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Generally, rewards that are received sooner are often preferred over future rewards, and the time between the choice and the reception

of the reward is an important factor that influences our decisions, a phenomenon called delay discounting (DD). In DD, the medial

prefrontal cortex (MePFC) and striatal dopamine neurotransmission both play an important role. We used repetitive transcranial

magnetic stimulation (rTMS) to transiently activate the MePFC to evaluate its behavioral effect on the DD paradigm, and subsequently to

measure its effect on striatal dopamine. Twenty-four right-handed young healthy subjects (11 females; age: 22.1±2.9 years) underwent

DD following 10 Hz-rTMS of the MePFC and vertex stimulation (control condition). Thereafter, 11 subjects (5 females; age: 22.2±2.87

years) completed the PET study at rest using [11C]-(þ )-PHNO following 10 Hz-rTMS of the MePFC and vertex. Modulation of the

MePFC excitability influenced the subjective level of DD for delayed rewards and interfered with synaptic dopamine level in the striatum.

The present study yielded findings that might reconcile the role of these areas in inter-temporal decision making and dopamine

modulation, suggesting that the subjective sense of time and value of reward are critically controlled by these important regions.

Neuropsychopharmacology (2015) 40, 546–553; doi:10.1038/npp.2014.211; published online 17 September 2014
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INTRODUCTION

Time is a critical factor when individuals make decisions
and consider the outcomes associated with their choices.
Every day, we have to decide between options that have
immediate or delayed consequences. We might, for example,
restrict our habits opting for an immediate loss of pleasure
for the future benefits of better physical health and
appearance. Thus, individuals have to voluntarily postpone
impulsive urges for immediate gratification and persist in
goal-directed behavior to achieve positive outcomes in the
future (Wittmann and Paulus, 2008). Generally, rewards
that are received sooner are often preferred over future
rewards, and the time between the choice and the reception
of the reward is an important factor that influences our
decisions. A delayed outcome of a choice reduces the
subjective value of the reward, a phenomenon called delay
discounting (DD) (Kirby and Santiesteban, 2003; Wittmann
et al, 2007). Practically speaking, individuals who choose
immediate gratification at the expense of long-term interest

are judged to be impulsive. Using delay-discounting para-
digms to quantify dysfunctions of impulse control, it has
been shown that children with attention deficit hyperactivity
disorder (Barkley et al, 2001), individuals with Parkinson’s
disease (Housden et al, 2010) and neuropsychiatric dis-
orders (Cardinal et al, 2004), smokers (Baker et al, 2003),
and substance-dependent individuals (Madden et al, 1999)
show increased discounting of delayed rewards.

Functional imaging studies using DD tasks are beginning
to examine which brain areas are associated with impulsiv-
ity and self-control (McClure et al, 2004; Tanaka et al, 2004;
Kable and Glimcher, 2007; Ballard and Knutson, 2009).
Interestingly, some of these studies have shown that the
neural activity in several brain regions (particularly medial
prefrontal cortex (MePFC), posterior cingulate cortex, and
the ventral striatum) participates in the subjective valua-
tion of delayed monetary rewards (Kable and Glimcher,
2007). In other words, the neural activity in these regions
tracked changes in the subjective value of the delayed
reward, and activation of these regions (particularly, the
MePFC) varied when only the delayed reward changed. This
suggests that the MePFC makes an important contribution
to the subjective sense of time and the value for reward, two
critical factors in economic inter-temporal decision making.

There is substantial anatomical evidence showing that
MePFC fibers project to the ventral tegmental area and pars
compacta of the substantia nigra, thus having direct
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influence on dopaminergic neuron in the ventral mesence-
phalon (Beckstead, 1979; Sesack et al, 1989). In fact, while
cortical fibers from the dorsal prefrontal cortex terminate
primarily in the caudate nucleus, axonal inputs from the
MePFC and dorsal anterior cingulate terminate mainly
within subregions of the ventral striatum (Selemon and
Goldman-Rakic, 1985; Haber et al, 1995). This anatomical
substrate supports the hypothesis that the MePFC may
share reward-related information with ventral striatum
through the dopaminergic system (McClure et al, 2004;
Kable and Glimcher, 2007; Xu et al, 2009), which may be
modulated by rTMS.

