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HLA-DPB1 and HLA Class I Confer
Risk of and Protection from Narcolepsy

Hanna M. Ollila,1,24 Jean-Marie Ravel,1,24 Fang Han,2 Juliette Faraco,1 Ling Lin,1 Xiuwen Zheng,3

Giuseppe Plazzi,4,5 Yves Dauvilliers,6 Fabio Pizza,4,5 Seung-Chul Hong,7 Poul Jennum,8 Stine Knudsen,9

Birgitte R. Kornum,8,10 Xiao Song Dong,2 Han Yan,2 Heeseung Hong,1 Cristin Coquillard,11

Joshua Mahlios,1 Otto Jolanki,1 Mali Einen,1 Sophie Lavault,12 Birgit Högl,13 Birgit Frauscher,13

Catherine Crowe,14 Markku Partinen,15,16 Yu Shu Huang,17 Patrice Bourgin,18 Outi Vaarala,19

Alex Désautels,20 Jacques Montplaisir,21 Steven J. Mack,22 Michael Mindrinos,23

Marcelo Fernandez-Vina,11 and Emmanuel Mignot1,*

Type 1 narcolepsy, a disorder caused by a lack of hypocretin (orexin), is so strongly associated with human leukocyte antigen (HLA)

class II HLA-DQA1*01:02-DQB1*06:02 (DQ0602) that very few non-DQ0602 cases have been reported. A known triggering factor for

narcolepsy is pandemic 2009 influenza H1N1, suggesting autoimmunity triggered by upper-airway infections. Additional effects of other

HLA-DQ alleles have been reported consistently across multiple ethnic groups. Using over 3,000 case and 10,000 control individuals of

European and Chinese background, we examined the effects of other HLA loci. After careful matching of HLA-DR and HLA-DQ in case

and control individuals, we found strong protective effects of HLA-DPA1*01:03-DPB1*04:02 (DP0402; odds ratio [OR] ¼ 0.51 [0.38–

0.67], p ¼ 1.01 3 10�6) and HLA-DPA1*01:03-DPB1*04:01 (DP0401; OR ¼ 0.61 [0.47–0.80], p ¼ 2.07 3 10�4) and predisposing effects

of HLA-DPB1*05:01 in Asians (OR ¼ 1.76 [1.34–2.31], p ¼ 4.71 3 10�05). Similar effects were found by conditional analysis controlling

for HLA-DR and HLA-DQ with DP0402 (OR ¼ 0.45 [0.38–0.55] p ¼ 8.993 10�17) and DP0501 (OR ¼ 1.38 [1.18–1.61], p ¼ 7.113 10�5).

HLA-class-II-independent associations with HLA-A*11:01 (OR ¼ 1.32 [1.13–1.54], p ¼ 4.92 3 10�4), HLA-B*35:03 (OR ¼ 1.96 [1.41–

2.70], p ¼ 5.143 10�5), and HLA-B*51:01 (OR ¼ 1.49 [1.25–1.78], p ¼ 1.093 10�5) were also seen across ethnic groups in the HLA class

I region. These effects might reflectmodulation of autoimmunity or indirect effects of HLA class I andHLA-DP alleles on response to viral

infections such as that of influenza.
Introduction

Type 1 narcolepsy (MIM 161400) is a life-long disorder

characterized by sleepiness, cataplexy, and rapid-eye-move-

ment sleep abnormalities. Onset usually occurs in children,

adolescents, or young adults. The disease is caused by

the loss of hypocretin-producing cells in the lateral hypo-

thalamus.1 Narcolepsy is strongly associated with a specific

human leukocyte antigen (HLA) class II molecule, the

DQa0102–DQb0602 heterodimer (abbreviated DQ0602),

which is shared by 98% of narcoleptics across ethnic groups

and encoded by theHLA-DQA1*01:02~DQB1*06:02 haplo-

type.2,3 DQ0602 is present in 12%–38% of control individ-

uals across ethnic groups. Genome-wide association studies
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(GWASs) in narcolepsy have also found associations

with loci related to autoimmunity, such as T cell receptor

(TCR) loci (TRA [MIM 186880], TRB [MIM 186930]),

IL10RB [MIM 123889], IFNAR1 [MIM 107450], CTSH

[MIM 116820], P2RY11 [MIM 602697], and ZNF365 [MIM

607818].4–6 These results suggest autoimmune-mediated

hypocretin cell destruction that might involve antigen pre-

sentation by DQ0602 to CD4þ T cells.

