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Recessive Mutations in COL25A1 Are a Cause of
Congenital Cranial Dysinnervation Disorder

Jameela M.A. Shinwari,1 Arif Khan,1,2 Salma Awad,3,6 Zakia Shinwari,4,6 Ayodele Alaiya,4

Mohamad Alanazi,5 Asma Tahir,1 Coralie Poizat,3 and Nada Al Tassan1,*

Abnormal ocular motility is a common clinical feature in congenital cranial dysinnervation disorder (CCDD). To date, eight genes

related to neuronal development have been associated with different CCDD phenotypes. By using linkage analysis, candidate gene

screening, and exome sequencing, we identified three mutations in collagen, type XXV, alpha 1 (COL25A1) in individuals with auto-

somal-recessive inheritance of CCDD ophthalmic phenotypes. These mutations affected either stability or levels of the protein. We

further detected altered levels of sAPP (neuronal protein involved in axon guidance and synaptogenesis) and TUBB3 (encoded by

TUBB3, which is mutated in CFEOM3) as a result of null mutations in COL25A1. Our data suggest that lack of COL25A1 might interfere

with molecular pathways involved in oculomotor neuron development, leading to CCDD phenotypes.
Congenital cranial dysinnervation disorders (CCDDs) are a

heterogeneous group of neurogenic syndromes of the

ocular muscle and facial innervation; the mutated genes

influence brainstem and cranial nerve development.1

Most CCDDs present with abnormal ocular motility; these

include congenital fibrosis of the extraocular muscles type

1, 2, and 3 (CFEOM1 [MIM 135700], CFEOM2 [MIM

602078], and CFEOM3 [MIM 600638]), HOXA1 spectrum

(MIM 142955), horizontal gaze palsy with progressive

scoliosis (HGPPS [MIM 607313]), Duane retraction syn-

drome (DRS [MIM 126800]), and Moebius syndrome

(MBS [MIM 157900]).2–7

Mutations in different genes contribute to CCDD etiol-

ogy by affecting neuronal development. Expressions of

certain genes influence the development of the cranial

nerves through molecular events including the cytoskel-

eton microtubule dynamics and axon path guidance. In

CFEOM1, dominant mutations in KIF21A (MIM 608283)

alter the kinesin microtubule-associated protein that nor-

mally inhibits microtubule growth inside the cell and di-

rects axon growth toward the oculomotor muscles.3 There

is probably a recessive cause for CFEOM1 that is yet to be

determined.8 Complete loss of the oculomotor nerves for

both eyes occur in CFEOM2, where homozygous muta-

tions in the homeodomain transcription factor (PHOX2A

[MIM 602753]) affect the survival of the oculomotor and

trochlear motor neurons during development.9 Retinal

dysfunction is also part of the CFEOM2 phenotype.10 In

CFEOM3 and rarely in CFEOM1, heterozygous mutations

in the cytoskeletal network gene known as neuron-specific

component b-tubulin III (TUBB3 [MIM 602661]) underlie

the phenotype; the encoded protein interacts with kinesin

and influences guidance of the cranial nerves.11 Rare cases
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of CFEOM3 can also be caused by heterozygous mutations