DA neurotransmission has a specific role in computing
how the temporal proximity of a reward relates to its
subjective value (ie, rate of temporal discounting) (Pine
et al, 2010). Using an inter-temporal choice task, pharma-
cologically enhancing DA activity controlled how the timing
of a reward was incorporated into the construction of its
ultimate value, suggesting a mechanism through which DA
may influence human choice and temporal discounting, and
traits such as impulsiveness that may account for several
behavioral disorders associated with a hyperfunctioning DA
system (Pine et al, 2010).

Despite that these functional neuroimaging studies have
provided important insights into the neural control of
decision-making processes associated with delayed dis-
counting (DD), imaging alone suffers from the limitation
that it can only provide neuronal correlates of cognitive
performance and often cannot determine a causal relation
between biological observations and behavioral perfor-
mance (Rushworth et al, 2002). Thus, here, we used repetitive
transcranial magnetic stimulation (rTMS) to transiently
activate the MePFC: (i) first to evaluate its behavioral effect
during performance of the DD paradigm, and (ii) subse-
quently to measure its effect on striatal dopamine. Our first
working hypothesis was that if in a region like the MePFC
the neural activity was correlated with the subjective
valuation of a delayed reward, the stimulation of this area
should have influenced the rate of temporal discounting,
influencing the level of impulsivity. Thus, if rTMS of the
MePFC reduced impulsivity, individuals would increase
their preference for delayed larger rewards. Instead, if rTMS
increased impulsivity, individuals would increase their
preference choice for immediate small rewards. Our second
working hypothesis was that if stimulation of the MePFC
affected the rate of temporal discounting and impulsivity
level, we should expect changes in rTMS-induced DA
release in the striatum. In particular, we predicted that an
increased impulsivity with preference for immediate smaller
rewards should be associated with dopaminergic changes
in the ventral striatum, whereas reduced impulsivity with
preference for future larger rewards would be associated
with no dopaminergic changes in the ventral striatum.

To test these hypotheses, we used 10 Hz rTMS which has
been shown previously to excite and activate the underlying
cortex and to induce release of DA in the striatum (Strafella
et al, 2001; Strafella et al, 2003; Cho and Strafella, 2009;
Ko and Strafella, 2012). To measure striatal DA neurotransmis-
sion, we used positron emission tomography (PET) combined
with a newly developed, high-affinity radiotracer, ie, [11C]-
(þ )-PHNO. This tracer is a D2/D3 agonist, binding specifi-
cally to the active form of the receptor, thus permitting an

evaluation of the functionally relevant form of this receptor
in the striatum. Recent studies using [11C]-(þ )-PHNO have
shown a strong binding signal in the striatum, globus pallidus
(GP), substantia nigra, and anterior thalamus (Freedman
et al, 1994; Narendran et al, 2006; Willeit et al, 2006; Graff-
Guerrero et al, 2008) (as compared with [11C]raclopride),
opening a new possibility for investigating reward-related
behavior. In-vivo study of [11C]-(þ )-PHNO suggested that
this radioligand has fourfold higher preference for D3 than
D2 receptors (Narendran et al, 2006). This observation was
supported by studies in nonhuman primates showing that
the [11C]-(þ )-PHNO binding in the GP and midbrain is
selectively displaceable with the D3 preferential agonist
BP897 (Narendran et al, 2006) and antagonist SB-277011
(Ginovart et al, 2006). Altogether, these reports provided
strong evidence that [11C]-(þ )-PHNO has a higher affinity
for D3 over D2 and is extremely sensitive to detect
dopaminergic changes in D3-abundant subcortical regions
such as limbic striatum and GP.

To stimulate the cortical areas, we opted to use a double-
cone TMS coil to activate the target regions equally in both
the left and right hemisphere. High-frequency rTMS (10 Hz)
was applied to the MePFC and over a control site (ie, vertex)
in 24 young healthy subjects and discounting rate was tested
using the DD task. During the DD task, subjects were asked
to choose between different amounts of monetary reward
available with varying time delays (smaller-immediate vs
larger-delayed option) based on their preference. Individual
discounting level (k value) for future reward was calculated
based on hyperbolic function (Richards et al, 1999) as a
main outcome. Eleven subjects completed the [11C]-(þ )-
PHNO PET study to measure the displacement effect of
brain stimulation over MePFC and control site (ie, vertex)
on striatal DA.