In addition, narcolepsy has a strong environmental

component, and most monozygotic twins are discor-

dant.7 In children, where onset is often abrupt and more

easily documented, narcolepsy is highly seasonal in that

it peaks in the spring or summer.8 Onset follows upper-

airway infections, notably of influenza (MIM 614680) or
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Streptococcus pyogenes (MIM 607395), suggesting triggering

effects of infections.8,9

A 4- to 6-fold increase in childhood narcolepsy onset was

observed in the spring and summer of 2010, following the

2009 H1N1 swine pandemic flu in China.5,10 Further,

vaccination with Pandemrix, an AS03-adjuvanted pan-

demic H1N1 vaccine approved for use in Europe, was asso-

ciated with a 3- to 17-fold increased risk of developing

childhood narcolepsy in multiple countries, leading to

increased incidence in Scandinavia.11–17 For unclear rea-

sons, increased risk of narcolepsy after the use of other

H1N1 vaccines has not been reported, and is unlikely to

be as strong as that following Pandemrix.18 These findings,

together with genetic evidence, suggest that narcolepsy is

an autoimmune disease affecting hypocretin neurons

and triggered by upper-airway infections.

Because of close physical proximity and a high degree of

linkage disequilibrium (LD) observed for the HLA-DRB1

(MIM 142857) and HLA-DQB1 (MIM 604305) loci, it is

difficult to assess additional effects of HLA-DR on suscepti-

bility independently of HLA-DQ. In most ethnic groups,

DQ0602 is exclusively associated with HLA-DRB1*15:01,

but studies in Chinese and African Americans, two popula-

tions where LD between these two alleles is lower, demon-

strate that the association is primarily with DQ0602.3,19

Other minor associations have been reported for the DR

locus (e.g., for rare HLA-DRB1*04 subtypes20–23) but have

never been confirmed on a large scale and across multiple

ethnic groups.

Confirming the importance of HLA-DQ, additional HLA-

DQ haplotypes consistently affect narcolepsy susceptibility

when observed in trans of the major susceptibility haplo-

type HLA-DQA1*01:02~DQB1*06:02. Similar trans hetero-

dimer effects have been reported for other autoimmune

diseases, such as celiac disease (MIM 212750) and type 1

diabetes (MIM 222100).24–26 In almost all cases, trans hap-

lotypes that affect narcolepsy risk contain HLA-DQ alleles

that are similar to HLA-DQA1*01:02 or HLA-DQB1*06:02

and, as a result, can cross-heterodimerize with DQ0602.

Most notably, HLA-DQA1*01:01~DQB1*05:01, HLA-

DQA1*01:03~DQB1*06:03, and HLA-DQA1*01:03~DQB1*

06:01 are protective against narcolepsy, whereas DQ0602

homozygosity increases risk in all ethnic groups.2,3,22,26–

29 We postulate that this is due to allele competition, a

model where risk is proportional to the amount of

DQ0602 available and its unique ability to present a puta-

tive autoantigen.3,26 The model also predicts that any

minor change in the DQ0602 antigen binding groove abol-

ishes predisposition.

In addition to affecting allele competition, HLA-DQB1*

03:01 increases narcolepsy susceptibility when present in

trans of DQ0602,3,22,26,27,29 an effect unlikely to be ex-

plained by allele competition given that HLA-DQB1*

03:01 does not heterodimerize with HLA-DQA1*01:02

and thus should not affect DQ0602 dosage.30 Unlike

DQ0602 dosage, HLA-DQB1*03:01 also strongly reduces

age of onset,2,5 suggesting that it acts through a different
The Amer
mechanism, for example, development of the TCR

repertoire.

The strong and consistent association between narco-

lepsy and HLA-DQ has obscured studies of other HLA

loci, such as HLA class I loci and other class II loci,

including HLA-DP. Additional HLA class I effects have

been reported in many HLA-class-II-associated diseases,

suggesting an involvement of CD8þ T cells. For example,

celiac disease and type 1 diabetes have weak HLA class I as-

sociations after HLA class II subtypes are controlled for.

Type 1 diabetes also shows specific effects of HLA-DRB1*

04 subtypes in the presence of the same HLA-DQ hete-

rodimer in Japan.31 More recently, HLA-DPA1 (MIM

142880) and HLA-DPB1 (MIM 142858) have been associ-

ated with several autoimmune diseases primarily asso-

ciated with HLA-DR or HLA-DQ, such as type 1 diabetes,

multiple sclerosis (MIM 126200),32,33 anti-glomerular

basement membrane disease (MIM 233450),34 and myas-

thenia gravis (MIM 254200).35 Of notable interest are as-

sociations between HLA-DP and both influenza vaccine

responses36 and chronic viral infections, notably of hepati-

tis B virus.37,38 To address the predisposition of HLA loci

other than HLA-DQ in narcolepsy, we performed high-res-

olution class I and class II typing in HLA-DQ-matched nar-

coleptics versus control individuals and used imputation

to replicate and extend our findings.
Material and Methods

HLA Typing and Selection of Samples
All narcolepsy-affected individuals were HLA-DQB1*06:02 posi-

tive and had clear-cut cataplexy or documented low hypocretin-

1 in the cerebrospinal fluid.5,39,40 A subset of samples of Asian

and white ethnicity (590 case and 692 control individuals) and

sourced from the Stanford Center for Narcolepsy database were

typed with deep sequencing (HLA-DRB1, HLA-DQA1, and HLA-

DQB1) and IMGT/HLA Database version 3140.41 With this infor-

mation, a matched set of case and control individuals who shared

the same ethnicity, country of origin, and HLA-DQA1 and HLA-

DQB1 genotypes were selected, resulting in 322 case and 322 con-

trol individuals. For analysis of other loci, we further matched for

HLA-DRB1, resulting in 304 case and 304 control individuals.

