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Phylogenetic systematics is heading for a renaissance where we shift from

considering our phylogenetic estimates as a static image in a published

paper and taxonomies as a hardcopy checklist to treating both the phyloge-

netic estimate and dynamic taxonomies as metadata for further analyses.

The Open Tree of Life project (opentreeoflife.org) is developing synthesis

tools for harnessing the power of phylogenetic inference and robust taxonomy

to develop a synthetic tree of life. We capitalize on this approach to estimate a

synthesis tree for the freshwater crayfish. The crayfish make an exceptional

group to demonstrate the utility of the synthesis approach, as there recently

have been a number of phylogenetic studies on the crayfishes along with a

robust underlying taxonomic framework. Importantly, the crayfish have also

been extensively assessed by an IUCN Red List team and therefore have accu-

rate and up-to-date area and conservation status data available for analysis

within a phylogenetic context. Here, we develop a synthesis phylogeny for

the world’s freshwater crayfish and examine the phylogenetic distribution

of threat. We also estimate a molecular phylogeny based on all available

GenBank crayfish sequences and use this tree to estimate divergence times

and test for divergence rate variation. Finally, we conduct EDGE and

HEDGE analyses and identify a number of species of freshwater crayfish of

highest priority in conservation efforts.
1. Introduction
The freshwater ecosystems represent only 0.8% of the Earth’s surface, but house

nearly 6% of all described species and are under severe pressure from multiple

impacts, including: overexploitation, water pollution, flow modification, destruc-

tion or degradation of habitat, and invasion by exotic species [1]. Freshwater

ecosystems in areas such as the southeastern United States house a highly diverse

array of fauna that exhibits high levels of endemism [2]. The fragmented nature of

these habitats both drives speciation (resulting in exceptional biodiversity) and

results in high susceptibility to habitat destruction and limited dispersal capa-

bility. The combination of these factors promotes an accelerated extinction rate

(on the order of 4% per decade) on par with extinction rates in tropical rainforests

[3]. Thus, freshwater habitats are critical to biodiversity, but are at extremely high

risk and therefore are in need of conservation efforts.

Crayfish are an important component of these endangered ecosystems

and represent an opportunity to capitalize on our knowledge of their diversity

(taxonomic and phylogenetic) to help assess relative conservation priorities for

freshwater ecosystems as well as conservation priorities for these endangered

species themselves [4,5]. Crayfish play a central ecological role in many freshwater

ecosystems and provide an important economic and cultural role in many com-

munities [6,7]. Indeed, they have been categorized as keystone species in stream

communities both based on consumer activity [8] as well as directly through pre-

dation and indirectly through sediment bioturbation and increasing organic

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2014.0009&domain=pdf&date_stamp=2015-01-05
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Table 1. Phylogenetic studies included in the synthesis tree. OTU,
operational taxonomic unit.

study
taxonomic
level OTUs

molecular phylogeny,

this study

Astacidea 387

Bracken-Grissom

et al. [17]

Astacidea 66

Ainscough et al. [18] Fallicambarus 119

Breinholt et al. [19] Cambarus 93

Pedraza-Lara et al. [20] Cambarellinae 77

Toon et al. [21] Parastacidae 61

Breinholt et al. [22] Astacidea 21

Buhay & Crandall [23] Cambarus 47

Schultz et al. [24] Engaeus 53

Buhay & Crandall [25] Orconectes 69

Buhay et al. [26] Cambarus 130

Fratini et al. [27] Austropotamobius 61

Rudolph & Crandall [28] Virilastacus 31

Schull et al. [29] Euastacus 129

Trontelj et al. [30] Austropotamobius 72

Munasinghe et al. [31] Cherax 58

Rode & Babcock [32] Astacidea 37

Taylor & Hardman [33] Orconectes 24

Crandall et al. [34] Parastacidae in Toon et al. [21]

Crandall et al. [35] Astacidea in Bracken-Grissom

et al. [17]
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matter processing rates [9]. Even in terrestrial systems, the

freshwater crayfish play a significant role as ecological engin-

eers [10,11]. Unfortunately, both the freshwater ecosystems

and the crayfish from around the world are under severe

pressure and should be high priorities for conservation efforts.

