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In taxon-wide assessments of threat status many species remain not included

owing to lack of data. Here, we present a novel spatial-phylogenetic statistical

framework that uses a small set of readily available or derivable characteristics,

including phylogenetically imputed body mass and remotely sensed human

encroachment, to provide initial baseline predictions of threat status for

data-deficient species. Applied to assessed mammal species worldwide, the

approach effectively identifies threatened species and predicts the geographi-

cal variation in threat. For the 483 data-deficient species, the models predict

highly elevated threat, with 69% ‘at-risk’ species in this set, compared with

22% among assessed species. This results in 331 additional potentially threa-

tened mammals, with elevated conservation importance in rodents, bats

and shrews, and countries like Colombia, Sulawesi and the Philippines.

These findings demonstrate the future potential for combining phylogenies

and remotely sensed data with species distributions to identify species and

regions of conservation concern.
1. Introduction
Human activities continue to cause the loss of many species together with the

function and services they provide [1]. In the face of these mounting threats

and limited resources to conserve species [2], tools are required to identify

those of greatest conservation concern. Global International Union for Conserva-

tion of Nature (IUCN) Red List assessments [3] have provided important

knowledge about the state of biodiversity and have helped to identify priority

species and regions for conservation [4–7]. On this basis, approximately 20% of

mammal, bird and amphibian species are currently identified as threatened [3].

In order to minimize potential biases in perceived patterns of biodiversity

threat, species should be assessed comprehensively or at least representatively.

In addition to undiscovered species [4,8], species with too little information for

threat categorization (‘data-deficient species’) are thus a major concern. The

IUCN assessment process relies on available field-based knowledge of, for

example, population size, rate of decline and range size of each species to assigned

threat status [9–12]. Paucity of data, e.g. owing to financial or logistical limitations

for field studies, makes complete assessments impossible for some species, with

little prospects for change in the near future. The number of species lacking data

may be substantial with, for example, 2436 of 11 806 recognized mammal and

amphibians species classified as ‘data-deficient’ in 2011 [3], including 834

extant mammals. The potential for data-deficient species to change absolute

threat levels of taxa has been acknowledged [4,7]. In the absence of better knowl-

edge, a risk-averse approach may be to simply assume that all data-deficient

species are threatened. But given the sheer number of data-deficient species, the

implications for conservation prioritization may be substantial and carry a high
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cost if large numbers are in fact not threatened. At the other

extreme, data-deficient species may be no more threatened

than assessed species, for example as appears to be the case

with data-deficient birds [13]. Model-based initial baseline

threat predictions for data-deficient species and a general fra-

mework to provide them for groups assessed in the future

would thus hold multiple benefits for conservation practice.

The relative paucity of data on ecology and threats of many

species stands in stark contrast to our rapidly growing detailed

knowledge about species’ phylogenetic relationships and geo-

graphical distributions. Technology now allows cost-effective

and rapid generation of phylogenies for thousands of species.

While often remaining coarse in grain [14,15] or even limited

to type specimen and thus for some species a main reason

for data-deficient status, more facetted geographical distri-

bution information is increasingly becoming available for

many species ([15]; see also mol.org). Distribution data

permit two types of inference about potential threat status.

First, statistical models can quantitatively capture the associ-

ation between range size and threat status in assessed species

[16] and then can be applied to data-deficient species [17–19]

to account for this risk component. Second, geographical

range information can be intersected with environmental

layers that inform about broad-scale environmental niches

and associated life-history signals (e.g. on fecundity, gener-

ation time) related to threat status [16,20]. Also, more

directly, remotely sensed layers of land-cover can provide

coarse estimates of potential habitat loss due to human

encroachment. Information of this kind has recently been

shown to successfully predict threat status in birds [20] and

mammals [21]. Modern statistical tools allow the development

of models of correlates of current threat levels that incorporate

both phylogenetic and spatial data [17,22–27].