These individuals were then typed for HLA-A (MIM 142800),

HLA-B (MIM 142830), HLA-C (MIM 142840), HLA-DPA1, and

HLA-DPB1 with the Luminex xMAP Technology at Stanford Med-

ical School Blood Center. This sample constituted the HLA-typed

matched set.

Two other cohorts, one white and one Chinese, were also

included in the analysis, but in these cases HLA genotypes were

imputed fromHLA region SNP data. These cohorts did not overlap

the 644 HLA-typed samples and constituted the HLA-imputed

matched set. The white matched sample was selected among

1,540 case and 10,421 control individuals.39 Samples included

previously published subjects sourced from the Stanford Center

for Narcolepsy database and worldwide collaborators.39 DNA sam-

ples were genotyped on the Illumina ImmunoChip array at the

University of Virginia and Stanford University. UCSC Genome

Browser hg18 mapping was used as a reference. Illumina manifest

file Immuno_BeadChip_1149691_B.bpmwas used in the majority
ican Journal of Human Genetics 96, 136–146, January 8, 2015 137



of cases. In cases where file Immuno_BeadChip_11419691_A was

used, map positions were converted to be consistent with

1149691_B or were omitted from the analysis. Genotypes were

called with Illumina GeneExpress (Illumina GenomeStudio

GenTrain2.0 algorithm) with extensive additional curation.39 In-

dividuals with a call rate under 0.98 (147 case and 123 control in-

dividuals) and samples that were related (bp > 0.2) were excluded

from further analysis. Data from all sources were merged in for-

ward-strand format. Using the PLINK suite of software,42 we iden-

tified 142,054 high-quality SNPs with a call rate above 0.99 (in

both case and control individuals separately) and passing Hardy-

Weinberg equilibrium (HWE) filtering in control individuals (p

> 1 3 10�5). Principal-component analysis for population stratifi-

cation for this data set is shown in Figure S1.

The Chinese sample included a total of 1,189 narcolepsy sub-

jects, 1,1365 of whom were seen at the sleep laboratory of Peking

University People’s Hospital; this unit in the Department of Pul-

monary Medicine evaluates patients with sleep disorders and re-

ceives referrals from all over China. In addition, 51 Asian samples

came from Taiwan (Dr. Huang, National Taiwan University), and

two came from Stanford. The individuals had hypocretin defi-

ciency or clear-cut cataplexy and HLA-DQB1*06:02. Affected sub-

jects were mostly of Han descent (0.87) and from North China

(0.85). The majority of the subjects were male (0.67) and children

(0.70). Control genotypes from China came from university em-

ployees and students (0.41 male). In addition, we had shared con-

trol individuals from GWASs underway for colon cancer (MIM

114500) and Sjögren syndrome (MIM 270150). The Chinese

data set was genotyped on the Affymetrix Axiom CHB (Han Chi-

nese in Beijing, China) array. Genotypes were called with the Affy-

metrix Genotyping Console. Individuals who had a call rate <

0.95, were outliers after principal-component analysis (n ¼ 47),

or were related (n ¼ 53) were removed, leaving 1,189 case and

1,997 control individuals. For the main association study, we

selected SNP variants with a minor allele frequency (MAF) R

0.01, a call rateR 0.90, and a HWE p valueR 0.001 in control in-

dividuals. Principal-component analysis for population stratifica-

tion for this data set is shown in Figure S1.
Ethics Statement
Informed consent in accordance with governing institutions was

obtained from all subjects. The research protocols were approved

by institutional-review-board panels on medical human subjects

at StanfordUniversity and the Beijing University People’s Hospital.
HLA Imputation in Samples with GWAS Data
HLA imputation for HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-

DQA1, HLA-DQB1, HLA-DPA1, and HLA-DPB1 was performed

with the HIBAG package in R version 3.1.1 (July 10, 2014).43

HIBAG is an HLA-imputation tool that uses attribute bootstrap ag-

gregation of several classifiers (SNPs) to select groups of SNPs that

predict HLA type.44 For the ImmunoChip cohort, the imputation

was performed with the European- and ImmunoChip-specific

models from HIBAG. Imputation accuracy was verified by high-

resolution typing in 177 individuals, resulting in imputation accu-

racy of 0.98 in HLA-A, 0.97 in HLA-B, 0.98 in HLA-C, 0.96 in HLA-

DRB1, 1.00 in HLA-DQA1, 1.00 in HLA-DQB1, 1.00 in HLA-DPA1,

and 0.92 in HLA-DPB1. The lower imputation quality of HLA-

DPB1 was due to incorrectly imputed HLA-DPB1*20:01, HLA-

DPB1*23:01, and HLA-DPB1*06:01 genotypes, which were rare.