in KIF21A.12 One of the most common CCDD phenotypes

is DRS, which typically presents with lack of abduction,

adduction constraint, globe retraction, and palpebral

fissure narrowing on attempted adduction.13 Although

most cases of DRS are idiopathic and not familial, muta-

tions in CHN1 (MIM 118423) were identified in families

with dominant DRS. This gene plays a role in abducens

and oculomotor nerve development by controlling ocular

motor axon path-finding mechanisms.14 Homozygous

mutations in HOXA1 (MIM 142955) were identified in in-

dividuals with bilateral DRS associated with hearing and

cardiovascular abnormalities,5 and mutations in ROBO3

(MIM 608630), which encodes an axon guidance mole-

cule, lead to autosomal-recessive HGPPS.15 Recessive muta-

tions in ECEL1 (MIM 605896), a gene that might play a

role in neuromuscular junction formation, cause CCDD

phenotypes in the setting of arthrogryposis.10 Despite

the genetic heterogeneity that might explain these vari-

able phenotypes, mutations in common CCDD genes do

not underlie common forms of incomitant strabismus.16

We identified a consanguineous Saudi family with four

children, three of whom were affected by CCDD, congen-

ital ptosis, or DRS. The proband (II.1) presented with right

congenital ptosis covering the upper half of the pupil. His

sister (II.2) had bilateral congenital ptosis covering the up-

per half of the pupil, and his affected brother (II.3) had no

ptosis but presented with bilateral DRS (exotropic form in

the right eye, esotropic form in the left eye). The fourth

male sibling had a completely normal ophthalmic exami-

nation, as did both parents. DNA was extracted from

parents and all affected and unaffected children after

obtaining informed consent according to the institutional
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rules and regulations (KFSHRC RAC # 2080020, KKESH

0424-P). To determine the underlying genetic defect in

this family, we first sequenced all coding exons of

KIF21A, PHOX2A, HOXA1, TUBB3, and ROBO3. No coding

or splice site pathogenic mutations were identified in these

genes.

After excluding mutations in the reported candidate

genes as a possible genetic cause for CCDD in this family,

we proceeded with linkage analysis by Affymetrix Gene-

Chip Human Mapping 250K. Multipoint linkage analysis

assuming an autosomal-recessive mode of inheritance17

detected a potential disease locus on chromosome

4q24–25 with a maximum logarithm of odds (LOD) score

of 2.5. Candidate genes in the 5.12 Mb linkage region

were prioritized with suspects software,18 and the entire

open reading frames (ORFs) for 18 of the 30 annotated

genes in the region were amplified and sequenced (Table

S1, Figure S1 available online). Subsequent analysis of

sequencing data revealed a homozygous missense muta-

tion in exon 21 of COL25A1 (c.1144G>A, RefSeq accession

number NM_198721.3) leading to a p.Gly382Arg substitu-

tion in the encoded protein (primers listed in Table S2).

This mutation cosegregated with the phenotype in family

A in an autosomal-recessive manner and was absent in 500

ethnically matched normal control subjects. Based on this

finding, COL25A1 exons were screened in 41 single CCDD

case subjects; several known and unknown variants were

identified in COL25A1 including 33 intronic variants, 3

synonymous polymorphisms, and 1 nonsynonymous

variant (Table S3). Only one heterozygous nonsense muta-

tion in exon 28 (c.1489G>T) was identified in a single

nonfamilial case (DRSA1) that presented with exotropic

DRS. This mutation, which is predicted to result in a pre-

mature stop codon (p.Gly497Ter), was also present in his

unaffected brother DRSA2. To position another disease

locus in this case, representative regions of COL25A1 pro-

moter were sequenced and CNV analysis was conducted

for both siblings via the Affymetrix GeneChip Mapping

6.0 kit. Analysis was performed with the Affymetrix

Genotyping Console (v.3.01) against ethnically matched

normal control subjects. No mutations were detected in

the promoter region but a heterozygous CNV deletion of

12.4 kb spanning exons 4–10 of COL25A1 (chr4:

109,852,901–109,976,457, UCSC GRCh37/hg19, Fig-

ure S2) was identified in the affected DRSA1 individual,

and this CNV was absent in the unaffected sibling. The

origins of the CNV deletion could not be determined

because DNA from parents was unavailable for analysis.

Next we preformed whole-exome sequencing with Sure-

Select Human All Exon kit and Illumina HiSeq 2000

Sequencer (Illumina) on the proband from family A and

the affected single case subject DRSA1. The resulting vari-

ants in the linkage region were filtered as homozygous

(coding or splicing) in the identified linkage region (het-

erozygous in the single case) and absent in the dbSNP data-

base (GRCh37) and 1000 Genomes database. Analysis

confirmed the presence of the homozygous c.1144G>A
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and the heterozygous c.1489G>T mutations and the

