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Biased Allelic Expression in Human Primary
Fibroblast Single Cells

Christelle Borel,1,8 Pedro G. Ferreira,1,2,3,8 Federico Santoni,1 Olivier Delaneau,1,2,3 Alexandre Fort,4

Konstantin Y. Popadin,1 Marco Garieri,1 Emilie Falconnet,1 Pascale Ribaux,1 Michel Guipponi,1,5

Ismael Padioleau,1 Piero Carninci,4 Emmanouil T. Dermitzakis,1,2,3,6,7,* and
Stylianos E. Antonarakis1,2,5,*

The study of gene expression in mammalian single cells via genomic technologies now provides the possibility to investigate the pat-

terns of allelic gene expression.We used single-cell RNA sequencing to detect the allele-specificmRNA level in 203 single human primary

fibroblasts over 133,633 unique heterozygous single-nucleotide variants (hetSNVs). We observed that at the snapshot of analyses, each

cell contained mostly transcripts from one allele from the majority of genes; indeed, 76.4% of the hetSNVs displayed stochastic mono-

allelic expression in single cells. Remarkably, adjacent hetSNVs exhibited a haplotype-consistent allelic ratio; in contrast, distant sites

located in two different genes were independent of the haplotype structure. Moreover, the allele-specific expression in single cells corre-

lated with the abundance of the cellular transcript. We observed that genes expressing both alleles in the majority of the single cells at a

given time point were rare and enriched with highly expressed genes. The relative abundance of each allele in a cell was controlled by

some regulatory mechanisms given that we observed related single-cell allelic profiles according to genes. Overall, these results have

direct implications in cellular phenotypic variability.
Introduction

In diploid organisms, the mammalian transcription ma-

chinery has the choice of transcribing two alleles. Apart

from well-known exceptions in which one allele is known

to be exclusively expressed—such as in imprinted genes,1,2

X-linked genes,3,4 and genes with random ‘‘allelic exclu-

sion’’5–10—it is unclear whether ongoing transcription of

active genes in individual cells occurs simultaneously

from two alleles and whether the allele-specific mRNA

level is uniform in all cells.

Studies performed on multiple selected genes in various

cell types via RNA fluorescence in situ hybridization

suggest that only a fraction of alleles are actively tran-

scribed and associated with RNA polymerase II transcrip-

tion factories.11–17 Rare are the genes displaying two

detectable transcription spots in a large fraction of the

cells. Recent single-cell studies have described pervasive

random monoallelic expression of autosomal genes in

mouse embryonic progenitors and cultured adult murine

fibroblasts.18 Allele-biased expression at the single-cell

level in 15 single cells from Epstein-Barr-virus-trans-

formed human lymphoblastoid GM12878 cells was also

recently reported.19

To investigate the extent of allele-specific transcription

of autosomal human protein-coding genes, we used sin-

gle-cell RNA sequencing (RNA-seq) technology to study

203 single cells from two different human primary fibro-
1Department of Genetic Medicine and Development, University of Geneva, 1

1211 Geneva, Switzerland; 3Swiss Institute of Bioinformatics, 1211 Geneva, Sw

Technologies, Yokohama, Kanagawa 230-0045, Japan; 5Service of Genetic Med

Excellence for Genomic Medicine Research, King Abdulaziz University, Jeddah

Athens 11527, Greece
8These authors contributed equally to this work

*Correspondence: emmanouil.dermitzakis@unige.ch (E.T.D.), stylianos.antona

http://dx.doi.org/10.1016/j.ajhg.2014.12.001. �2015 by The American Societ

70 The American Journal of Human Genetics 96, 70–80, January 8, 20
blast cell lines. By analyzing informative single-nucleotide

variants (SNVs), we determined the relative mRNA abun-

dance of each of the two alleles. For most of the actively

transcribed genes, our results revealed that one allele was

predominantly detected in a single cell at a particular point

in time, whereas the second allele was at low levels or un-

detectable. We observed a stochastic process given that

equal numbers of single cells expressed one or the other

allele and a minority of single cells expressed both alleles.

Interestingly, we detected only a few genes with an equal

mRNA level from both alleles in all single cells. Detailed

genomic characterization of these ‘‘single-cell biallelic’’

genes revealed that they express high levels of mRNA in

a large number of cells. Our study allowed us to explore

the highly dynamic and stochastic nature of allele-specific

transcription of human autosomal genes.

Material and Methods

Samples
Human newborn primary fibroblast culture (female, UCF1014,

GenCord sample collection) was established from umbilical cord

tissue obtained from newborns of western European origin.20 Hu-

man fetal primary fibroblast culture (T2N) was derived from post-

mortem skin tissue obtained from ‘‘Twin 2 normal’’ fetuses

(16 weeks of gestation, female); see Dahoun et al.21 for details.