Crayfish are a highly endangered component of these fresh-

waterecosystems with over 30% of theworld’s described species

considered endangered and at risk of extinction [12]. The extant

representatives are composed of over 600 species distributed

taxonomically across three families (Parastacidae, Cambaridae

and Astacidae) and 30 genera [13,14]. They are distributed in

temperate areas across the globe and are on all continents

except Antarctica and continental Africa (although there is an

endemic genus in Madagascar). The centre of diversity for the

Southern Hemisphere family, Parastacidae, is in southeast Aus-

tralia and Tasmania; whereas, the centre of diversity for the

species rich Cambaridae is in the southeastern United States

[13]. Crayfish represent an excellent candidate for phylogenetic

synthesis because of their robust underlying taxonomy [15,16]

and extensive phylogenetic work across the group (table 1 and

references therein). Importantly, they have also been the focus

of a recent International Union for Conservation of Nature

(IUCN) Red List assessment and have been thoroughly assessed

using Red List criteria for endangerment [12].

In this study, we bring together recent crayfish phylo-

genetic studies with this underlying taxonomic framework

to estimate a synthesis tree for all the freshwater crayfish

(taxonomy þ phylogeny). With this synthesis tree, we map

IUCN endangered species status and test for associations

with phylogenetic clades and taxonomic groups. Additionally,

we estimate a crayfish phylogram using GenBank sequence

data from across the freshwater crayfish to obtain branch

length estimates and anchor these with divergence time esti-

mates calibrated with extensive fossil data [17]. Using the

resulting chronogram, we estimate divergence and extinction

rates across the freshwater crayfish. Finally, by combining

this phylogenetic information with phylogenetic diversity

(PD) calculations and endangered status, we identify crayfish

species that are especially evolutionarily distinct and globally

endangered (EDGE analysis) [36]. Therefore, our study

effectively demonstrates the power of combining robust taxon-

omy with synthetic phylogeny to aid conservation assessment

based on PD and endangerment assessment.
2. Material and methods
(a) Phylogenetic analyses and synthesis
(i) Synthetic tree estimation
Phylogenetic synthesis is the merging of multiple sources of phylo-

genetic information with an underlying taxonomy. Thus, the

generation of synthetic trees differs from supertree approaches

[37] both conceptually as well as practically. Supertrees treat mul-

tiple phylogenetic estimates as the ‘data’ for a new phylogenetic

analysis resulting in the supertree without consideration of the

underlying taxonomy. Synthetic trees are the graphical uniting

of multiple estimates of phylogeny without re-estimation and

therefore they do not suffer from signal enhancement, where

novel relationships can appear in the supertree that are not present

in the input source trees [38]. Instead, conflict can be visualized

and traced back to the source trees without novel relationships

being generated from conflicting source trees [39]. Because the syn-

thetic tree approach uses a taxonomy as the underlying backbone

structure, conflicts in taxonomy can also be quickly identified.
Published phylogenies representing 20 studies were uploaded

as rooted Newick [40] files and stored in The Open Tree of Life

Study Curator (http://tree.opentreeoflife.org/curator) (table 1).

The Study Curator is a database that provides infrastructure to

store phylogenies and all metadata from phylogeny studies (doi,

title, year, etc.). It also provides a graphical user interface to map

taxon names from uploaded source trees to a user-curated taxon-

omy. The Open Tree of Life project (opentreeoflife.org) has

generated a new user-curated taxonomy for Arthropoda (OTT2.2)

by combining and hand-curating public taxonomy databases such

as the World Register of Marine Species (WoRMS) [41], GenBank

and the Global Biodiversity Information Facility (GBIF). This

includes removing species from the taxonomy that are the result

of spelling errors. This taxonomy provides flexibility for taxon map-

ping, including mapping to higher taxonomic ranks if the species

designation is missing or in conflict with the OTT. Once studies

are uploaded to phylografter and curated, they are exported from

phylografter as NeXML files [42]. The NeXML files are loaded

into treemachine (https://github.com/OpenTreeOfLife/treema-

chine) to generate a graph database for all studies that were

included in the synthesis, which also includes a NeXML of the tax-

onomy. The source trees and taxonomy are then merged into a tree

alignment graph [39], according to a user pre-defined order, to gen-

erate a synthetic tree. Those taxa not represented by a source tree are

represented by the taxonomy graph in the synthetic tree.