absence of other pathogenic mutations in the linkage

region and in genes involved in overlapping pheno-

types including previously identified DRS and hereditary

congenital ptosis related loci/genes: SALL4 (MIM

607343),19 CHN1,14 PTOS1 (MIM 178300),20 ZFHX4

(MIM 606940),21 TUBB2B (MIM 612850),22 and HOXB1

(MIM 142968).23

Collagen, type XXV, alpha 1 (COL25A1) encodes a trans-

membrane protein that consists of an N-terminal intracel-

lular noncollagenous domain, a transmembrane domain,

and three extracellular collagen-like domains separated

by four noncollagenous domains. The collagen-like do-

mains contain unique repetitive patterns (Gly-X-Y) that

stabilize the triple helix. Proteolytic cleavage of COL25A1

by furin convertase produces a soluble form known as

collagen-like amyloidogenic component (sCLAC).24,25

sCLAC folds into a protease-resistant triple helical mole-

cule that binds fibrillized amyloid beta (Abeta) and further

assembles amyloid fibrils into protease-resistant aggregates

during the fibril elongation stage.25,26 It also binds heparin

but the binding of sCLAC to Abeta is influenced by the sta-

bility of its triple helical structure and competition with

heparin binding.25 sCLAC was identified as a component

of senile plaques amyloid (SPs) isolated from the brains

of Alzheimer disease case subjects.24 Amyloid beta (A4)

precursor protein (APP) is cleaved predominantly (about

90%) by a secretase to release soluble protein a (sAPP a)

and slightly (about 10%) by b and g secretases to release

soluble protein b (sAPP b) and Abeta peptide. The accumu-

lation of neurotoxic Abeta peptide leads to amyloid plaque

and Alzheimer disease development.27 sCLAC plays a crit-

ical role in regulating the buildup of Abeta fibrils, and

properly folded sCLAC triple helices were reported to

inhibit Abeta fibril formation in vitro. Once Abeta fibrils

are formed, sCLAC supports their assembly into protease-

resistant aggregates.26,28 None of our case subjects had

any family history of Alzheimer-related phenotype, but

this does not rule out the possibility of the disease devel-

oping later in these individuals.

We investigated the expression of COL25A1 by using

cDNA libraries from commercially available multiple

human adult and fetal tissues (Genemed Synthesis and

Capital Biosciences) and primers specific for COL25A1

(Table S2). In addition, immunohistochemistry (IHC)

was performed to ascertain the tissue distribution of

COL25A1 in E12 and E16 mouse embryos, whole mouse

eye, and human eye muscle. Anti-COL25A1 antibodies

(LS-B664 LifeSpan BioSciences or H00084570-B01, Novus

Biological) were used after ensuring their specificity via

peptide competition assay against COL25A1 full-length re-

combinant protein (H00084570-P01, Novus Biological).

Our cDNA analysis demonstrated that COL25A1 is ubiqui-

tously expressed in different adult and fetal tissues.

COL25A1 was also detected in different parts of mouse

embryos. When cDNA expression was further examined

in differential adult human brain tissues, abundant
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Figure 1. Effect of the p.Gly382Arg Substitution on Protein
Stability
Media from HEK293 cells transfected with either wild-type (WT)
or c.1144G>A containing COL25A1 expression vector were used.
(A) Left: Immunoblot analysis of secreted proteins present in
culture media from untransfected control (UntrC), WT, or
p.Gly382Arg-overexpressing HEK293 cells. Bands corresponding
to sCLAC (~52 kDa) are enriched in WT and p.Gly382Arg-
overexpressing cells but not UntrC. Right: Recombinant sCLAC
was captured with anti-His-tag beads and resolved on SDS-PAGE
prior to performing Ponceau S staining.
(B) Thermal stability of WT and p.Gly382Arg sCLAC. WT
displayed limited proteolytic digestion at 40�C and 50�C and
was completely digested at higher temperatures whereas the
p.Gly382Arg protein was completely digested at all examined tem-
peratures indicating loss of triple helix stability and folding (data
for temperatures above 50�C not shown).
expression in the hippocampus and occipital lobe, moder-

ate expression in the frontal lobe and the optic cranial

nerve, and low expression in the left cerebellum were

observed (Figure S3). Moreover, microarray and in situ hy-

bridization data from Allen Brain Atlas database reported

similar COL25A1 expression in the adult human hippo-

campus, frontal lobe, and cerebellum cortex. Interestingly,

the database documented positive expression of COL25A1

in the adult human oculomotor nuclear complex (respon-

sible for extraocular eye and levator palpebrae superioris

muscles innervation) and in the abducens nucleus. Our

cDNA data showed high COL25A1 expression in conjunc-

tive fibroblasts and human fetal and adult whole eye; in

addition, our IHC detected moderate to strong staining

in mouse eye and human eye muscle (Table S4, Figure S4).