The study was approved by the ethics committee of the University

Hospitals of Geneva, and written informed consent was obtained

from both parents of each individual prior to the study.
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Cell Growth
Cells were cultured in Dulbecco’s modified Eagle’s medium Gluta-

MAX (Life Technologies) supplemented with 10% fetal bovine

serum (Life Technologies) and 1% penicillin-streptomycin-fungi-

zone mix (Amimed, BioConcept) at 37�C in a 5% CO2 atmo-

sphere. The day before the single-cell-capture experiment, cells

were trypsinized (0.05% trypsin-EDTA, Life Technologies) and re-

plated at a density of 0.3 3 106 cells per 100 mm dish.

Single-Cell Capture
Single-cell captures were performed on the C1 Single-Cell Auto

Prep system (Fluidigm) with the cell load script 1772x/1773x.

Trypsinized cells were counted and sized with the CASY 1 Cell

Counter þ Analyzer System (Shärfe System). The average size of

human primary fibroblasts was 20 mm (15–25 mm). A total of

4,500–6,000 dissociated live cells were loaded into the assay well

of a primed microfluidic array (C1 Single-Cell Auto Prep array for

mRNA sequencing [mRNA-seq, 17–25 mm], 96 chambers, Fluid-

igm) according to the manufacturer’s protocol. After 30 min of

capture procedure, we visualized one by one the 96 chambers by

using an inverted phase contrast microscope to annotate the con-

tent of the chambers. Only the chambers containing one individ-

ual cell were selected. Chambers containing debris or damaged

cells were excluded from this analysis.

cDNA Synthesis and Pre-amplification of Single Cells
We performed all cDNA preparations on the C1 single-cell array

for mRNA-seq with the C1 Single-Cell Auto Prep system (Fluid-

igm). We used the SMARTer Ultra Low RNA Kit for Illumina

Sequencing (Clontech) for the cell lysis and cDNA synthesis

according to the manufacturer’s procedure. As recommended, we

used the oligo(dT) 30SMART CDS primer IIA to select for polyAþ

RNA in a single-cell sample. No RNA extraction was performed;

cDNA synthesis was coupled to the cell-lysis procedure. cDNA

from single cells was pre-amplified with the Advantage 2 PCR Kit

(Clontech) according to the manufacturer’s protocol. We used

two different scripts: the standard mRNA-seq prep script (1772x/

1773x, Fluidigm) and a modified version with 12 cycles for the

PCR step instead of 22 cycles. The standard mRNA-seq prep script

(22 cycles) was as follows: lysis at 72�C (3 min), 4�C (10 min), and

25�C (1 min); reverse transcription at 42�C (90 min) and 70�C
(10 min); and PCR at 95�C (1 min), five cycles at 95�C (20 s),

58�C (4 min), and 68�C (6 min), nine cycles at 95�C (20 s), 64�C
(30 s), and 68�C (6 min), seven cycles at 95�C (30 s), 64�C (30 s),

and 68�C (7 min), and a hold at 72�C (10 min). The modified

version with 12 cycles for the PCR step was as follows: lysis at

72�C (3 min), 4�C (10 min), and 25�C (1 min); reverse transcrip-

tion at 42�C (90 min) and 70�C (10 min); and PCR at 95�C
(1 min), two cycles at 95�C (20 s), 58�C (4 min), and 68�C
(6 min), six cycles at 95�C (20 s), 64�C (30 s), and 68�C (6 min),

four cycles at 95�C (30 s), 64�c (30 s), and 68�C (7 min), and a

hold at 72�C (10 min). We harvested the 96 pre-amplified cDNAs

from the C1 single-cell array (volume ~ 13 ml) and quantified

the cDNA by using the Qubit dsDNA BR Assay Kit (Invitrogen).

We assessed cDNA quality on the 2100 Bioanalyzer (Agilent)

with the high-sensitivity DNA chips (Agilent). See Table S1 (avail-

able online) for details.

Total RNA Extraction from Bulk Cell Samples
On the day of the single-cell capture, 1.53 106 cells from the same

culture were collected and stored in TRIzol reagent (Invitrogen) at
The A
�80�C. Total RNA was isolated according to the manufacturer’s

protocol.
mRNA-Seq Library Preparation
Single Cells

We used the Nextera XT DNA Kit (Illumina) to prepare 223mRNA-

seq libraries for 183 UCF1014 single cells and 40 T2N single

cells with 0.3 ng of pre-amplified cDNA according to the manufac-

turer’s instructions. For cDNA samples below the threshold of

Qubit detection, the starting material for the library preparation

was 1.25 ml. Additionally, we included six samples from empty

chambers and one sample of water instead of cDNA material.