SUBJECTS AND METHODS

Participants

Twenty-four right-handed young healthy subjects were
enrolled (11 females; age, 22.1±2.9 years) (Supplementary
Table S1). All subjects were naı̈ve to rTMS. Exclusion
criteria included history of psychiatric and/or neurological
disorder (particularly epilepsy), any previous exposure to
stimulant drugs, pregnancy, and migraine. Subjects were
also screened for depression and anxiety using the Beck
Depression Inventory (BDI) (exclusion criterion of a
score of 410) and Short Anxiety Screening Test (SAST)
(exclusion criterion of a score of 424), respectively. We
assessed the self-reported impulsivity by means of the
Barratt Impulsivity Scale-11 (BIS) (Spinella, 2007). To rule
out structural lesions in the brain and to identify the
anatomical target for the rTMS stimulation, a T1-weighted
MRI image was obtained for all subjects (n¼ 24) using a
3T high-resolution MRI (GE Discovery MR750 3T, FSPGR
with repletion time¼ 6.7 ms, echo time¼ 3.0 ms, flip
angle¼ 8 mm, slice thickness¼ 1 mm, NEX¼ 1, matrix
size¼ 256� 192).

Written informed consent was obtained in all cases before
study enrollment. The study protocols were approved by the
Ethical Committee of the Center for Addiction and Mental
Health Research, University of Toronto.
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Study Design

For the behavioral study with the DD task, each subject
(n¼ 24) underwent two rTMS sessions: MePFC (active
condition) and vertex (control condition) in the same day.
The task started 3 min after the completion of stimulation
for all subjects. To minimize the carry-over effect of the
prior stimulation, there was at least a 30-min interval
between the two stimulation conditions. Fourteen subjects
agreed to participate in the PET imaging study, however,
11 subjects (5 females; age, 22.2±2.87 years) completed the
PET scans and 3 participants dropped out because of the
nausea induced by the [11C]-(þ )-PHNO D2/D3 agonist.
Each subject underwent a [11C]-(þ )-PHNO PET scan on
two separate days. On one day, the subject received rTMS
over MePFC stimulation; on the other day, the subject
received stimulation over the control area (ie, vertex). The
rTMS sessions were counterbalanced. Only binding poten-
tials (BP) within the basal ganglia were considered for
further analysis, because this is the brain structure where
receptor-specific [11C]-(þ )-PHNO binding is mainly detected.
A reduction in BP is indicative of an increase in extra-
cellular dopamine concentration (Endres et al, 1997;
Laruelle et al, 1997).

DD Task

The DD task is a behavioral analytic approach to under-
stand how each individual makes a choice between a smaller
reward given immediately and a larger reward given after a
time delay, thus assessing the degree of cognitive impulsivity
or self-control (Dixon et al, 2005). The task was composed
of 120 trials; in each trial, the amounts of monetary reward
for immediate and delay options are decided by the fixed k
value and the delay time based on the hyperbolic function of
delay discount, V¼A/(1þ kD), where V is the value of the
delayed outcome (ie, the indifference value), A is the
delayed reward, D is the length of the delay, and k expresses
the steepness of the discount function (Mitchell, 1999;
Richards et al, 1999; de Wit et al, 2002). On the basis of this
function, higher k values are associated with preference for
immediate small-size reward and lower k values are an
expression of delayed large-size reward. Thus, low k values
are an index of minor discounting for future reward.
Subjects were instructed that they have to make preferential
judgments about hypothetical rewards shown on a compu-
ter screen. All reward choices were made by pressing either
the ’ or - key on keyboard with the subject’s dominant
hand (right hand for all subjects). The trial order was
randomized for each session across the subjects.