These results suggest a functional role for this gene in

different regions of the brain and eye.

Glycine substitutions generally interrupt the unique

collagen’s repetitive pattern (Gly-Pro-X) that is required

for triple helix stability; such substitutions significantly

contribute to pathogenic phenotypes. Recurrence of gly-

cine at every third position dominates proper collagen
The Amer
triple helix folding because it is the only amino acid with

a small uncharged functional group that can center the su-

per coiled helix without altering the helix configuration.

Collagens with completely folded triple helices are typi-

cally resistant to trypsin digestion unless the helix is

disrupted via increased temperatures. Peptide model of

collagen, type I, alpha 1 linked to osteogenesis imperfecta

(OI [MIM 166200]) showed that substituting glycine for

arginine decreased the melting temperature, causing

disruptive consequences.29 Our in silico analysis with

both Imutant and Pmut softwares30,31 predicted loss of sta-

bility as a result of the p.Gly382Arg substitution. Because

this change is located within a repetitive (Gly-Pro_X)

stretch and involves the replacement of a glycine for argi-

nine, we examined the sensitivity of recombinant sCLAC

to trypsin digestion at different temperatures to assess

the thermal stability of wild-type and p.Gly382Arg sCLAC.

First we introduced the missense mutation into ready full-

length ORF His/Myc COL25A cDNA clone (OmicsLink

Expression-Ready Clones, Source BioScience) by site-

directed mutagenesis (Quik Change II XL Site-Directed

Mutagenesis Kit, Agilent) according to the manufacturer’s

protocol. After confirming the presence of the mutation

by colony PCR followed by sequencing (Figure S5),

cultured HEK293 cells were transfected with wild-type or

mutant COL25A1 expression vector via FuGENE 6 trans-

fection reagent (Roche) and stable cell lines were selected

in the presence of neomycin. Immunoblotting with His-

tagged antibody conducted on conditioned media from

transfected and untransfected HEK293 cells showed equal

bands for both wild-type and the p.Gly382Arg sCLAC,

indicating that both are expressed and secreted to the

cell culture medium at similar levels (Figure 1A). Condi-

tioned media collected from transfected cells stably

expressing wild-type or p.Gly382Arg sCLAC were heated

at 40�C–80�C for 5 min and then treated with trypsin for

2 min. The trypsin digests were inactivated and blotted

with anti-His antibody. Limited digestion was observed

for wild-type protein at temperatures up to 50�C whereas

the p.Gly382Arg sCLAC was completely digested at all

examined temperatures, suggesting loss of stability and

incorrect folding, which might render the p.Gly382Arg

sCLAC susceptible to proteolysis and disturb its physiolog-

ical functions (Figure 1B). To further explore the effect of

this substitution on sCLAC interaction with sAPP and

Netrin 1 (NTN1, an APP interacting partner), sCLAC was

immunoprecipitated from culture media and the precipi-

tates and fractions of their inputs were probed against

sAPP (Abcam, ab78271) and NTN1 (Abcam, ab126729).

Both wild-type and p.Gly382Arg sCLAC showed similar

interactions with sAPP and NTN1 (Figure S6).

Although the heterozygous c.1489G>Tmutation identi-

fied in both affected and unaffected siblings DRSA1 and

DRSA2 produces a truncated protein, it is plausible that

the wild-type compensates for the deleterious effect of

the truncated allele; therefore, the heterozygous mutation

is less likely to have a pathogenic consequence on its own.
ican Journal of Human Genetics 96, 147–152, January 8, 2015 149