In previous work, modelled threat predictions for data-

deficient species have been made without environmental or phy-

logenetic information [19], or without habitat encroachment

information and using eigenvectors [17,18] which are highly

constrained in their ability to appropriately represent both phy-

logenetic and spatial signals [28,29]. A general framework that

readily capitalizes on the ever increasing availability of species

distribution and remote sensing data, and rigorously incorpor-

ates phylogenetic and geographical information is thus still

missing. In this study, we build on our earlier work linking

spatial and phylogenetic models [27] and predicting threat

data with GIS-derived habitat information [20] to develop such

a framework. We demonstrate the approach applied to mam-

mals by parametrizing models of threat status based on readily

available variables capturing key aspects of life history, rarity

and range loss (body mass, geographical range size, human

encroachment on species’ ranges) together with spatial and phy-

logenetic dependency for 3703 mammal species across 16 orders

with sufficient information to be assessed by the Red List. We

then apply these models to 483 species classified as data-

deficient species. We show that the presented framework may

offer a cost-effective way for initial baseline threat evaluation of

many understudied (and potentially at-risk) species.
2. Material and methods
(a) Data
We analysed data on 4186 terrestrial mammal species from

16 orders in the IUCN Red List [30] that could also be placed in
the mammalian super tree phylogeny [31] (with recent updates).

Of these, 3703 species had been assessed (with 812 deemed threa-

tened, i.e. categories ‘Vulnerable’, ‘Endangered’ and ‘Critically

Endangered’) and 483 recognized but not assessed (category

‘Data-Deficient’) by IUCN. We gathered information on mammal

body masses from [32–34]). One order (Perissodactyla) contained

no data-deficient species. We selected native and reintroduced resi-

dent and breeding ranges that were extant or probably extant from

the IUCN expert range maps [30] which we extracted over a 110 �
110 km grid in Equal Area Cylindrical projection. We overlaid each

species range map with information on transformed habitats

owing to anthropogenic activities. Specifically, we estimated

‘Encroachment’ as the proportion of expert range transformed by

past human activities (i.e. cultivated or managed, mosaics, includ-

ing cropland and urban areas) according to the Global Land Cover

2000 land-cover classification [35]. At 1 km native resolution,

this information is collected at much finer scale than expert

range maps and analysis grid [14], but used as a range summary

measure it offers a concrete first-order estimate of overall range

encroachment, and has recently been shown to be a strong corre-

late of expert-assessed IUCN threat status in birds [20]. We note

that other high-resolution global land-cover classifications exist

and that all suffer from remaining classification errors [36]. As an

additional metric, we also calculated the average Human Influence

Index value [37,38] over the species ranges.

(b) Summary of approach
To summarize our approach, we first imputed the body masses of

species for which data are missing and then used generalized linear

models that include phylogenetic and spatial dependence to pre-

dict IUCN status. We account for statistical uncertainty in our

estimates of body mass by using multiple imputation. In order to

incorporate uncertainty in our overall predictions, we express the

model outputs as threat probabilities; i.e. given the predictions of

the model and the statistical uncertainty in these, what is the prob-

ability that each species is threatened (i.e. IUCN categories

Vulnerable, Endangered or Critically Endangered) or not?

(c) Statistical modelling framework
The starting point for our analyses is a linear statistical model relat-

ing the values of a trait of interest to a set of predictors [24,26].

The errors are assumed to have a multivariate normal distribution

with mean 0 and a variance–covariance matrix that is defined by

the phylogeny [23,24,26] and spatial distances [27]. Predictions

from our models were generated by using the fitted parameter

values together with the degree of phylogenetic and spatial

similarity of species using the approach described in [26]. Our pre-

dictions therefore account for the phylogenetic/spatial structure in

the data, i.e. they have the property that closely related, or species

that live in the same place, should be similar to each other. We cal-

culated variances for predicted values using the formulae in [24].

These variances are used to calculate the variance in estimates of

body mass and IUCN status (below).