For those samples, we took 1.25 ml. In total, 230 samples were

library prepared. For this paper, we retained a total of 203 single-

cell samples (163 UCF1014 and 40 T2N) for allele-specific expres-

sion (ASE) analysis (see ‘‘Gene Quantification and De Novo

Assembly’’ below).

Pool of Single Cells

We prepared two RNA-seq libraries with 1 ng of pooled cDNA as

described for the single cells. For the pre-amplified cDNA (12 cy-

cles), we took 8 ml of 78 single-cell cDNAs that we pooled. Because

of the low concentration, we precipitated the cDNA pool with

NaAc (3M [pH 5.2]) and 100% EtOH and then washed it with

70% EtOH. For the pre-amplified cDNA (22 cycles), we took 2 ml

of 78 single-cell cDNAs. No precipitation step was necessary

because the cDNA concentration of this pool was sufficient

enough for library preparation.

Bulk TruSeq

We prepared two libraries with 500 ng of total RNA by using the

TruSeq RNA Kit (Illumina) according to the manufacturer’s

instructions.

Bulk Nextera

We reverse transcribed 10 ng of total RNA to cDNA by using the

SMARTer Ultra Low RNA Kit for Illumina Sequencing (Clontech).

The PCR amplification step was conducted with the Advantage 2

PCR Kit (Clontech) with 12 PCR cycles according to the manufac-

turer’s instructions. Two libraries were prepared with 1 ng of

pre-amplified cDNA with the Nextera XT DNA Kit (Illumina) ac-

cording to the manufacturer’s instructions.
Whole-Genome Sequencing
Library Preparation

Cells were harvested on the day of the single-cell capture.

Genomic DNA was extracted with the QIAamp DNA Blood

Mini Kit (QIAGEN) according to the manufacturer’s instruc-

tions, including for the RNase treatment. Purified genomic

DNA (100 ng) was electrophoresed on a 0.8% agarose gel for

quality assessment. We quantified the genomic DNA concentra-

tion by using the Qubit dsDNA BR Assay Kit (Invitrogen).

Genomic DNA libraries were prepared with the TruSeq DNA

Kit (Illumina). The starting amount of material was 1 mg of

genomic DNA sheared with Covaris S2 to fragments 300–

400 bp in size.

Sequencing

Libraries were sequenced on two lanes for UCF1014 samples and

on three lanes for T2N samples. In brief, we used the Burrows-

Wheeler Aligner (v.0.5.9-r16) to align the sequencing reads to

the human reference genome (UCSC Genome Browser GRCh37/

hg19). We used SAMtools v.0.1.18 to remove paired-end duplicate

reads and pile up the remaining reads. SNVs were called with

BCFtools v.0.1.17.
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RNA-Seq

Libraries were sequenced on an Illumina HiSeq2000 machine

as paired-end 100 bp reads. Demultiplexed fastq files were ob-

tained with the Illumina CASAVA v.1.8.2 software and pro-

cessed by our in-house pipeline running at the Vital-IT High

Performance Computing Center of the Swiss Institute of

Bioinformatics.

The two bulk TruSeq libraries were run on one lane. The two

bulk Nextera libraries were run on one lane. The two pools of

single cells were run on one lane. The single-cell libraries were

multiplexed 12 or 16 libraries per lane (see Table S1).

Spike-In Experiment
The spike-in mixture contained 92 External RNA Control

Consortium (ERCC) synthesized RNAs (Ambion, Life Technol-

ogies). This mixture was added in the lysis buffer during a sin-

gle-cell-capture preparation with a final dilution of 1:40,000.

Both ERCC spike-ins and single-cell mRNA-seq libraries were

sequenced simultaneously for 12 samples (50 bp, paired

end). The absolute number of spike-in molecules was calcu-

lated according to the known concentration of each spike-in.

Given that we knew the volume of the chamber (9–10 nl)

and the dilution (40,0003) of the spike-in molecules, we

derived the expected number of spike-in molecules per

chamber.

RPSM Calculation
RPSM stands for reads at a single-nucleotide position per

sequencing read length (in kb) and per million mapped reads.

The formula for RPSM is (1063 A) / (B3C), where A is the number

ofmappable reads at a nucleotide position, B is the total number of

mappable reads of the sample, and C is the sequencing read length

(in kb; C ¼ 0.199).

Read Mapping for RNA-Seq Samples
We employed the RNA pipeline from gemtools v.1.6.2 to map

RNA-seq reads. For alignment to the human reference genome

sequence (GRCh37/hg19, including the herpes virus sequence),

we used the GEM mapping suite22 to first map and subsequently

split map all reads that did not map entirely. The mapping pipe-

line and settings can be found on the GitHub website (see Web

Resources).