Figure 2. Assessment of sCLAC, sAPP,
NTN1, and TUBB3 Levels in DRSA1
Center: Representative immunoblots for
sCLAC (n ¼ 3), sAPP (n ¼ 2), NTN1
(n ¼ 1), and TUBB3 (n ¼ 3) in affected sub-
ject DRSA1 (DRSA1aff), unaffected subject
DRSA2 (DRSA2unaff), and normal control
(NC) (n ¼ 1 for all proteins). DRSA1aff has
diminished levels of sCLAC, low levels of
sAPP, and a slightly decreased level of
TUBB3 compared to DRSA2unaff, whereas
levels of NTN1 were comparable in both
samples. Observed band sizes were between
52 and 76 kDa for sCLAC, sAPP, NTN1, and
TUBB3. Left: Controls from either plasma
or HEK293 lysate/media, referred to as anti-
body controls (AB-Cont), demonstrate that
sAPP, NTN1, and TUBB3 band sizes corre-
spond to those observed in other experi-
ments. Anti-sCLAC antibody was validated
by peptide block. Both b-actin (center)
and albumin (right) were used as internal
controls.
In DRSA1, this mutation was accompanied by an intra-

genic copy-number deletion that presumably contributed

to the phenotype. The p.Gly497Ter truncation resulted

in the loss of the C terminus COL3 and NC4 domains of

COL25A1, whereas the CNV results in the loss of the entire

NC2 domain including Abeta peptide/Heparin interaction

site and parts of COL1 and COL2 domains (Figure S2).

Intragenic copy-number deletions that remove part of

the coding region can lead to truncations or a frameshift

creating a premature stop codon and might result in

nonsense-mediated decay (NMD) that probably dimin-

ishes the protein.32 In line with this, our immunoblotting

analysis showed diminished sCLAC in DRSA1 compared to

the unaffected brother DRSA2, strongly suggesting that

loss of function of both alleles is necessary for expression

of the phenotype (Figure 2).

TUBB3 is a neuron-specific component of the cytoskel-

etal microtubules that is abundantly produced during

axon guidance in the nervous system. The encoded protein

is involved in the development of human ocular motor

neurons and in guidance of commissural fibers and

cranial nerves.11,33 Eight distinct heterozygous missense

mutations were reported in TUBB3 in CFEOM3.11 TUBB3

is involved in different pathways and associates with

different protein partners; such associations include the

direct interaction with the DCC complex that participates

in proper axon guidance in the presence of functional APP

and NTN1 (axon guidance tropic cue) and the direct effect

on KIF21A microtubule interactions.11,34,35

In order to investigate the molecular consequences of

the diminished sCLAC, we assessed sAPP, NTN1, and

TUBB3 protein levels by immunoblot analysis in samples

from DRSA1 and DRSA2. NTN1 was detected in plasma

of both siblings whereas sAPP was detected with sharp

band intensity only in plasma of the unaffected sibling

DRSA2. TUBB3 was detected with sharp band intensity in

the unaffected subject DRSA2 compared to weaker band
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in the affected sibling DRSA1. Both b-actin and albumin

were included as internal controls (Figure 2). We also

examined the level of KIF21A, which was similar in both

siblings (data not shown). We hypothesize that the trun-

cated COL25A1/sCLAC influences the signaling cascade

involved in axon guidance by affecting sAPP and TUBB3

and probably other axon guidancemolecules during devel-

opment. This hypothesis is supported by the compromised

sAPP and TUBB3 levels observed in this single case subject

and the sustained NTN1 interaction with sCLAC detected

by immunoprecipitation assay.

Col25a1 knockout mice exhibited loss of motor axon

elongation and branching in the muscles, which resulted

in axon degeneration. This effect leads to death due to

respiratory failure, which highlights the regulatory role

for COL25A1 in intramuscular innervation during

development.36 All our case subjects with mutations in

COL25A1 showed variable ophthalmological clinical pre-

sentation with no other systemic defects. Two of the

affected individuals from family A (II.1 and II.2) with mu-

tations in COL25A1were diagnosed with levator palpebrae

muscle dysinnervation (congenital ptosis) of one or both

orbits. The levator palpebrae muscle is normally inner-

vated by the oculomotor nerve (cranial nerve III).2 The

third affected member of family A (II.3) was diagnosed

with dysinnervation to the lateral and/or medial rectus

muscles of both eyes. Themedial rectus muscle is normally

innervated by inferior division of the oculomotor nerve

and the lateral rectus muscle is normally innervated by

the abducens nerve (cranial nerve VI).1 Abnormalities of

guidance and survival of the cranial nerves underlie

different CCDD phenotypes.