Because HIBAG did not have built-in haplotypes for HLA-DPA1,
138 The American Journal of Human Genetics 96, 136–146, January 8
we first built a model for HLA-DPA1 by using the type 1 diabetes

consortium sample that had SNP and HLA information for 5,191

individuals from the SNP2HLA package.45,46

For the Chinese cohort, the Affymetrix CHB-specific chip refer-

ence panel was used for all loci but HLA-DPA1, for which a refer-

ence panel was built with HIBAG and publicly available Singapore

Genome Variation Project (SGVP) data. One hundred Han Chi-

nese individuals in SGVP have full 4-digit-level HLA typing and

GWAS data available for HLA-DPA1. Imputation was verified for

254 individuals in the HLA class II genes, and the quality was

high: 0.95 for HLA-DRB1, 0.94 for HLA-DQA1, and 0.98 for HLA-

DQB1. Allele frequencies were within normal ranges according

to dbMHC allele frequencies and earlier studies.47

Statistical Analysis
For stratified analysis, all samples were fully matched for country

of origin and HLA-DRB1, HLA-DQB1, and HLA-DQA1 genotypes

(for analysis of HLA class I and HLA-DP loci) or for country of

origin and HLA-DQB1 and HLA-DQA1 genotypes (for analysis of

the HLA-DR locus).

The analysis was carried out with carrier frequencies and the chi-

square test with package meta.MH in R version 3.1.1 (July 10,

2014).43 Regional association plots were drawn with locus

zoom.48 Sub-analyses of HLA loci were carried out with the

Mantel-Haenszel test and, in the case of the HLA-DP heterodimer

analysis, with a ‘‘one-by-one’’ sequential analysis that removed

the effect of the most significant variant. This latter technique is

similar to relative predisposition-effect statistics.49 Conditional an-

alyses were performed on the full data sets with PLINK versions 1.7

and 1.9.42 In the conditional analysis, individuals homozygous for

HLA-DQB1*06:02 were removed. Meta-analyses for conditional

analysis were performed with GWAMA.50 Nominal p values are

reported for associations with p< 0.0005 after a Bonferroni correc-

tion for 100 tests. Other significant p < 0.05 associations are

shown in Tables S1–S3, S4, S5, S6, S7 and S8, S9, S10–S16, and S17.
Results

HLA Class II Effects in HLA-DQ-Matched Narcolepsy

Case and Control Individuals Reveal Strong Effects of

HLA-DP

Genotype matching is the most conservative analytical

method. The analysis of HLA-DRB1 was done in an HLA-

DQ- and country-matched sample composed of 1,221

case and 1,221 control individuals. No residual HLA-DR as-

sociation with narcolepsy was seen, except for a nominal

association with HLA-DRB1*04:03 (Table S1). Because

HLA-DR and HLA-DQ display extremely high LD, all subse-

quent analyses were performed in a HLA-DRB1-, HLA-

DQA1-, andHLA-DQB1-matched sample for a total number

of 1,063 case and 1,063 control individuals.

The strongest findings were seen in the HLA class IIHLA-

DPB1 locus (Table 1), where HLA-DPB1*04:02 conferred a

strong protective effect against narcolepsy. In addition,

HLA-DPB1*05:01 increased the risk in Asians but not in

whites (Table 1). Nominally protective effects were seen

with HLA-DPB1*04:01 and HLA-DPB1*10:01 but not

with other DPB1 alleles (Table S2). A nominally significant

association was seen with HLA-DPA1*01:03 (Table S3).
, 2015



Table 1. Association between HLA-DPB1 Alleles and Narcolepsy

HLA-
DPB1
Allele

Asian White Mantel-Haenszel Test

No. of
Control
Subjects
(Freq)

No. of Case
Subjects
(Freq) OR (CI) p

No. of
Control
Subjects
(Freq)

No. of Case
Subjects
(Freq) OR (CI) p OR (CI) p

p Heterogeneity
Test

04:02 49 (0.112) 23 (0.052) 0.44
(0.26–0.74)

0.0014 114 (0.29) 66 (0.17) 0.50
(0.35–0.70)

4.98
3 10�5

0.50
(0.38–0.66)

6.105
3 10�07

0.914

05:01 236 (0.538) 295 (0.67) 1.76
(1.34–2.32)

4.71
3 10�5

34 (0.09) 30 (0.08) 1.29
(0.86–1.92)