The GEM output format was converted to BAM format with the

following mapping quality scores and flags. (For reference, MAPQ

is the Phred-scaled mapping quality score, XT is the mapper-

defined tag, U is the number of unique matches, R is a perfect

tie, and NM is the number of total mismatches [read 1 þ read 2].

See further details of flag information in the SAMtools documen-

tation in the Web Resources.)

1. Matches that are unique and do not have any subdominant

match: 251 R MAPQ R 255, XT ¼ U

2. Matches that are unique and have subdominant matches

but a different score: 175 R MAPQ R 181, XT ¼ U

3. Matches that are putatively unique (not unique but distin-

guishable by score): 119 R MAPQ R 127, XT ¼ U

4. Matches that are a perfect tie: 78 R MAPQ R 90, XT ¼ R

Furthermore, the NM flag contains the number of total mis-

matches (read 1 þ read 2). In the analysis, we used reads in cate-

gories 1 and 2 (MAPQ R 150).
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ASE Analysis
ASE analysis was performed as in Lappalainen et al.23 In

brief, we considered heterozygous sites obtained from whole-

genome sequencing with DNA reads supporting both alleles.

We used a minimum site quality call of 200. We excluded sites

susceptible to allelic mapping bias, namely (1) sites with 50 bp

mappability < 1 according to the UCSC mappability track

(implying that the 50 bp flanking region of the site is not unique

in the genome), and (2) sites where overlapping simulated RNA-

seq reads showed a >5% mapping difference between those that

carried the reference allele and those that carried the non-refer-

ence allele (see the methods in Lappalainen et al.23).

In all analyses, we only used uniquely mapped RNA-seq reads

(GEM mapping quality > 150) and sites with base quality > 20

and support from at least 16 reads. Using information from

SAMtools (v.0.1.19) mpileup,24 we obtained for each site and

each sample the number of reads mapping in the reference,

the number of alternative alleles, and the sum of both. Each

site was then annotated with the overlapped genomic feature

in GENCODE annotation v.15 or the novel exons from the de

novo assemblies of each sample. For each site, the number of

single cells (and non-single cells) where the site was assessed

was also counted. The distribution of allelic ratios for all samples

is reported in Figure S9.

Gene Quantification and De Novo Assembly
We used the software Cufflinks (v.2.1.1)25,26 with default pa-

rameters and GENCODE v.12 as a reference annotation.27 On

the basis of Cufflinks transcript (170,086) quantifications, we

selected for further analysis single cells that passed the arbi-

trary threshold of 12,000 transcripts expressed at FPKM (frag-

ments per kilobase of exon per million reads mapped) > 0.3.

We retained 163 UCF1014 single-cell samples expressing an

average of 15,807 transcripts (the remaining samples expressed

an average of 4,998 transcripts). Additionally, for each sample

we performed de novo assembly to identify novel transcripts

(Figure S4) without using the reference annotation. We then

used the program cuffcompare to compare the assembled tran-

scripts with the GENCODE reference annotation (v.15).

Finally, for the four bulk RNA samples, we merged the four as-

semblies into a merged bulk RNA assembly. We compared each

single-cell de novo assembly against the merged bulk RNA as-

sembly to identify novel single-cell-specific transcripts. The

program intersectBed from bedtools28 was used for this last

comparison.
Results

Human newborn primary fibroblasts (UCF1014, GenCord)

and human fetal primary fibroblasts (T2N) were cultured,

and hundreds of individual cells were captured with the

C1 microfluidic system (Fluidigm). We conducted inde-

pendent experiments that differed by the day of the cell

capture and the number of PCR cycles used to pre-amplify

the cDNA from individual cells (Figure 1; see Material and

Methods). We performed 22 PCR cycles (standard) and 12

PCR cycles in order to test for PCR amplification bias. We

sequenced RNA libraries from 163 UCF1014 single cells

(98 bp, paired end) to an average depth of 36 million

reads (22 PCR cycles) and 16 million reads (12 PCR cycles)
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Figure 1. General Outline of the Experi-
mental Workflow
(Table S1; Figures S1 and S3). In addition, 40 single cells

from T2N were RNA sequenced to a similar depth and

used as a replicate sample. We also sequenced four bulk

RNA samples generated from 1.5 million cells and two

in-vitro-pooled cDNA samples obtained from 78 single-

cell cDNAs each (Figure 1). The four bulk RNA samples

were prepared from the two different primary fibroblast

lines (UCF1014 and T2N) according to two different library

procedures: (1) SMARTer Ultra Low RNA Kit (Clontech) for

cDNA synthesis followed by Nextera library construction

(Illumina) and (2) TruSeq RNA Sample Preparation Kits (Il-

lumina). Each in-vitro-pooled cDNA sample was made

from 78 pre-amplified cDNAs (22 or 12 PCR cycles) ob-

tained from 78 different single cells (Figure 1). The total

number of reads obtained for the bulk RNA and pooled
The American Journal of Huma
samples was on average 136 and 251

million reads, respectively (Table S1;

Figure S2).