(d) Phylogenetic and spatial models for trait
covariances

We use the generalized least-squares (GLS) approach described in

Freckleton & Jetz [27] to account for both spatial and phylogenetic

effects. A parameter f is included in the model to account for the

influence of space. According to this model, of the total variance,

a proportion f is attributed to spatial variance, (1 2 f) is due to

the non-spatial component. We also used the l transformation

suggested by Pagel [22,39]. In the context of modelling spatial

and phylogenetic effects simultaneously, the l statistic allows us

to include trait variation independent of both phylogeny and

mol.org
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space in our analysis: a proportion g ¼ (1 2 f ) (1 2 l) of the trait

variation is independent of phylogeny or space [27]. This approach

is akin to including a ‘nugget’ in a spatial model [40]. We estimated

f and l by maximum likelihood [41].

The spatial matrix was calculated and tested using the

approach described in Freckleton & Jetz [27]. The spatial

matrix reduces the spatial configuration of the data to a series

of pairwise distances that measure the distance between each

species. Following Freckleton & Jetz [27], we did this by calculat-

ing the distances between the centroids of the ranges of each pair

of species. The assumption is, therefore, that the variance

between species’ traits grows linearly with spatial distances. As

we showed before, this assumption can be tested graphically

and in the analyses reported here, as well as in Freckleton &

Jetz [27], this assumption was found to be adequate. Following

Freckleton & Jetz [27], in order to aid interpretation of the

model, we define l0 as the relative contribution of phylogeny

(l0 ¼ l(1 2 f )) once the effects of space have been accounted

for. This parametrization allows a simple interpretation of the

joint estimates of f and l because, as shown in Freckleton &

Jetz [27], the sum of g, l0 and f is always 1. These parameters

can be interpreted as the individual proportional contributions

to variance of the different variance components.
 6
(e) Imputation of mammalian body mass
We used estimates of mammalian body masses of 3462 species in

the 16 analysed orders to predict the values for the 723 species

without body mass data. For each order, we used the GLS

approach described above to predict body mass based on the

species with body mass data along with phylogenetic and spatial

information. We conducted this analysis at the level of orders as

previous analysis has shown that the Brownian model, modified

to allow for varying degrees of phylogenetic dependence, pro-

vides an adequate description of body mass variation within

orders [42]. Body mass was log-transformed prior to analysis.

For species missing body mass, we used the predicted values

predicted as estimates of log mass in the modelling of IUCN

threat status. A problem with using single imputation of this sort

is that although parameter estimates should be unbiased [43],

there is a possibility of under-estimation of variances for par-

ameters using this method. We therefore conducted significance

tests for our models using multiple imputation. For this, we calcu-

lated for all species lacking body mass data predicted values using

the above GLS model, along with a variance for each prediction

(using the method in [24], see above). These estimates formed

the basis for the multiple imputations (for further background

on the method, see [44–46]; for specific implementation here, see

also [43]). We used 10 imputations, and the statistical tests reported

in the electronic supplementary material, table S1, are the outcome

of this analysis. We found that in practice, the variance across the

imputations was very small indeed so that this step was not vital

in this case, although this need not always be true.

In order to evaluate the accuracy of the predictions of body

mass, we used a simple randomization. Estimates of l and f

from the best-fitting model for each order were used to construct

a variance–covariance matrix. This variance matrix formed the

basis for generating randomized multivariate normally distributed

data (using the rmvnorm in the R mvtnorm package). Species orig-

inally missing data were then removed and their values imputed.

The correlation of these imputed values with the true values was

then calculated. Note that because this analysis is conducted on

randomly generated data, this is different from a cross-validation

which is based on removal of data from the original data and

would not normally be conducted using single-species removals.

This was repeated 1000 times per missing species per order.