(ii) Crayfish phylogeny with branch lengths
In order to calculate PD measures, we require a tree with branch

lengths. Phylogeny branch lengths are estimates of genetic

http://tree.opentreeoflife.org/curator
http://tree.opentreeoflife.org/curator
https://github.com/OpenTreeOfLife/treemachine
https://github.com/OpenTreeOfLife/treemachine
https://github.com/OpenTreeOfLife/treemachine
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change along the branch of a phylogeny, usually specified in units

of expected number of substitutions per site. The synthesis tree

does not include branch length information currently; therefore,

we generated a crayfish phylogram using PHLAWD [43] to

obtain a phylogeny with branch lengths that contains all species

with sequence data from GenBank. We removed intraspecific

sequences and tried to retain only species because the PHLAWD

method does not distinguish between species and intraspecific

variants. This includes those new species that authors of previous

crayfish studies identified as potential species, but may not be for-

mally described. The loci assembled included portions of the three

mitochondrial genes (12S, 16S and cytochrome c oxidase subunit I

(COI)) and portions of two nuclear genes (18S and 28S). Sequences

for COI were checked for complete open reading frame and Gen-

Bank sequence identifiers that included ‘-like’ to prevent nuclear

copies of the COI gene from being included [44]. All loci were

aligned using MAFFT 7.130b [45], while poorly aligned regions

were identified and removed using GBLOCKS [46] according to the

least stringent settings. Two lobsters, Homarus americanus and Eno-
plometopus occidentalis, from two superfamilies within the

Astacidea were used as outgroup taxa [17]. An optimal partition-

ing scheme and models of sequence evolution were determined

using PARTITIONFINDER v. 1.1.1 [47] according to the Bayesian Infor-

mation Criterion (BIC) with the nucleotide alignment divided into

seven subsets: 12S, 16S, 18S, 28S, COI 1st pos., COI 2nd pos. and

COI 3rd pos. A maximum-likelihood (ML) phylogeny was esti-

mated in GARLI 2.0 [48] according to the models and partitions

identified in the PARTITIONFINDER analysis. Multiple searches from

random starting trees were conducted to ensure searches were

not being trapped in local optima. Branch support was assessed

using 100 non-parametric bootstrap replicates [49].

(iii) Crayfish chronogram
A chronogram was estimated using penalized likelihood in R8S

[50] with the best ML tree. Node calibrations included six fossils

used in previous crayfish chronogram estimation studies [21,22].

These six calibration points spanned from Mid Triassic (approx. 225

million years ago (Ma)) [51], through Late Jurassic (approx. 145 Ma)

[52], Early Cretaceous (approx. 135 Ma) [53], to the Eocene (approx.

40 Ma) [54], providing a variety of calibration points throughout the

phylogeny [55]. The optimal smoothing parameter was chosen

based on a cross-validation procedure [56].

(b) Diversification rates through time
To determinewhether this group radiated through time at a constant

rate, we first assessed whether branching times fit a pure-birth Yule

model using the Monte Carlo Constant Rates Test [57]. Studies have

shown that this test is sensitive to non-random sampling and miss-

ing taxa [58–60]; therefore, we chose to account for missing taxa

using birth–death chronogram simulations [58]. We simulated con-

stant rate birth–death chronograms using CORSIM [58] assuming

40% missing taxa based on those described species missing from

the phylogeny. Furthermore, we assumed the youngest genus was

9.95 Ma old based on the chronogram estimate and the taxonomy

used for the synthetic tree. The observed gamma statistic was com-

pared with the null distribution of 1000 simulated birth–death trees

using the APE module [61] in R [62].