To investigate the ASE at the single-

cell level, we performed whole-

genome sequencing of UCF1014

samples (26-fold coverage on average;

Figure1) inorder todetect themajority

of the heterozygous sites. After

rigorous filtering, we calculated allelic

ratios as the number of reads mapped

to the reference allele divided by the

total number of reads covering het-

erozygous SNVs. The main limitation

of a single-cell RNA-seq approach is

the accurate detection and quantifica-

tion of two alleles for weakly tran-

scribed genes.18 Thus, we devised a

metric for the analysis by implement-

ing a normalized read number at a

nucleotide position, namely RPSM

(see Material andMethods). This mea-

sure is preferable to RPKM (reads per

kilobase of exon per million reads

mapped) or FPKM measures because

it is not dependent on the coverage

of the transcript and it accurately re-

flects the abundance of the transcript

at a specific nucleotide position and

still allows comparison across samples.

Across 163 single cells from

UCF1014, we analyzed 83,576 unique

hetSNVs with a coverage R 16 reads

at the SNV position. Interestingly,

7.46% of hetSNVs were located in in-

tergenic regions, whereas 68.27%

were found within annotated exons

(Figure S4). We used Cufflinks to
conduct a de novo assembly of transcripts (see Material

and Methods) and revealed novel exons specific to single

cells and not previously annotated. In total, we retained

9,154 GENCODE genes and 3,875 novel exons specific to

single cells for further analysis.

A main challenge was to identify and control for tech-

nical noise that could mask genuine biological cell-to-cell

allelic expression differences. We carried out a spike-in

experiment to assess how our platform performed on syn-

thetic control ERCC RNAs29 to quantify the allelic amount

at a single nucleotide position. We concluded that a sensi-

tivity threshold set at 20 RPSM was appropriate for our

study objectives (Figure S5). By filtering out sites with fewer

than 20 RPSM, we set up the detection threshold at eight

molecules per site with a sensitivity of 87%.
n Genetics 96, 70–80, January 8, 2015 73



Figure 2. ASE in Single Cells
The histograms show the frequency distribution of the allelic ratio
(reference reads per total reads) of 35,763 hetSNVs (R20 RPSM) in
163 single cells (UCF1014 sample), bulk cell samples, and the pool
of single-cell samples.
One Allele Is Predominantly Detected in Single Cells

Wepredominantly detected one transcribed allele per inter-

rogated hetSNV of UCF1014 (n ¼ 35,763, RPSM R 20);

76.4% of the hetSNVs displayed an allelic ratio between

0–0.2 and 0.8–1 in 163 single cells (Figure 2). The ratio of

single cells expressing one allele to single cells expressing

the second allele for all SNVs examined was 49:51. This

suggests a stochastic allelic usage, which we confirmed by

examining the bulk samples made of 1.5 million cells and

samples obtained from an in vitro pool of 78 single cells.

Indeed, bulk samples displayed biallelic expression (allelic

ratio ¼ 0.2–0.8) for 98.3% of the interrogated hetSNVs

(n ¼ 545, RPSM R 20; Figure 2). We obtained the same

results from an in vitro single-cell pool sample made of 78

individual cDNAs showing 97.7% of interrogated hetSNVs

(n¼480,RPSMR20)with two transcribedalleles (Figure2).

The skewed monoallelic distribution observed in single

cells in a given time point was independent of the number

of reads per hetSNV (Figure 3A; Figure S6). Furthermore, our

findings were apparently not affected by a bias introduced

by the number of PCR cycles given that preparation of sin-

gle-cell cDNAs with either 12 or 22 PCR cycles revealed
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similar patterns (Figure 3B). Additionally, the results re-

mained largely unchanged after we removed duplicate

reads from the analysis (Figures S7 and S8).

We further compared our experimental data to an in-sil-

ico-pooled data set. For that, we created an in silico pooling

that we derived by averaging the allelic ratios for hetSNVs

detected in more than 82 cells (50%). This in silico pooling

recapitulated the signal from the in vitro single-cell pool

sample (Pearson correlation of 0.86, Figure 3C). Similar re-

sults were obtained when we compared the in silico pool-

ing with the bulk sample (Pearson correlation of 0.72;

Figure 3C).