The k values were estimated separately in small (range:
1–100CAD), medium (range: 200–500CAD), and large
(range: 600–1000CAD) reward magnitude as the geometric
mean between the lowest implied indifference k value in
which subjects chose the delayed option, and the highest
implied indifference k value in which subjects chose the
immediate option (Kirby et al, 1999; Monterosso et al,
2007). The geometric mean is a type of mean which indi-
cates the central tendency of a set of numbers and is used
because the task required subjects to express preferences
(Monterosso et al, 2007). We expect that changes in the
individual k value will vary in a relative manner of reward

amount and delay period. If the response consistency is
over 66% for one response (small immediate or large delay
option) within a given k value, then that k value was
assigned to immediate choice preference or delay choice
preference.

Location of the Target Site

To target the MePFC and the vertex, we used a procedure
that takes advantage of the standardized stereotaxic space of
Talairach and Tournoux (Talairach and Tournoux, 1988)
and frameless stereotaxy (Strafella et al, 2001). The coor-
dinates selected for targeting the MePFC (BA 10; x¼ 0,
y¼ 59, z¼ 12) are similar to those described in previous
studies (Kable and Glimcher, 2007). For the control site, we
used the vertex (x¼ 0, y¼ � 20, z¼ 85) (Pascual-Leone
et al, 1996). The Talairach coordinates were converted into
each subject’s native MRI space using the reverse native-to-
Talairach transformation (Figure 1a). The positioning of the
TMS coil over these locations, marked on the native MRI,
was performed with the aid of Brainsight, a frameless
stereotaxic system (Rogue Research, Montreal, QC, Cana-
da), for each stimulation session.

rTMS Protocol

rTMS was carried out with the Magstim Rapid2 magnetic
stimulator (Magstim, UK), using a double-cone coil (P/N
9902–00; Magstim). This coil structure uses two angled
windings to improve coupling to the head, increasing its
effective stimulating power to relatively deep brain areas
(Allison et al, 1996; Terao et al, 2000). This type of coil was
chosen to stimulate the target regions (MePFC and vertex)
equally in both the left and right hemispheres. Stimulus
intensities, expressed as a percentage of the maximum
stimulator output, were set at 80% of the active motor
threshold. Active motor threshold was defined from the
tibialis anterior muscle, with AgCl surface electrodes fixed
on the skin with a belly-tendon montage, as the lowest
stimulus intensity able to elicit five motor evoked potentials
of at least 200 uV averaged over 10 consecutive stimuli
delivered over the motor cortex at intervals longer than 5 s.
During the determination of active motor threshold, subjects
were instructed to maintain a steady muscle contraction of
20% of maximum voluntary contraction. One rTMS session
was applied for each cortical site (ie, MePFC and vertex)
during the behavior study with the DD task, and five rTMS
sessions were delivered for each PET imaging study (during
MePFC and vertex stimulation). Each stimulation session
was separated by a 5-min interval. For each rTMS session,
15 10-pulse trains of 1-s duration were delivered at a stimu-
lation frequency of 10 Hz, with a between-train interval of
10 s (Figure 1b). Thus, a total of 150 pulses were delivered
for the behavior study and 750 pulses were delivered
preceding the start of the PET acquisition.

PET Imaging

Subjects were scanned with [11C]-(þ )-PHNO using a high
resolution PET CT, Siemens-Biograph HiRez XVI (Siemens
Molecular Imaging, Knoxville, TN, USA) operating in 3D
mode with an in-plane resolution of approximately 4.6 mm

rTMS of medial prefrontal cortex and dopamine
SS Cho et al

548

Neuropsychopharmacology



full width at half-maximum. The radiosynthesis of [11C]-
(þ )-PHNO ([11C]-(þ )-4-propyl-9-hydroxynaphthoxazine)
has been described in detail elsewhere (Wilson et al, 2005).
Concisely, [11C]-propionyl chloride was reacted with 9-
hydroxynaphthoxazine to generate a [11C]-amide which is
subsequently reduced by lithium aluminum hydride.
Purification by HPLC and formulation give radiochemically
pure [11C]-(þ )-PHNO as a sterile, pyrogen-free solution
suitable for human studies.