0.221 1.48
(1.17–1.88)

0.001 0.106

Case and control individuals were matched for HLA-DRB1, HLA-DQA1, and HLA-DQB1 alleles and for country and ethnicity. The p values were calculated with the
Mantel-Haenszel test. Abbreviations are as follows: CI, confidence interval; Freq, carrier frequency; and OR, odds ratio.
In order to form functional HLA-DPmolecules, the HLA-

DPa and HLA-DPb proteins (encoded by HLA-DPA1 and

HLA-DPB1, respectively) need to heterodimerize. Heterodi-

merization of HLA-DPa and HLA-DPb can occur in cis (on

the same haplotype) or in trans (encoded by different chro-

mosomes), provided that HLA-DPa and HLA-DPb are bio-

chemically compatible. HLA-DPA1 and HLA-DPB1 encode

distinct amino acid motifs in the peptide-binding region,

and polymorphisms at these positions determine which

peptides can be bound by specific HLA-DP a and b sub-

types and how they are presented to T cells (the so-called

peptide-binding repertoire). To examine for potential ef-

fects in both cis and trans, we next performed stepwise

analysis of HLA-DPA1-DPB1 heterodimers.

HLA-DPB1*04:02 is in high LD with HLA-DPA1*01:03,

whereas HLA-DPB1*05:01 is in LD with HLA-DPA1*

02:02. However, HLA-DPB1*05:01 is also seen in cis with

HLA-DPA1*02:01.47,51 We thus tested a stepwise associa-

tion of all possible heterodimers at the HLA-DP locus

with narcolepsy across all samples. In the first pass anal-

ysis, HLA-DPA1*01:03-DPB1*04:02 (DP0402), followed by

protective association with HLA-DPA1*01:03-DPB1*04:01

(DP0401), was most significantly associated with narco-

lepsy (Table 2). In addition, nominally significant associa-

tions were seen with HLA-DPA1*02:02-DPB1*19:01 and

HLA-DPA1*02:02-DPB1*05:01 (DP0501) (Table 2).

In narcolepsy, the largest risk is seen in individuals ho-

mozygous for HLA-DQB1*06:02 or heterozygous for HLA-

DQB1*03:01 and HLA-DQB1*06:02. The next largest risk

is seen in individuals who are heterozygous but have

neutral alleles on the other chromosome, whereas those

who carry HLA-DQA1*01 that is not HLA-DQA1*01:02 in

trans of HLA-DQB1*06:02 are relatively protected.26 In a

final analysis, we tested whether the effect size of HLA-

DP was affected by the HLA-DQ risk groups by dividing

the sample into groups according to these previously

known HLA-DQ risk subgroups.22,26 The effects of HLA-

DP did not differ across risk groups (Table S4).

Weak HLA Class I Associations in HLA-Class-II-

Matched Narcolepsy Case and Control Individuals

We finally analyzed the effect ofHLA-A,HLA-B, andHLA-C

loci in HLA-DR- and HLA-DQ-matched subjects (Tables S5,
The Amer
S6, and S7). Nominally significant associations were seen

with HLA-A*02:07 (odds ratio [OR] ¼ 1.66 [1.01–2.74],

p ¼ 0.046), HLA-A*03:01 (OR ¼ 0.79 [0.64–0.97], p ¼
0.024), HLA-A*11:01 (OR ¼ 1.43 [1.15–1.78], p ¼ 0.001),

HLA-A*29:02 (OR ¼ 0.50 [0.30–0.85], p ¼ 0.008), HLA-B*

35:03 (OR ¼ 2.30 [1.27–4.18], p ¼ 0.005), HLA-B*40:02

(OR ¼ 0.54 [0.34–0.87]), HLA-B*41:02 (OR ¼ 0.14 [0.02–

1.15], p ¼ 0.33), HLA-B*44:03 (OR ¼ 0.55 [0.38–0.81], p

¼ 0.002), HLA-B*44:05 (OR ¼ 0, p ¼ 0.025), HLA-C*

05:01 (OR ¼ 0.73 [0.54–0.99], p ¼ 0.044), HLA-C*14:03

(OR ¼ 0.38 [0.15–1.01], p ¼ 0.044), and HLA-C*16:01

(OR ¼ 0.42 [0.24–0.74]). Similar effects were also found af-

terHLA-DPwasmatched between case and control individ-

uals for the potential effect of extended haplotypes (Tables

S8, S9, and S10).

