of tissue components were identified: epithelium (Epi) and 

lamina propria (LP). Magnified regions of each are shown in the insets. The image 

correlation functions calculated from these SEM image regions show that Epi has sharper 

functional form which coincides with increased presence of small features in Fig. 14(c). 

Meanwhile, ISOCT measured the depth dependent D and Ln can be plugged back in to Bn 

(rd) and plotted as in Fig. 14(d). Again, while SEM images do not represent refractive index, 

this comparison can only be made qualitatively. However, the result is in qualitative 

agreement with SEM findings: the Epi has a sharper correlation function than LP.

VIII. Conclusion

Models of light scattering in tissue are important for a number of applications including 

imaging, therapy, and diagnosis. Many models have been previously used with good 

success, the most common being the HG phase function. Several groups have shown 

evidence that tissue is organized in a way that can be described as a mass fractal. A model 

based on the WM correlation family has the advantage of being flexible and actually 

includes many previously used models as special cases.

The model is based on the weak scattering approximation (RGD) which allows a the 

intensity scattering function from random media to be calculated by taking the Fourier 

transform of refractive index correlation function. This approximation can be made for 

clouds of particles or continuous random media provided that the scattered field is weak 

compared to the incident field over paths longer than the distance over which the medium is 

correlated. Once the refractive index correlation function can be determined independently, 

models of scattering can be based on a true correlation function for tissue. However, when 

the function cannot be independently determined, the WM model may provide a good 

alternative.

Several experimental methods have been developed that employ the WM model to quantify 

the optical scattering properties. These methods are shown to be sensitive to length scales an 
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order of magnitude smaller than the diffraction limit. While these methods do not resolve 

length scales on the order of tens of nanometers, they do provide a means to quantify 

changes that occur in tissue at these lengths scales. This is of particular significance in 

diagnostic applications. For example, it is well known that morphological changes occur in 

tissue during carcinogenesis, but mounting evidence shows that these gross changes are 

presaged by subtle changes in ECM and chromatin organization [8].
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Fig. 1. 
A scanning electron microscope (SEM) image of colon biopsy showing some of the 

structural features ranging in size from tens of nanometers to tens of microns (top). The 

wide range of length scales present and the complex interconnected nature of the 

components mean that tissue is best modeled as a continuous random medium. Statistically, 

the scattering depends not on the exact arrangement of material, but instead on the 

correlation Bn (rd). By calculating the spectral density of the SEM (cropped to a square 

array), a medium can be constructed that has the same autocorrelation shape as the SEM and 
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is shown on the lower left. The WM model can be used to generate simulated media that 

have a very similar appearance, an example for D = 3.7 is shown on the lower right. This 

illustrates how a medium can be constructed with a given autocorrelation function, but the 

reader is cautioned that the SEM is not a measurement of refractive index and so direct 

comparison of the SEM autocorrelation and Bn (rd) shape would not be valid.
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Fig. 2. 
Example of experimental data that cannot be explained using the HG function. Radiative 

transport in rat lung tissue is measured with EBS to produce a probability distribution P (rs) 

of the entrance/exit separation of rays scattered in the tissue and eventually exiting. Two 

best fit models of P (rs) computed numerically using MC are also shown based on WM 

(blue solid) and the special case of D = 3 which is equivalent to the HG phase function 

commonly used to model tissue. Fitting with a two parameter HG function produces a poor 

fit to the small rs, while a three-parameter WM-based model results in an excellent fit to the 

experimental.
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Fig. 3. 
Comparison of the Mie solution for a suspension of microspheres to σ(θ, ϕ) calculated using 

the RGD approximation. The top two panels show the calculation for polystyrene 

microspheres in water and while the 100 nm diameter spheres (upper left) show good 

agreement, the approximation breaks down for 400 nm spheres (upper right). However, 

when the index contrast is low n1/n0 = 1.02 as in the bottom row, the agreement holds for 

400 nm spheres (lower left) and even for large spheres of 3.0 µm (lower right). Calculations 

used a wavelength of 500 nm.
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Fig. 4. 
Examples of the WM function for different values of D normalized such that Bn (rd = Ln) = 