The results of this analysis are summarized in the electronic

supplementary material, table S2.
( f ) Application to IUCN categories
The IUCN categories were treated as a five point ordinal scale

ranging from ‘Least Concern’, 1, to ‘Critically Endangered’,

5. Although the response variable is a discrete ordinal variable,

the models described observed threat levels well, offering explana-

tory power equal to, or better than that found in previous studies

(electronic supplementary material, table S1 and figure S1). This

same approach has been taken in other recent analyses of threat

status [47]. We compared our results with those of generalized

linear models in which responses are treated as multinomial or

ordered logistic responses, which yielded very similar results,

but are unable to address the spatial and phylogenetic covariance

(see the electronic supplementary material, figures S2 and S3, and

below). The main problem in generating an output from the model

is that a fitted/predicted value is a point estimate and does not

account for the statistical uncertainty in our estimates. To incorpor-

ate uncertainty, after the analysis, we converted our predictions of

IUCN status into probabilities of threat. Previous analyses have

taken a similar approach in the analysis of threat status, but instead

converting the threat to a binary variable before the regression

analysis [17]. This has the disadvantage that information on the

ordinal nature of the IUCN scale is ignored. Our analysis, however,

retained the continuous information in the model fitting: for

example, we account for the fact that a species classified as cat-

egory 5 (Critically Endangered) is more at risk than a species in

category 3 (Vulnerable).

To produce these threat probabilities, we calculated the prob-

ability that each species was threatened or not from the

predictions of IUCN status. This was simply done by calculating

pthreatened
i ¼ Z

ypred
i � 2:5

si

 !
, (2:1)

where Z() is the cumulative z (standardized normal) distribution,

ypred is the predicted value and s is its standard deviation. This is

the probability that the predicted value of species i is greater than

2.5 (see also [17,20]). The choice of threshold in equation (2.1) is

dependent on the interpretation of the categories and how these

relate to continuous model predictions. With equation (2.1), a

species with an IUCN status predicted to be 2.5 (i.e. in between

‘Near Threatened’ and ‘Vulnerable’) will have a threat prob-

ability of 0.5. We repeated the analysis using a threshold of 2

which yielded a visually clearer discrimination between the

higher IUCN categories, but did essentially not affect the results

of figure 1 (electronic supplementary material, figure S4),

because the probabilities are simply rescaled such that the

mean probability is 0.5 at a predicted value of 2 rather than

2.5. The results in figure 2 are also extremely similar (electronic

supplementary material, figure S5), because the estimates of

the proportions of species to be threatened or not are set by a

threshold estimated from the data by receiver operator character-

istic (ROC) analysis (below). Thus, results were broadly invariant

to the choice of threshold in equation (2.1).

We used the full models in the electronic supplementary

material, table S1, for making predictions and did not attempt

model reduction. There were several reasons for this. First,

model reduction by elimination of variables (e.g. based on statisti-

cal significance) has undesirable consequences, such as degenerate

sampling distributions and model selection bias [49]. Second,

examination of the coefficients for the predictors indicated that,

independent of statistical significance, the directions of effects

were usually quite consistent between orders. For example,

15 out of 16 coefficients for the effect of body mass are positive

even if all are not statistically significant (electronic supplementary

material, table S1); 12 of 16 coefficients for the encroachment vari-

able are positive (electronic supplementary material, table S1).

Finally, we checked predictions with and without the least signifi-

cant variables and confirmed that the R2 values were not unduly
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Figure 1. Explanatory and discriminative power of the fitted models of threat status for assessed species. (a) The relationship between fitted threat probability and
IUCN status for assessed species. Threat probability is the probability a species is in one of the ‘threatened’ categories according to our spatial – phylogenetic multi-
predictor model. (b) ROC curve, showing the relationship between true positive (sensitivity) and false positive (1 minus specificity) rate. The dashed line is the
expected pattern if the threat probabilities were no better than random at discriminating threatened species. The AUC, which varies between 0.5 and 1, is
the area highlighted in grey and is a measure of explanatory power. (c) The frequency distribution of fitted probabilities for species of contrasting conservation
status. The green bars refer to species of ‘Least Concern’ (IUCN status 1 in (a)), while the red bars refer to species which are ‘Critically Endangered’ (IUCN status 5 in
(a)). (d ) Fitted/predicted threat probabilities shown separately for assessed species (grey) and data-deficient species (red). (Online version in colour.)
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inflated and giving a false impression of good fit. In order to test

the predictive ability of the threat probabilities, we assessed how

well the fitted threat probabilities predicted for assessed species

were able to distinguish threatened from non-threatened species

using the area under the curve (AUC) in the ROC curve [50].