To assess whether time-dependent speciation and extinction

rates varied throughout the history of crayfish, we estimated diver-

sification rate shifts using ML in TREEPAR [63]. This method moves

across a chronogram in intervals and for each interval calculates

birth and death, while accounting for missing taxa. At the end of

a cycle, the largest change in rate is recorded with the likelihood

of the model. This process is continued for additional cycles with

each cycle adding one more diversification rate change to the

model, while conditioning on the rate changes previously

identified in earlier iterations. A x2-test was used to compare
alternative models with different numbers of rate changes with

three d.f. We set the maximum number of diversification rate

changesto four, while estimating a birth–death model every 1 Myr.

(c) Conservation status, phylogenetic diversity, and
EDGE and HEDGE analyses

Crayfish conservation priorities were assigned first by designating

IUCN Red List status to each species retrieved from the IUCN Red

List of Threatened Species v. 2013.2 [12,64]. Next, we conducted an

Evolutionarily Distinct, Globally Endangered (EDGE) analysis [36]

and Heightened Evolutionary Distinctiveness and Globally Endan-

gered (HEDGE) analysis [65]. The EDGE analysis ranks species

according to their evolutionary distinctness by measuring

the length of the branches leading to the tip taxa weighted by the

number of descendants from each node, thereby calculating a prob-

ability that a species may go extinct. This calculation requires a

probability of extinction which we assigned using a numerical des-

ignation associated with the IUCN Red List category [36,66]: Least

Concern ¼ 0.025, Near Threatened ¼ 0.05, Vulnerable¼ 0.1,

Endangered ¼ 0.2 and Critically Endangered ¼ 0.4. The HEDGE

analysis ranks species based on their expected contribution to

PD; therefore, the metric aims to preserve species that contribute

the most PD. The HEDGE calculation is an extension of probabilis-

tic PD where the probability of extinction can reach 0 [67,68]. Both

EDGE and HEDGE metrics were estimated in MESQUITE [69] using

the Tuatara module [70].

In addition to estimating EDGE and HEDGE, we measured the

PD of crayfish in each of eight terrestrial Freshwater Animal Diver-

sity Assessment (FADA: http://fada.biodiversity.be) recognized

ecozones [71] to examine broad geographical patterns of diversity

and endangerment within the context of pre-established freshwater

ecozones. We used the IUCN Red List [64] to gather range data and

code the presence or absence of FADA ecozones for each of the 382

species in the chronogram. This information was used to estimate

the phylogenetic species variability (PSV), which is a measure of

PD that is independent of species richness [72]. PSV is a metric

that evolves a hypothetical independent neutral trait forward in

time along a phylogeny to quantify how shared evolutionary his-

tory decreases the variance of the hypothetical trait [72]. As

applied here, we are examining the variance in branch lengths as

a proxy of relatedness within FADA ecozones. It is important to

note that we also estimate PSV variance because our phylogeny is

not clocklike; therefore, there is variation around the single PSV

value. We chose to use PSV as measure of diversity and relatedness

due to the variability in the number of species across regions. PSV

estimates can range from 0 to 1 with 0 indicating species within a

FADA ecozone are closely related and 1 indicating species within

a FADA ecozone are distantly related. We calculated PSV and

Faith’s PD [73] in the R package picante [74] using the chronogram

without the outgroup; picante calculates PD foreach FADA ecozone

by summing the total length of all branches connecting species

within a FADA zone on the unrooted phylogeny.
3. Results
(a) Phylogenetic synthesis
Construction of the synthetic tree and curation of the taxonomy

yielded 719 terminal taxa (figure 1). The terminal taxa consist

of all 590 described species of freshwater crayfish [12] and

multiple representatives of species with unique GenBank iden-

tifiers from population level data. Of the 719 taxa, 387 (60% of

all described species) are unique species represented with pub-

licly available sequence data. The genus Procambarus is the

largest genus with the lowest number of species with available

sequence data (31 available/178 species described).