Conditional Analysis Confirms Independent HLA-DP

and Class I Effects

In order to study which HLA-DR and HLA-DQ alleles pre-

dispose to narcolepsy in the ImmunoChip and Asian

data sets, we first performed stepwise analysis of HLA-

DRB1, HLA-DQB1, and HLA-DQA1 loci in whites and

Asians. As expected, we saw a strong predisposing effect

of the known narcolepsy risk locus HLA-DQB1*06:02 in

whites and Asians (Tables S11 and S12). Similarly strong as-

sociations were seen with HLA-DRB1*15:01, which is in

strong LD with HLA-DQB1*06:02, and with HLA-DQA1*

01:02, which is always present in HLA-DQB1*06:02 haplo-

types but is also found in other haplotypes. Figure 1A also

shows GWAS data in the HLA region of whites (from Im-

munoChip, see Faraco et al.39) and Asians (from Affyme-

trix CHB data, see Han et al.5) and a large association

with the HLA-DR-DQ region, which obscured all other

signals.

We next performed stepwise conditioning with HLA-

DQB1*06:02 to examine the effects of other HLA-DRB1,

HLA-DQA1, and HLA-DQB1 alleles. We did this after

excluding subjects homozygous for HLA-DQB1*06:02.

The HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci were

analyzed independently. As previously reported in multi-

ple studies,2,3,22,27–29 we detected risk groups of HLA-

DRB1, HLA-DQA1, and HLA-DQB1 associations known to

act in trans of HLA-DRB1*1501~DQA1*01:02~DQB1*
ican Journal of Human Genetics 96, 136–146, January 8, 2015 139



Table 2. Association between DPA1-DPB1 Heterodimers and Narcolepsy in Stepwise Analysis

HLA-DPA1-DPB1
Heterodimer

No. of Control
Subjects (Freq)

No. of Case
Subjects (Freq)

Mantel-Haenszel Test

OR (CI) p
p Heterogeneity
Test

01:03-04:02 160 (0.15) 88 (0.083) 0.51 (0.38–0.67) 1.01 3 10�06 0.852

01:03-04:01 516 (0.58) 459 (0.52) 0.61 (0.47–0.80) 2.07 3 10�04 0.342

02:02-19:01 7 (0.020) 0 (0.00) 0 (0.00–NA) 0.008 NA

02:02-05:01 193 (0.57) 218 (0.64) 1.41 (1.02–1.95) 0.039 0.387

The p values were calculated with the chi-square test andMaentel-Haenszel test. The p heterogeneity test is Breslow-Day’s p value. Abbreviations are as follows: CI,
confidence interval; Freq, carrier frequency; NA, not available (the exact OR or p value could not be calculated); and OR, odds ratio.
06:02: (1) a set of protective alleles (HLA-DRB1*13:01,

HLA-DRB1*01:01, HLA-DRB1*08:03, HLA-DQB1*05:01,

HLA-DQB1*06:03, HLA-DQA1*01:01, and HLA-DQA1*

01:03) in high LD with similar ORs in both ethnic groups

(Tables S11 and S12); (2) additional predisposing effects

of HLA-DQA1*01:02-bearing haplotypes (HLA-DQA1*

01:02 and HLA-DQB1*05:02 in whites and HLA-DQA1*

01:02 in Asians); and (3) additional predisposing effects

of HLA-DQB1*03:01-bearing haplotypes (Tables S11 and

S12). These effects are well established and are consistent

with the effect of trans-heterodimerization of DQ1 alleles

on DQ0602 and an additional effect of HLA-DQB1*03:01.

In addition, nominally significant effects were seen with

HLA-DQB1*02:02, HLA-DQB1*04:02, and HLA-DQB1*

03:02 (Tables S11 and S12).

Associations were next conditioned on all significantly

associated HLA-DR and HLA-DQ alleles and SNPs. As seen

from residual HLA association effects, HLA-DPB1*04:02

was again highly protective in both whites and Asians (Ta-

ble 3). Similarly, HLA-DPB1*05:01 also showed significant

predisposing effects in narcolepsy (Table 3). Furthermore,

HLA-DPB1*02:01 was found as an additional association

(Table 3; Tables S13 and S14). Figure 1B also shows GWAS

data in the HLA region of whites (from ImmunoChip, see

Franco et al.39) and Chinese (from Affymetrix CHB data,

see Han et al.5) after conditioning for HLA-DR and HLA-

DQ; it shows large residual association in the HLA-DP re-

gion and a main effect of HLA-DPB1*04:02.

In a final analysis, we examined HLA class I associations

after conditioning on all identified HLA class II (HLA-DR,

HLA-DQ, and HLA-DP) effects. Statistically significant pre-

disposing associations were seen with HLA-B*51:01, HLA-

B*35:03, HLA-B*18:01, HLA-C*04:01, and HLA-A*11:01,

whereas HLA-B*07:02 was protective (Table 4; Tables S15

and S16). Of special interest were associations with HLA-

A*11:01, HLA-B*51:01, and HLA-B*35:03 because these

were in the same direction across ethnic groups, a finding

more suggestive of a direct effect.