1. Inset shows the same functions on a log–log scale.
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Fig. 5. 
An example of the differential scattering cross section σ(θ, ϕ) for left to right propagating 

vertically polarized light. This example is computed using the WM function discussed below 

with parameter D = 3 in which case the shape around the equator (ϕ = 90°) corresponds to 

the HG phase function. The dipole factor produces the dimples oriented in the plane of the 

electric field polarization.
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Fig. 6. 
An example application of the model: The ISOCT method uses the model to quantify optical 

and ultrastructural properties in an image map from ex vivo rat buccal sample (adapted with 

permission from [35]). (a) Conventional OCT images. Three layers were labeled as (1) 

Keratinized epithelium, (2) stratified squamous epithelium, and (3) submucosa. (b)–(d) 

Pseudocolor ISOCT images encoded with D, µb/µs, and g. Bar = 200 µm.
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Fig. 7. 
Illustration of the advantage of spectral analysis in ISOCT. (a) One-dimensional two surface 

reflectance located at 50 µm from the reference. Case 1 (red): two surface separation is 100 

nm. Case 2 (blue): two surface separation is 300 nm. (b) Simulated OCT A-line intensity 

from two surface separation. (c) Spectral profile extracted at z = 50 µm by ISOCT (squares 

and triangles), and beating spectra from two surfaces in solid line.
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Fig. 8. 
Structural length-scale perturbation analysis for D = 3.0 and Ln = 0.452 µm (chosen such 

that g = 0.9 at λ = 0.550 µm with 〈n〉 = 1.38). (a) . (b) . Arrows indicate 

direction of increasing Wl.
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Fig. 9. 
% change in the scattering coefficients under the structural length-scale perturbation analysis 

for D = 3.0 and Ln = 0.452 µm at λ = 0.550 µm with 〈n〉 = 1.38. The dotted line indicates the 

5% change threshold.
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Fig. 10. 

Change in the shape of  under the structural length-scale perturbation analysis for 

D = 3.0 and Ln = 0.452 µm at λ = 0.550 µm with 〈n〉 = 1.38. Arrows indicate the direction of 

increasing Wl.
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Fig. 11. 
Rendering the continuous random media used in the structural length scale sensitivity 

analysis. (a) Medium realization with 1.4 NA microscope resolution at λ = 0.4 µm. (b) 

Medium realization corresponding to the sensitivity range of  (where pixel size 

corresponds to the sensitivity limit).
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Fig. 12. 
Sensitivity analysis for the dependence of the measured value of D on changes at 

subdiffractional length scales. Phantoms were made by mixing a suspension of microspheres 

spanning a range of diameters. (a) The volume fraction of each sphere size present in the 

suspension forms a power law relative to the diameters. (b) The measured value of D for 

each phantom is plotted against the value of the smallest sphere diameter present in that 

phantom. Error bars indicate standard error of measurements for each phantom. Value 

predicted using Mie theory is also shown. Adapted with permission from [36].
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Fig. 13. 
OCT and tomographic D maps from phantoms. Gray scale OCT image (a) and pseudocolor 

D map (b) in low length scale sensitivity studies. Bar = 200 µm. Adapted with permission 

from [36].
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Fig. 14. 
ISOCT measurement from human colon biopsy. (a) SEM image of a colon cross section. 

The resolution is 40 nm. Bar = 10 µm. (b) The ISOCT measurement on D ± SE and Ln ± SE 

as a function of penetration depth where SE is standard error. The boundary between the 

epithelial cells and the collagen network is around 50 µm from the surface. (c) and (d) A 

qualitative comparison between the correlation function obtained by the SEM image (c) and 

ISOCT (d). The 2-D image autocorrelation function (ACF) ±SE from SEM is calculated 

from different regions on the image with image dimension 5 × 5 µm. The ISOCT index 
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correlation functions were calculated using averaged value of D and Ln from Epi and LP to 

reconstruct Bn (rd). Epi: epithelium, LP: lamina propria. Adapted with permission from [36].
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TABLE I

Structural length-scale sensitivity of various scattering characteristics in continuous random media

Scattering characteristic Sensitivity limit (µm)

µs 0.082

0.029

µb 0.017

0.018
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