http://fada.biodiversity.be
http://fada.biodiversity.be


         A
stacidae

       Cambaridae

Cambaridae

Parastacidae

Figure 1. Synthetic tree consisting of the studies in table 1 and a combined taxonomy including WoRMS, GBIF and National Center for Biotechnology Information
taxonomies. Colours indicate those species assigned an IUCN Red List status: black, Extinct; red, Critically Endangered; orange, Endangered; brown, Vulnerable; yellow,
Near Threatened; blue, Least Concern; and green, Data Deficient.
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(b) Molecular phylogeny
The final nucleotide alignment contained 5259 bp of nucleo-

tides after GBLOCKS trimming. The BIC favoured each

partition subset as the best partitioning scheme. The ML tree

strongly supported sister clades consisting of the Northern

Hemisphere and Southern Hemisphere taxa (bootstrap value

(BS) ¼ 100); however, branch support only favoured mono-

phyly for one family (figure 2). Parastacidae is strongly

supported (BS ¼ 98), while Cambaridae and Astacidae are

paraphyletic (figure 2). The monophyly of Southern Hemi-

sphere genera is mostly supported, but no support is present

for the relationships among the genera (figure 2). This is

similar to the Northern Hemisphere genera, but in the North-

ern Hemisphere the genera containing many species (e.g.

Orconectes, Procambarus, Cambarus) are not supported as

being monophyletic (figure 2).
(c) Diversification rates through time
The Monte Carlo Constant Rates test rejected the Yule model

with a single rate of diversification through time. A three-

rate birth–death model fitted the branching times the best

according to the x2-test with changes in diversification rate

occurring at 20 Ma and 4 Ma (figure 3). The death parameter

increased towards the present, while the birth parameter

decreases and then increases at the present. Finally, the turn-

over rate (death/birth) is the greatest for the rate nearest

the present.

(d) Conservation status, phylogenetic diversity, and
EDGE and HEDGE analyses

The PD and PSV calculations of FADA ecozones differed when

compared with one another owing to variation in species



origin of
crayfish

Astacidae

Cambaridae

Cambaridae

Parastacidae

outgroup

Figure 2. Chronogram estimated in R8S using the ML phylogeny. Node calibrations identical to Breinholt et al. [22] and Toon et al. [21]. Bootstrap support greater
than 70% from 100 non-parametric bootstrap replicates shown.
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Figure 3. Log-lineage through time plot of the ML chronogram. Vertical dashed lines indicate timing of the x2 favoured changes in diversification rate. ML
parameter estimates are given for each birth – death model.

Table 2. Estimates of phylogenetic species variability (PSV), PSV variance
and phylogenetic diversity (PD) using the molecular phylogeny with species
grouped according to FADA ecozone.

ecozone PSV PSV variance PD

Australasian 0.72 1.07 � 1025 6025.27

Afrotropical 0.16 7.40 � 1023 266.54

Nearctic 0.59 2.49 � 1026 11026.91

Neotropical 0.74 2.19 � 1024 1407.77

Palearctic 0.63 8.53 � 1024 861.7
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richness (table 2). The Nearctic region had the highest PD, while

the Neotropical region had the highest PSV. The Australasian

region, on the other hand, has a high PSV owing to the relatively

long branch lengths. This indicates that the species in this region

have fewer close relatives and represent a greater amount of

evolutionary history and more distinct lineages. Although

both measures predict different regions with the highest diver-

sity, both estimate the Afrotropical region to be the least

diverse (there is only the Malagasy genus with seven species).

The low PSV can be attributed to shorter branches, thus being

more closely related, ultimately lowering the PSV value.

It should be noted that the PSV variance is the greatest for

this group, shedding light on the fact that PSV is a mean

and although they are closely related, there is branch length

heterogeneity (non-clocklike) among the seven taxa.