To minimize subject’s head movements in the PET
scanner, we used a custom-made thermoplastic facemask
together with a head-fixation system (Tru-Scan Imaging,
Annapolis). Following the acquisition of a scout view for
accurate positioning of the subject, a low dose (0.2 mSv) CT
scan for attenuation correction was conducted before the
PET scan. After completion of the rTMS session, [11C]-(þ )-
PHNO was injected into the left antecubital vein over 60 s
and dynamic scanning was acquired for 90 min. For each
3D sinogram, data were normalized with attenuation and
scatter corrected before applying fourier rebinning to
convert the 3D sinograms into 2D sinograms. The 2D
sinograms were then reconstructed into image space using a
2D filtered back projection algorithm, with a ramp filter at
Nyquist cutoff frequency. After reconstruction, a Gaussian
filter with a 5 mm FWHM was applied and the images
calibrated to nCi/cc. The spatial resolution of the recon-
structed images was 2� 2� 2 mm (X�Y�Z).

PET Image Analysis

The motion-corrected PET data were analyzed using the
in-house image analysis platform ROMI (Rusjan et al,
2006). The detailed image analysis procedure was described
elsewhere (Rusjan et al, 2006). This included (i) transform-
ing a standard brain template with a cerebellar ROI to match
individual high-resolution MR images, (ii) co-registering
each subject’s MR image to the PET image, (iii) refining
ROIs from the transformed template based on the gray

matter probability of voxels in the individual MR images,
(iv) transforming the individual refined ROI to the PET
space using the matrix obtained during the MRI to PET
co-registration, (v) extracting time activity curve of the
reference region, the cerebellum, from PET images in
original space (Supplementary Figure S1). After the ROMI
procedure, parametric [11C]-(þ )-PHNO PET BP map was
calculated in the native PET space with simplified reference
tissue method (Lammertsma and Hume, 1996) using the
cerebellar time activity curve value as reference. For
statistical analysis, parametric BP images were transformed
into standardized stereotaxic space using individual MRI.
Finally, normalized images were smoothed with a Gaussian
function at 4 mm full width half-maximum. The image
preprocessing for the statistical analysis was carried out
with SPM 2 (Wellcome Department of Imaging Neu-
roscience, London). Statistical maps in the striatum were
threshold at a level of Po0.05 FDR corrected with an extent
threshold of at least 50 contiguous voxels to test significant
changes in [11C]-(þ )-PHNO binding following MePFC
rTMS (as compared with control site stimulation). For the
nucleus accumbens (NAcc), we used the WFU-PickAtlas
(SPM extension toolbox) to generate volume of interest
image of this brain region. Left and right NAcc volume
images were imported into MarsBar (SPM extension tool
box, MRC Cognition and Brain Sciences Unit, Cambridge,
UK). BPs were extracted from parametric BP image for each
stimulation condition. The relative changes in BP (D%BP)
were calculated according to this formula where BPMePFC is
BP of MePFC stimulation condition and BPvtx is BP of
vertex stimulation condition.

D% BP ¼ BPMePFC � BPvtxð Þ
BPvtx

�100

A regression analysis was performed to evaluate the
relationship between displacement in DA and changes in
individual discounting level. The significance level for all
statistical analysis was set at Po0.05.

Figure 1 Stimulation target areas and protocol. (a) The MePFC (upper figure) and vertex (lower figure) target area mapped on Colin brain (b)
experimental procedures for behavioral (upper figure) and PET imaging (lower figure) studies. For each rTMS session, 15 10-pulse trains of 1-s duration were
delivered at a stimulation frequency of 10 Hz, with a between-train interval of 10 s.
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RESULTS

We found that high-frequency rTMS over the MePFC
(compared with vertex-rTMS) significantly affected DD rate
and reduced log-transformed k value (ln(k)) compared with
control site stimulation (ln(k): � 4.3±1.5 for MePFC vs
� 3.8±1.2 for vertex, t¼ 3.25, Po0.01) (Figure 2). This
reduction in ln(k) was about 19.0.±32.5% indicating a less
stiff discounting tendency for future rewards. The simple
preference choice toward the larger-delayed option was
significantly different between the two stimulation conditions.
In fact, although MePFC-rTMS increased the preference
toward larger-delayed rewards (Po0.05), it decreased the
choices for the immediate small options (Po0.05). There

were no changes on the response consistency following
rTMS ruling out a possible confounding factor influencing
the decision-making process.