Figure 1C shows GWAS data for whites after condition-

ing for all class II (HLA-DR, HLA-DQ, and HLA-DP) effects;

it shows complex residual association effects in the class I

region. A common association is noted in both ethnic

groups in the HLA-B region. In addition, a large associa-

tion, peaking at rs2523882A (OR ¼ 1.41 [1.26–1.57], p ¼
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7.423 10�10), is noted in whites in the PSORS1 region. Sur-

prisingly, several CHB panel SNPs with high LD with

rs2523882 in Chinese were either weakly (rs2517474G,

OR ¼ 0.78 [0.64–0.96], p ¼ 0.016) or not associated

(rs3132564, rs62399065, and rs9263475). Because SNP

coverage in this region is vastly superior in the Immuno-

Chip than in the CHB chip, additional fine typing will be

needed to extend this observation.

Variation at the Amino Acid Level

In order to study whether amino acid polymorphisms

across different HLA subtypes could affect the predisposi-

tion to narcolepsy, we imputed all amino acid polymor-

phisms in HLA alleles encoded by the different HLA-A,

HLA-B, HLA-C, HLA-DPA1, and HLA-DPB1 loci and per-

formed association testing in the typed and imputed data

sets that had been matched for HLA class II and country

of origin.

At HLA-DPB1, no independent amino acid was associ-

ated with narcolepsy. At HLA-DPA1, Ala11 and Gln50

were weakly protective (OR ¼ 0.65 [0.47–0.86], p ¼
0.0029, and OR ¼ 0.68 [0.52–0.88], p ¼ 0.0035, respec-

tively), and these effects recapitulated effects of the protec-

tive HLA-DPA1*01:03 allele. These two HLA-DPA1 amino

acids are present together in HLA-DPA1*01:03, the most

frequent HLA-DPA1 allele, which is protective in the

context of HLA-DPA1*01:03-DPB1*04:02 and HLA-DPB1*

04:01. The lack of strong association with individual

HLA-DPB1 amino acids suggests that larger binding motifs

underlie the association with narcolepsy.

In the class I region, we found that HLA-A Tyr9 showed

the strongest association with narcolepsy (OR ¼ 1.35,

[1.13–1.62], p ¼ 0.0012), whereas only weak associations

were seen with other amino acids. Interestingly, the predis-

posing HLA-A*11:01 allele has this polymorphism, and it is

also found in HLA-A*25:01, which was detected with the

conditional analysis.

Finally, we performed stepwise analysis with all class I al-

leles andHLA-ATyr9 in thematched data set in order to see

which alleles were driving the associations. The associa-

tions were nominally significant, and the strongest associ-

ation was seen with HLA-C*16:01, followed by HLA-A*

11:01, which explained in the stepwise analysis most of

the HLA Tyr 9 association that was not significant after
, 2015
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Figure 1. Association between HLA Loci and Narcolepsy
(A) Association of SNPs in the HLA region (Chr6: 29–36 Mb) reveals an overwhelming signal peaking at the level of HLA-DQB1 in white
(from Immunochip, see Faraco et al.39) and chinese (fromAffymetrix CHB data, see Han et al.5) individuals. Extended LD and association
signal within the HLA-DR-DQ region obscure all other signals.
(B) After conditioning for HLA-DRB1,HLA-DQA1, and HLA-DQB1 (significant alleles from the stepwise analysis), a residual association is
seen in the HLA-DP region.
(C) After conditioning for all significant HLA class II alleles, a remaining association is seen in the HLA class I region and is most visible
proximal to HLA-B. A possible additional peak is seen in white individuals only in the vicinity of PSORS1.
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Table 3. Association of HLA-DPB1 Alleles after Conditioning for HLA-DRB1, HLA-DQA1, and HLA-DQB1 Effects

ImmunoChip Chinese GWAS Meta-analysis

HLA-
DPB1
Allele

No. of
Control
Subjects
(Freq)

No. of
Case
Subjects
(Freq) OR (CI) p

No. of
Control
Subjects
(Freq)

No. of Case
Subjects
(Freq) OR (CI) p OR

p
Meta-analysis I2

04:02 2,298
(0.22)

138
(0.090)

0.47
(0.38–0.58)

7.15 3 10�13 258 (0.13) 57 (0.048) 0.38 (0.24–0.59) 1.64 3 10�05 0.45
(0.38–0.55)

8.99 3 10�17 0

02:01 2,527
(0.24)

347
(0.23)

1.39
(1.20–1.60)

1.14 3 10�05 776 (0.39) 640 (0.54) 1.14 (0.93–1.39) 0.2037 1.30
(1.15–1.46)

1.74 3 10�05 0.584

05:01 400
(0.038)

113
(0.073)

1.43
(1.08–1.89)

0.0123 1,187 (0.59) 776 (0.65) 1.35 (1.12–1.64) 0.00186 1.38
(1.18–1.61)