The EDGE and HEDGE scores were calculated for all

species with IUCN values in our molecular phylogeny

(figure 4). Calculations of EDGE ranged from 35.54 to 0.36,

while calculations for HEDGE ranged from 34.91 to 0.12. Fall-
icambarus hortoni had the largest EDGE and HEDGE scores of

all species. The 10 species with the highest EDGE and HEDGE

scores include species that are critically endangered and

endangered, with the bulk of these species being located in

Australia (e.g. Engaeus sp., Engaewa sp., Euastacus sp.) plus a

few North American cave species (e.g. Cambarus tartarus,

C. laconensis, C. aculabrum).
4. Discussion
Recently, phylogenies have been used in combination with

IUCN values and associated statistics to address conservation

questions in order to focus species-based conservation efforts

on preserving the greatest amount of PD [36,65,66,75]. Species

that have few close relatives have a greater responsibility for

evolutionary history [73]. Thus, the combination of phylo-

genetic information with endangered status allows for

conservation biologists to make informed decisions about con-

servation priorities that incorporate threat and evolutionary

history and processes [76]. Despite its predictive value, no

comprehensive phylogeny has been proposed for the crayfish.

Crayfish suffer from severe habitat loss, and as a result a large

percentage of the species are endangered [12]. A phylogeneti-

cally informed conservation plan would benefit this group of

organisms immensely to prioritize species-based conservation

efforts and provide overarching protection for diverse fresh-

water ecosystems. Here we synthesize all taxonomic and

phylogenetic information to define priorities given the current

available information. Finally, we describe the limitations of

findings and what is needed to achieve a robust framework

to inform conservation priorities in the future.

(a) Taxonomy
Taxonomy is the foundation of conservation, and without

sound taxonomy conservation priorities can become mislead-

ing [76–78]. Our phylogenetic analyses, in addition to

previous published phylogenies, show crayfish taxonomy is

in need of review and curation. For example, both our mol-

ecular phylogeny and synthetic tree confirm multiple

genera are paraphyletic (figures 1 and 2). This is concordant

with previous molecular studies of North American fauna

where species are not monophyletic [20] and genera are not

monophyletic [18]. In addition, our dataset only supports

one of three families as monophyletic (figures 1 and 2).

Two issues may be causing the paraphyly and polyphyly of

families and genera. First, traditional molecular loci used in

crayfish systematics may not be the best choice to resolve the

relationships being estimated (discussed in the molecular

data section below). The second potential cause of conflict
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Figure 4. Bivariate plot of the largest EDGE and HEDGE scores for taxa included in the molecular phylogeny. Calculations were performed in the MESQUITE module
Tuatara.
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between taxonomy and molecular phylogeny may be that the

morphological characters used to diagnose species are not

informative about species relationships at higher taxonomic

levels. The majority of taxonomic conflict occurs among the

North American fauna. This group of crayfish forms a clade

that most likely resulted from a recent rapid radiation, which

is portrayed on a phylogeny as short branches near the term-

inal nodes (figure 2). Quick bursts of cladogenesis leave few

morphological synapomorphies, making it difficult to establish

relationships among species due to the short amount of time

sister taxa were in isolation or gene flow was limited. We

suggest a major reappraisal of North American crayfish taxon-

omy with the aid of a molecular phylogeny that capitalizes on

loci from throughout the genome (see suggestions below).

The Southern Hemisphere taxonomy is not exempt from

problems. The centre of diversity for the Southern Hemisphere

is Australia, where the phylogeny consists of long terminal

branches relative to the North American fauna [21]. The long

terminal branches reflect low diversification rates in recent

years, which may have resulted from the desiccation of Australia

starting with the formation of the Antarctic Circumpolar Current

during the Miocene and the formation of the Antarctic ice sheets

and glacial cycles [79]. With the long terminal branches and

increased time since speciation, the genera form monophyletic

groups, unlike the Northern Hemisphere crayfish. However,

published phylogenies have shown paraphyletic relationships

for genera such as Euastacus [29] and Engaeus [24]. Although

there is limited conflict between phylogeny and taxonomy of

Southern Hemisphere taxa, most of these discrepancies represent

undescribed species rather than true taxonomy conflict.