In an attempt to validate our findings in a second indi-

vidual, we used the same method to RNA sequence 40 sin-

gle cells from another human primary fibroblast female

cell line (T2N; Figure 3D). The allele-specific analysis

revealed comparable results such that 65.8% of hetSNVs

(n ¼ 16,075) expressed only one detectable allele (allelic

ratio ¼ 0–0.2 and 0.8–1) and 34.2% of hetSNVs expressed

two detectable alleles (allelic ratio ¼ 0.2–0.8; Figure 3D).

Our results, in agreement with others,18,19 reveal that

snapshot detection of the majority of the protein-coding

actively transcribed genes is skewed toward one allele per

individual cell. We also describe a random (i.e., non-

parental-origin-specific) allelic usage, supporting the sto-

chastic nature of gene transcription.

Stochastic Allelic Expression of Adjacent hetSNV Pairs

Is Highly Correlated

We investigated whether two adjacent hetSNVs (RPSM R

20) located in the same gene are likely to be transcribed

from the same allele. To do so, we estimated the haplotypes

of our sample with SHAPEIT30 by using the phase informa-

tion contained in sequencing reads and the 1000 Genomes

phase 1 haplotypes as a reference.31 Then, we binned every

pair of consecutive hetSNVs according to their physical

distance (bp) and evaluated whether the allelic ratios

agreed with their underlying haplotypes. The relationship

between distance and allele expression is reported in

Figure 4. We provide evidence that allele expression is

highly correlated over the closest adjacent hetSNVs and

that this correlation begins to drop from 1 kb to reach

0 at 100 kb. The 1 kb distance corresponds to the average

size of cDNA products and might explain this sudden

decline (data not shown). It follows that hetSNVs

belonging to the same gene are transcribed from the

same allele in a single cell. Inversely, it is likely that

hetSNVs located on two consecutive genes are not tran-

scribed from the same haplotype in a single cell. Remark-

ably, compared to hetSNVs in autosomal sites, hetSNVs

located on the X chromosome exhibited a higher correla-

tion over longer distances (Figure 4) and a random mono-

allelic pattern (Figure S10). These results are consistent

with the process by which X chromosome inactivation

leads to one transcriptionally silenced X chromosome in

each 46,XX somatic cell and would thus result in higher

allelic correlation across genes on the X chromosome.
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Figure 3. Estimation of the Technical Biases
(A) Frequency-distribution histograms of the allelic ratio (reference reads per total reads) according to the read coverage at hetSNV
position (35,763 hetSNVs, 163 UCF1014 single cells, R20 RPSM).
(B) Frequency-distribution histograms of the allelic ratio of single cells (35,763 hetSNVs, UCF1014 single cells,R20 RPSM), for which the
cDNA pre-amplification was performed with 22 or 12 PCR cycles.
(C) Pairwise scatter plots for comparison of the allelic ratio between in silico pooling of single cells and experimental pooling (left panel)
or bulk samples (right panel). Listed in the panel are the Pearson correlation coefficients (r) and the numbers of comparisons (n). The
diagonal is plotted in red.
(D) Independent experimental replication. Frequency-distribution histograms of the allelic ratio of single cells from T2N single-cell
samples (40 single cells, 16,075 hetSNVs, R20 RPSM).
Distinct Single-Cell Allelic Pattern

To illustrate the diversity of allelic expression variation

across single cells, we selected all genes (n ¼ 568, detected

in more than 40 cells) with at least one hetSNV located in

coding regions and/or UTRs (RPSM R 20) (Figure 5;

Figure S11). As anticipated, genes on the X chromosome

(C1GALT1C1 [MIM 300611], ACOT9 [MIM 300862], ZFX

[MIM 314980], LAMP2 [MIM 309060], RP11-622K12.1,

and TSPAN6 [MIM 300191]) exhibited monoallelic

expression in single cells. As a result of lyonization of

gene expression,32 cells randomly express only one allele

because the second allele is silenced. Consequently, a sub-

set of the cells expressed one allele, and the other subset ex-

pressed the second allele. We detected only one or very few

cells expressing both alleles. A similar feature was observed

for three autosomal genes (RAD52 [MIM 600392], BCLAF1

[MIM 612588], TRBC2 [MIM 615445]), for which fewer

than 5% of cells displayed biallelic expression (allelic
The A
ratio ¼ 0.2–0.8). Interestingly, we observed 32 autosomal