During PET imaging, MePFC-rTMS (compared with
vertex-rTMS) displaced DA in the striatum with a reduction
in [11C]-(þ )-PHNO BP specifically in the bilateral dorsal
putamen and bilateral dorsal/ventral GP (Figure 3a, Table 1),
thus reflecting release of DA in these subcortical areas. The
D%BP was � 13.1±8.1% in the left and � 13.0±8.8%
in the right striatal cluster (Figure 3b). We looked, as well,
for changes in the region of the NAccand interestingly,
although we did not observe a significant rTMS-induced
reduction in [11C]-(þ )-PHNO BP (ie, DA release), a
correlation analysis revealed a significant inverse relation-
ship between D%BP of the GP and D%BP of the NAcc in
the left hemisphere (r¼ � 0.65, Po0.05) (Figure 4). This
suggests that MePFC rTMS-induced displacement of DA
in the dorsal striatum paralleled the lack of DA release in
the NAcc.

Next, because we were interested in how behavioral
changes induced by MePFC-rTMS were associated with
changes in striatal DA level, we conducted a regression
analysis to test this relationship. A quadratic relationship
with an inverted U-shaped curve was found between [11C]-
(þ )-PHNO D%BP and % changes of ln(k) in the bilateral
GP (R2¼ 0.74, F2,8¼ 8.17, Po0.01 for left; R2¼ 0.84,
F2,8¼ 21.39, Po0.01 for right) (Figure 5a and b). In
particular, discounting level interacted with striatal dopa-
mine displacement, and participants who showed prefer-
ences toward future rewards tended to occupy in general the
upper portion of the inverted U-shaped curve, exhibiting
on average less striatal DA release. Thus, suggesting a
modulatory role of rTMS over MePFC both on rate of
discounting (ie, increased preference of delayed rewards)
and striatal DA release.

No significant relationship between the behavioral
measures (BDI, SAST, and BIS) and rTMS effects were
observed.

Figure 2 Effect of rTMS on DD ln(k) for each rTMS condition (n¼ 24).
rTMS over the MePFC (compared with vertex-rTMS) significantly affected
DD rate and reduced log-transformed k value (ln(k)) compared with
control site stimulation (Po0.01).

Figure 3 [11C]-(þ )-PHNO PET imaging results (n¼ 11). (a) Anatomical representation of the basal ganglia (upper row) and MePFC-rTMS induced
displacement of DA in the striatum with a reduction in [11C]-(þ )-PHNO BP specifically in the bilateral dorsal putamen (DPu) and bilateral dorsal/ventral
globus pallidus (GP) (compared with vertex-rTMS) (lower row). Color bar indicates t-statistics (b). The bars display BPs extracted from statistically significant
clusters showing the [11C]-(þ )-PHNO BP reduction between MePFC and vertex control stimulations in left and right striatum. The mean D%BP was
� 13.1±8.1% in the left and � 13.0±8.8% in the right striatal cluster.
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DISCUSSION

In summary, stimulation of MePFC influenced preference
choice for future larger rewards supporting the original
hypothesis that this brain area participates in the subjective
valuation of delayed monetary rewards. In particular,
although rTMS modulation of excitability of MePFC affected
individual discounting level and guided the individual

preference to delayed rewards, these behavioral changes
were not associated with rTMS-induced release of DA in the
NAcc, as proposed in our initial working hypothesis.
Interestingly, DA release was observed mainly in the dorsal
striatum, bilaterally. The changes in synaptic DA in the left
dorsal striatum and the lack of DA release in the ipsilateral
NAcc appeared interrelated, and the magnitude of release of
DA was less strong in those individuals with rTMS-induced
preference for future rewards.