As part of this study, we revised the existing taxonomy that

forms the basis of the synthetic tree. Although we removed

non-recognized species names from the list of all species in

use in morphological and molecular studies, a larger effort

is needed to describe the undescribed material and formally

re-describe higher taxa according to new molecular, highly
supported, phylogenetic hypotheses. This level of curation

will be difficult as the number of alpha taxonomists has

declined greatly in the molecular and genomics era [80], but

it is desperately needed for conservation efforts.
(b) Crayfish phylogeny
Our effort here to reconstruct the crayfish phylogeny with publi-

cally available sequence data shows the immense historical effort

needed to reconstruct the evolutionary relationships. Despite this

great effort, many generic and intergeneric relationships remain

uncertain. This can be seen in our synthetic tree and supermatrix

we assembled for this study (figures 1 and 2, respectively). We

have sampled approximately 60% of all crayfish species. Unfor-

tunately, from a conservation priority standpoint, our confidence

in conservation priorities estimated in this study is limited by the

percentage of sampled species. The EDGE and HEDGE calcu-

lations all rely on a fully resolved and sampled phylogeny with

branch lengths. Our phylogeny contains 60% of the known

species; therefore, missing 40% of the known species may drasti-

cally overestimate EDGE and HEDGE calculations owing to the

missing taxa not shortening the edge lengths of terminal taxa.

EDGE and HEDGE analyses have primarily focused on the

mammals, where there are estimates of a complete phylogeny.

Although the mammal phylogeny is nearly complete, research-

ers have dealt with missing taxa by placing them as best they

can on the phylogeny [81]. While we can place these taxa accord-

ing to taxonomy (and have done so in our synthetic tree, figure 1),

we do not have branch length information for these data which is

critical to the EDGE/HEDGE calculations. Furthermore, many

of the genera in the Northern Hemisphere crayfish are paraphy-

letic, making the placement of species based on taxonomy

suspect. Therefore, our EDGE and HEDGE estimates should be

taken lightly until a more robust phylogeny and taxonomy are

assembled (work in progress).
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Traditionally in crayfish phylogenetics, five core genes are

sequenced: COI, 12S, 16S, 18S and 28S [82]. Although providing

a well-supported backbone for many groups (figure 2), this set

of loci in combination has failed here to resolve many of the

relationships within and among genera and families. We are

at a time in molecular systematics where genomic data are

being generated at substantial pace and systematics can begin

to look across the genome for loci with a modest amount of

work. Three techniques are currently being used to target

single-copy nuclear genes across the nuclear genome: highly

conserved regions [83], ultraconserved regions [84] and tran-

scriptomes [85]. Each of these methods produces hundreds to

thousands of loci informative across time scales. The crayfish

phylogeny would benefit greatly from a study that targets

one of these sources for loci to estimate and confirm the phylo-

genetic backbone and add support to the relationships within

and among genera.

(c) Diversification rates and extinction
Recent advances in comparative methods have allowed

researchers to estimate extinction from phylogenies [86],

although some are sceptical [87]. Our diversification analyses

show diversification rates were not constant through time

(figure 3). In fact, the best-fit birth–death model for our data

supports three different time-dependent divergence rates.

The timing of changes in diversification are fairly congruent

with the timing of the formation of the Antarctic Circumpolar

Current and the formation of ice sheets [88] approximately

20 Ma, while the most recent change in diversification rate
corresponds to recent glaciation in the Northern Hemisphere

[89]. Future crayfish divergence time estimation should

attempt estimation in a Bayesian framework. Unfortunately,

getting convergence of parameter estimates for a large tree is

difficult; therefore, we have relied on point estimates here as

an approximation and recognize the variance associated with

these dates.

Although we give a general picture of historical diversifi-

cation and extinction here on a geological time scale, future

studies can leverage a more complete tree and other compara-

tive methods to obtain diversification and extinction rates on

a local time scale. For example, new binary and multi-state

character models of diversification rates exist [90,91]. We

envision using these models in conjunction with environ-

mental data layers to look at diversification and extinction

rates of taxa associated with certain types of habitat and natu-

ral history characteristics. Analyses that combine ecology,

morphology, geography and phylogeny can provide power-

ful correlative evidence with high extinction rates that are

associated with particular characters.
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