genes with a stochastic single-cell skewed allelic expres-

sion, i.e., for which fewer than 10% of cells expressed

one type of allele and the remaining cells expressed either

the second allele or both alleles (<80% of cells with allelic

ratio ¼ 0.2–0.8). As an example, Figure 5 schematically

shows the profile of some of those genes (VAMP3 [MIM

603657], CNN3 [MIM 602374], RP11-166D19.1, ATL3

[MIM 609369], RAD52 [MIM 600392], C12orf75,

FAM101B [MIM 615928], CCDC80, SPCS3, WDR36 [MIM

609669], BCLAF1 [MIM 612588], and TRBC2 [MIM

615445]). Next, we observed a class of 16 genes (MINOS1,

CAP1, ITGB1 [MIM 135630], CD44 [MIM 107269], NACA

[MIM 601234], DAD1 [MIM 600243], UQCR11, PPP1CB

[MIM 600590], SRSF6 [MIM 601944], RPS21 [MIM

180477], SSR3 [MIM 606213], SPARC [MIM 182120],

SRSF3 [MIM 603364], CALU [MIM 603420], TOMM7

[MIM 607980], and COL1A2 [MIM 120160]) for which
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within the same autosomal gene
in 2 different autosomal genes
on ChrX

Figure 4. Relationship between hetSNVs Located within Genes
or in Two Different Genes
Scatter plots of allelic-ratio correlation versus genomic distance be-
tween two adjacent hetSNVs. hetSNVs located in the same auto-
somal genes are in green, hetSNVs located in different autosomal
genes are in orange, and hetSNVs located on the X chromosome
are in blue.
more than 90% of cells expressed both alleles (allelic

ratio ¼ 0.2–0.8). We termed those genes ‘‘single-cell bial-

lelic genes’’ because both alleles were expressed in almost

all individual cells.

Transcription Rate and ASE in Single Cells

We asked whether the total transcript level could corre-

late with ASE in single cells. We quantified the steady-

state mRNA level of detectable genes in 163 single cells

from UCF1014 by averaging the RPSM values for the

hetSNVs located in coding regions and/or UTRs. We

plotted the minimum allelic ratio against mRNA level

(RPSM average) for all detectable genes (Figure 6A). The

results indicated that genes with higher mRNA levels

were enriched in the single-cell biallelic genes described

above (see Figure 6A). Analysis of functional-pathway

enrichment was performed with DAVID (Database for

Annotation, Visualization, and Integrated Discovery)33

on genes with high mRNA levels (average RPSM per

gene > 90). Genes associated with cellular function and

maintenance were enriched with gene-ontology terms

related to response to nutrients, protein-complex assem-

bly, the ER, organelle membranes, catalytic activities, and

others (modified Fisher exact p value < 0.05; Figure 6A).

This is consistent with the fact that constitutively ex-

pressed genes, essential for the maintenance of basic

cellular functions, generally maintain constantly high

mRNA levels across cells.

Because steady-state mRNA abundance is determined by

both the rate of transcription and mRNA decay, we used
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published RNA half-life data from HeLa cells to examine

the relationship between the single-cell allelic ratio of

gene expression and the half-life of these transcripts.34

Tani et al. developed an inhibitor-free method named

BRIC-seq (50-bromo-uridine-immunoprecipitation chase-

deep sequencing) to determine mRNA decay. We selected

the genes commonly expressed by the two different

data sets and further divided the sites into three groups

according to their single-cell allelic ratio. Compared to

the single-cell biallelic group (allelic ratio ¼ 0.2–0.8), the

single-cell monoallelic group (allelic ratio <0.2 or >0.8)

contained sites with significantly shorter half-lives

(p value < 2 3 10�16, ANOVA; Figure 6B). This finding

suggests that genes detected as biallelic in single cells are

more likely to have a longer RNA half-life. We then tested

the relationship between transcriptional initiation rates of

genes in single cells. Thus, we introduced in our analysis

Cap Analysis of Gene Expression (CAGE35) sequencing

data from nuclear-enriched RNAs of human dermal fibro-

blasts of fetal origin (HDF-f).36 CAGE technology on nu-

clear-enriched RNA allows reliable transcription start site

(TSS) identification and transcript quantification of mostly

nascent messenger RNAs. We identified 2,572 nuclear

CAGE clusters from HDF-f overlapping TSSs of protein-

coding genes expressed in our single-cell RNA-seq data.

Figure 6B shows a correlation between the initiation rate

(determined by nuclear CAGE tags) and ASE. Sites with

monoallelic expression show a lower initiation rate than

do biallelic sites (p value < 2 3 10�16, ANOVA).
Discussion

The transcriptional activity of alleles is of interest because

it determines the steady-state level of mRNA of the cell and

the nature of transcripts available for translation. By

analyzing single-cell transcriptomes, we and others have

confirmed that gene transcription is stochastic and

extremely variable among cells.18,19,37,38 Our main obser-

vation suggests that, at any point in time, a cell contains

mostly transcripts from one allele (76.4% of hetSNVs

with >20 RPSM). This stochastic monoallelic expression

at the single-cell level is independent of the parent of

origin of the allele, given that we randomly detected one

or the other allele in each single cell. Our results are in

agreement with recent studies in human lymphoblastoid

lines andmouse embryonic progenitors and cultured fibro-

blasts,18,19 confirming the existence of an essential process

of eukaryotic cells.