Repetitive TMS may have influenced the subjective pre-
ference for future larger rewards by a number of possible
mechanisms. It is well established that 10-Hz rTMS has an
excitatory effect on the underlying cortex and is able to
control release of DA in the striatum (Strafella et al, 2001;
Strafella et al, 2003; Ko and Strafella, 2012). During these
inter-temporal choices, individuals must choose between
rewards of differing magnitude and delay, based on the
relationship of the timing of rewards and their utility.
Within this framework, striatal DA plays an important role
in controlling how the timing of a reward is incorporated
into the construction of its ultimate value (Kable and
Glimcher, 2007; Pine et al, 2010). Investigations using
neuropsychological and pharmacological approaches study-
ing time perception in animals and humans have confirmed
the hypothesis that fronto-striatal circuits, modulated by
the striatal dopaminergic system, are crucial for inter-
temporal reward processing (Matell and Meck, 2004;
Wittmann and Paulus, 2008). Imaging experiments have
shown how areas of MePFC, reciprocally connected to the
dorsal striatum and in turn conveying information to the
GP, may contribute to the neurobiological substrates of
different temporal information related to reward processing
(Stevens et al, 2007). The involvement of these regions,
consistent with our own results, suggests that rTMS-
induced activation of the target region (ie, MePFC) and
related DA release in the bilateral dorsal striatum (and not
in the NAcc) may reduce impulsivity level and influence
choice preferences for future larger rewards. The fact that
rTMS did not induce any changes in synaptic DA in the
NAcc, a region consistently reported in previous studies
to be associated with increased impulsive behavior (Kable
and Glimcher, 2007; Ballard and Knutson, 2009) is cohe-
rent with our current observation and raises the possibility

Table 1 Basal Ganglia Regions with Dopamine Displacement

Brian Region Coordinatesa T-score Cluster size

X Y Z

Lt Dorsal putamen � 24 6 2 5.2 251

Lt Globus pallidus � 19 � 2 4 8.7

Rt Dorsal putamen 22 5 10 4.9 253

Rt Globus pallidus 16 0 4 6.2

aMNI space

Figure 4 Correlation showing the inverse relationship between D%BP of
GP and D%BP of the NAcc in the left hemisphere (Po0.05). MePFC rTMS-
induced displacement of DA in the dorsal striatum paralleled the lack of
consistent DA release in the NAcc.

Figure 5 Dopamine-behavioral relationships showing changes in DD rate in the left (a) and right (b) GP. A quadratic relationship was found between
[11C]-(þ )-PHNO D%BP and % changes of ln(k) in the bilateral GP (R2¼ 0.74, F2,8¼ 8.17, Po0.01 for left; R2¼ 0.84, F2,8¼ 21.39, Po0.01 for right).
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that rTMS-induced dopaminergic changes in the ventral
striatum could have led to completely opposite results (ie,
increased preference for immediate rewards).

Thus, by manipulating MePFC and bilateral dorsal striatal
DA with rTMS, the present study yielded findings that
might reconcile the role of these areas in the subjective
valuation of delayed monetary rewards, suggesting that in
economic inter-temporal decision making, subjective sense
of time and value for reward are critically controlled by
these important regions.

Using [11C]-(þ )-PHNO, several studies have examined
the effect of dopamine concentrations in human subject.
One study, after treatment with 2 mg/kg amphetamine i.v,
reported significant displacement of [11C]-(þ )-PHNO
bindings in different striatal regions (ventral striatum 25%,
caudate 13%, and putamen 21%) (Willeit et al, 2008).
A more recent study using an oral dose of 0.3 mg/kg of
amphetamine also reported similar amount of [11C]-(þ )-
PHNO binding changes in the same regions (ventral
striatum 21%, caudate 12%, putamen 16%, and GP 11%)
(Shotbolt et al, 2012). Thus, the magnitude of % changes
observed in our acute MePFC-rTMS challenge appears quite
consistent with these reports following administration of
amphetamine.

On the basis of the current findings, we could postulate
that rTMS (and other related brain stimulation techniques)
of the MePFC could possibly be considered as therapeutic
intervention of refractory form of impulse control disorders
in different neuropsychiatric and drug-abuse conditions. This
would require eventually future additional PET imaging
studies to investigate the effect of MePFC stimulation on
prefrontal dopamine by using high-affinity radiotracers able
to measure extrastriatal dopamine (eg [11C]FLB 457).
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