7.11 3 10�05 0

Abbreviations are as follows: CI, confidence interval; I2, heterogeneity in the meta-analysis as described in Higgins et al.60 (0 means no heterogeneity); and OR,
odds ratio.
removal of the HLA-A*11:01 carriers. Similar to the condi-

tioned analysis, nominally significant associations were

also seen with HLA-B*35:03, HLA-B*41:02, and HLA-B*

51:01 (Table S17).
Discussion

In this study, we discovered HLA risk loci and protective

variants for narcolepsy. These effects were independent

of the well-established HLA-DQ effects in narcolepsy. The

strongest protection was seen with HLA-DPB1*04:02

across all ethnic groups and data sets. Further, HLA-

DPB1*05:01 predisposed to narcolepsy independently of

HLA-DPB1*04:02 in Chinese individuals, where it is a

common allele, confirming a recently published study in

Japanese subjects.52 In addition, predisposing HLA class I

associations were seen with HLA-A*11:01, HLA-B*35:03,

and HLA-B*51:01 across ethnic groups, although these

effects were much weaker than HLA-DP effects. Finally, a

possible remaining signal not explained by classic HLA

gene polymorphisms was found near PSORS1 in the class

I region of white subjects.

Our strongest findings indicate an independent role

for HLA-DP molecules in narcolepsy susceptibility. In nar-

colepsy, the effect of heterodimerization of HLA-DQA1

and HLA-DQB1 is well established.26 In HLA-DP, there

are only three common HLA-DPA1 genes that have very

conserved haplotypes with HLA-DPB1. Analysis of possible

cis (in the same haplotype) and trans (on the other chro-

mosome) heterodimers revealed that the most protective

heterodimer was HLA-DPA1*01:03-DPB1*04:02, whereas

HLA-DPA1*02:02-DPB1*05:01 conferred the largest risk.

These haplotypes were observed in cis, and the analysis of

trans associations did not improve statistical significance.

The HLA-DP loci are important in the development of

autoimmune diseases such as multiple sclerosis (MS),32,53

sarcoidosis (MIM 181000),54 and type 1 diabetes.33 Similar

to in our findings, HLA-DPB1*04:02 has been shown to be

protective against type 1 diabetes and sarcoidosis,33,54

whereas HLA-DPB1*05:01 has been associated with
142 The American Journal of Human Genetics 96, 136–146, January 8
increased risk of MS.53,55 In addition, HLA-DPB1*05:01

has been associated with non-clearance of viral infections

such as that of chronic hepatitis B, whereas similar to in

our study, HLA-DPB1*04:02 is protective against this con-

dition.38

The specific disease mechanisms underlying this new

HLA-DP association in narcolepsy remain elusive. Narco-

lepsy was recently associated with pandemic H1N1 2009

vaccination11–17 and infections.8,10 In addition, strepto-

coccal antibodies were found more frequently in narcolep-

tics than in matched healthy control individuals.9 These

findings suggest that environmental triggers, such as up-

per-airway winter infections, are strong effectors in the

development of narcolepsy. It is thus interesting to specu-

late that the presence of HLA-DP risk alleles, such as HLA-

DPB1*05:01, results in lower viral clearance or immune

response, whereas the opposite might occur with protec-

tive alleles, such as HLA-DPB1*04:02. In this model, a

lower clearance of the viral trigger could be critical to

the development of autoimmunity. HLA-DPB1*05:01

has also been shown to be more common in individuals

who do not develop seroprotection after hepatitis B vacci-

nation.56

We also observed consistent associations of HLA class I

alleles HLA-A*11:01, HLA-B*35:03, and HLA-B*51:01 (pre-

disposing) after correction of all HLA class II effects, sug-

gesting an independent role for these HLA alleles. These

findings are similar to those found in other autoimmune

diseases, such as MS32,57,58 or type 1 diabetes,59 where

the main risk alleles are located in the HLA class II region

but residual association is seen in HLA class I. Of notable

interest is the fact that in type 1 diabetes, a disease where

HLA-DQB1*06:02 is strongly protective, opposite effects

to type 1 diabetes of HLA-A*11:01 are also seen in narco-

lepsy. HLA class I effects in these disease might suggest

the involvement of CD8þ T or natural killer cells, given

that these three alleles are also known killer cell immuno-

globulin-like receptor ligands.

To conclude, our findings suggest that the HLA associa-

tions in narcolepsy are more complex than previously

thought and show that important high-risk variants reside
, 2015
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The Amer
outside the known HLA-DR-DQ risk region, notably in the

HLA-DP region, where HLA-DPB1*04:02 and HLA-DPB1*

05:01 have strong effects. We found additional HLA class

I effects, some of which were most compatible with the

direct effect of specific HLA alleles, and others will need

further confirmation. Our study benefited from the evalu-

ation of two ethnic groups, formal HLA typing, and HLA

subtype imputation based on GWAS data. Combining

these methods is likely to reveal a more precise picture of

the role of the HLA region in autoimmune diseases such

as narcolepsy.
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