Does this necessarily mean that the cellular machinery

transcribes one allele at a time? Transcription occurs as

either a constitutive or an episodic bursty mode.39,40

For most eukaryotic genes, transcription in mammals is

discontinuous and occurs in transcriptional bursts inter-

spersed by refractory periods of gene inactivity.41–43 It has

been demonstrated that transcriptional bursting is gene

specific, and thus the frequency and amplitude of the bursts
15



Figure 5. Pattern of Allelic Expression in Single Cells
We selected genes for a representative view of the allelic expression in single cells. A complete overview is given in Figure S11. The index
bar indicates the color coding for the allelic-ratio values (reference reads per total reads). Vertical dashed lines delineate a set of 20 single
cells.
and intervals of gene inactivitymodulate the extent of tem-

poral variations in mRNA in a cell.44 Two main alternative

scenarios could explain the observation of stochastic

monoallelic expression in single cells. In the first scenario,

a single cell transcribes one allele at a time. The transcrip-

tionmachinery could switch from one allele to the second.

This requires the assembly of the pre-initiation complex on

one allele and the subsequent dissociation of the complex

and clearance of the promoter region before the next round

of transcription initiation.45 This model of transcription

waspreviously referred to as thedynamicflip-flop transcrip-

tion cycle model with a long period of gene inactivity and

suggests a cross-talk between the two alleles.11,46–49 This

model could predict heterogeneity within a population of

cells expressing one allele at a time. In the second scenario,

we hypothesized that the cellular machinery simulta-

neously transcribes both alleles of all autosomal genes,

with the exception of the imprinted genes. The first alterna-

tive explanation of our results is that transcription is indeed

biallelic but asynchronous, i.e., the transcription machin-

ery is associated with both alleles, but the bursts of

transcription of each allele are not synchronous. In such a
The A
scenario, in a single cell at a particular point in time, the

allelic transcription appears biallelic if the mRNA half-life

is very long, i.e., longer than the refractory period of gene

inactivity. Conversely, the allelic transcription appears

random and monoallelic for a gene that is poorly tran-

scribed (below the threshold of detection) with a long re-

fractory period of gene inactivity and/or for genes with

very short half-lives. Our findings are compatible with

this scenario because we revealed that monoallelic tran-

scripts in single cells are short lived and less actively tran-

scribed and that biallelic transcripts are long lived and

more actively transcribed.

The stochastic monoallelic expression in single cells

could be theoretically linked to phenotypic variability in

humans; examples of this include (1) penetrance of a

dominant developmental disorder, (2) expressivity of a

dominant disorder, (3) cellular or tissue phenotype

in carriers of recessive disorders, (4) cellular heterogeneity

in cancers, (5) differential cellular response to environ-

mental agents, (6) predisposition to a complex pheno-

type, and (7) phenotypic variability in monozygotic

twins.
merican Journal of Human Genetics 96, 70–80, January 8, 2015 77



Figure 6. Relationship of mRNA Level and Allelic Ratio in Single Cells
(A) A composite figure made of a scatter plot and a table. The scatter plot represents the mRNA level from single-cell RNA-seq data
(UCF1014) against the minimum allelic ratio. The minimum allelic ratio is the absolute value of the difference between 0.5 and the
allelic ratio (reference reads per total reads). For each gene, the average of RPSM values (coding regions and UTRs) for all single cells
was calculated, log transformed (log2), and plotted on the y axis. Each data point represents one gene. Genes located on the X chromo-
some are included. The table on the right is the list of enriched gene-ontology (GO) terms with their respective p values (DAVID) for
genes with RPSM values > 90.
(B) Box plots of RNA half-life (left) or CAGE nuclear RNA (right) in three different groups of sites with variable allelic ratio (AR). tpm
stands for the normalized raw CAGE tag count per million.
In conclusion, the allelic expression of single cells might

be an important determinant of the developmental fate

and specific function of each cell and might contribute

to the phenotypic variability of the organism.

Accession Numbers

RNA and DNA sequencing data have been deposited in the Euro-
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accession number EGAS00001001009.

Supplemental Data

Supplemental Data include 11 figures and one table and can be

found with this article online at http://dx.doi.org/10.1016/j.
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