Taken together, we identified COL25A1 mutations as a

cause of autosomal-recessive CCDD. Our molecular char-

acterization of the protein and the transcript demonstrated

their presence in human eye muscle and in fetal and adult

brain, respectively. Further assessment of mutations in this
, 2015



gene suggests that a defective protein interferes with

molecules involved in axon guidance and might result in

abnormal cytoskeletal microtubule dynamics and atypical

ocular motor neuron development. Further investigations

are necessary to elucidate the possible regulatory effect of

functional COL25A1 on the levels of APP, TUBB3, and

other proteins, including KIF21A, relevant to ocular motor

neuron development.
Supplemental Data

Supplemental Data include six figures and four tables and can be
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Dahlqvist, C., Näslund, J., and Tjernberg, L.O. (2005).

CLAC binds to aggregated Abeta and Abeta fragments,

and attenuates fibril elongation. Biochemistry 44, 15602–

15609.

27. Tyler, S.J., Dawbarn, D., Wilcock, G.K., and Allen, S.J. (2002).

alpha- and beta-secretase: profound changes in Alzheimer’s

disease. Biochem. Biophys. Res. Commun. 299, 373–376.

28. Parmar, A.S., Nunes, A.M., Baum, J., and Brodsky, B. (2012). A

peptide study of the relationship between the collagen triple-

helix and amyloid. Biopolymers 97, 795–806.

29. Beck, K., Chan, V.C., Shenoy, N., Kirkpatrick, A., Ramshaw,

J.A., and Brodsky, B. (2000). Destabilization of osteogenesis

imperfecta collagen-like model peptides correlates with the

identity of the residue replacing glycine. Proc. Natl. Acad.

Sci. USA 97, 4273–4278.

30. Capriotti, E., Fariselli, P., and Casadio, R. (2005). I-Mutant2.0:

predicting stability changes upon mutation from the protein

sequence or structure. Nucleic Acids Res. 33, W306–W310.

31. Ferrer-Costa, C., Gelpı́, J.L., Zamakola, L., Parraga, I., de la

Cruz, X., and Orozco, M. (2005). PMUT: a web-based tool for

the annotation of pathological mutations on proteins. Bioin-

formatics 21, 3176–3178.

32. Boone, P.M., Bacino, C.A., Shaw, C.A., Eng, P.A., Hixson, P.M.,

Pursley, A.N., Kang, S.H., Yang, Y., Wiszniewska, J., Nowa-

kowska, B.A., et al. (2010). Detection of clinically relevant

exonic copy-number changes by array CGH. Hum. Mutat.

31, 1326–1342.

33. Katsetos, C.D., Legido, A., Perentes, E., and Mörk, S.J. (2003).

Class III beta-tubulin isotype: a key cytoskeletal protein

at the crossroads of developmental neurobiology and

tumor neuropathology. J. Child Neurol. 18, 851–866, dis-

cussion 867.

34. Qu, C., Dwyer, T., Shao, Q., Yang, T., Huang, H., and Liu, G.

(2013). Direct binding of TUBB3 with DCC couples netrin-1

signaling to intracellular microtubule dynamics in axon

outgrowth and guidance. J. Cell Sci. 126, 3070–3081.

35. Rama, N., Goldschneider, D., Corset, V., Lambert, J., Pays, L.,

and Mehlen, P. (2012). Amyloid precursor protein regulates

netrin-1-mediated commissural axon outgrowth. J. Biol.

Chem. 287, 30014–30023.

36. Tanaka, T., Wakabayashi, T., Oizumi, H., Nishio, S., Sato, T.,

Harada, A., Fujii, D., Matsuo, Y., Hashimoto, T., and Iwatsubo,

T. (2014). CLAC-P/collagen type XXV is required for the intra-

muscular innervation of motoneurons during neuromuscular

development. J. Neurosci. 34, 1370–1379.
, 2015


	Recessive Mutations in COL25A1 Are a Cause of Congenital Cranial Dysinnervation Disorder
	Supplemental Data
	Acknowledgments
	Web Resources
	Accession Numbers
	References