AUC varies between 0.5, which indicates that the predictions are

no better than random, and 1, which is perfect agreement between

observed and predicted. As a threshold for assigning probabilities

into binary categories of threatened and non-threatened, we used

the value at which sensitivity equalled specificity in a given order.

(g) Model approach and limitations
The methodology we have used is based on currently available

tools and will be improved by future developments that include

techniques such as logistic and multinomial generalized linear

mixed models that could account for phylogenetic and spatial

dependence and would enable us to better model the discrete

ordinal state variable [51,52]. However, such tools require very

large datasets: logistic regression requires large amounts of

data because binary observations contain relatively little infor-

mation. Multinomial or ordered responses are an extension of
logistic regression and as the number of states increases the data

requirements increase. Given this, the approach taken here to

treat the data as continuous is unlikely to seriously compromise

the results (see also the electronic supplementary material). More-

over, existing methods for such responses do not combine spatial

and phylogenetic signals, and can be very difficult to implement

and tune. In the future, faster methods for fitting phylogenetic

models are under development and these should facilitate further

methodological advances [53]. We have assumed that the variance

scales linearly with both phylogenetic and geographical distances.

This is supported by diagnostics (for example, see [27] for a

worked examples). The assumption of linearity is not terribly criti-

cal so long as variance increases with distance. In previous work,

we suggested how the assumption could be varied (table 1 in

[27]). However, it should be noted that nonlinear transformations

of variance matrices are potentially difficult to work with. For

example, we have recently shown that a commonly used trans-

formation (the Ornstein Uhlenbeck) is severely biased under

most circumstances for even large datasets [54].

The models we developed are strongly dependent on range

size as a predictor of IUCN status, which reflects the importance

of range size in the formal assessment process. It is important



0 0.2 0.4 0.6 0.8 1.0

Didelphimorphia
opossums

50 11 2 3

Peramelemorphia
bandicoots and bilbies

16 2 6 2

Dasyuromorphia
carnivorous marsupials

59 1 10 1

Diprotodontia
marsupial mammals

106 2 27 0

Cingulata
armadillos

18 2 4 2

Afrosoricida
golden moles/tenrec/otter shrews

32 4 9 3

Macroscelidea
elephant shrews

12 3 2 0

Eulipotyphla
insectivores

300 45 63 35

Chiroptera
bats

759 126 126 89

Carnivora
carnivores

212 14 55 7

Cetartiodactyla
whales, dolphins and even-toed ungulates

193 7 82 6

Primates
primates

220 8 116 5

Scandentia
tree shrews

17 2 2 0

Rodentia
rodents

1618 252 281 174

F = 21.54**

F = 273.34***

F = 0.17(n.s.)

F = 0.15(n.s.)

F = 1.7(n.s.)

F = 2.43(n.s.)

F = 119.29***

F = 58.43***

F = 3.15(n.s.)

F = 0.92(n.s.)

F = 9.99(n.s.)

F = 10.52**

F = 25.92**

F = 15.58**

F = n.a.

Lagomorpha
hares, rabbits and pikas

75 4 14 4

assessed DD assessed DD

mean threat probability

no. species
no.

threatened

Figure 2. Prediction of threats for individual mammal orders. For each order, the average fitted threat probabilities for assessed species (black points) and predicted
threat probabilities for data-deficient (DD) species (red points) are shown (+s.e.). F-ratios and p-values refer to tests of differences between the mean fitted threat
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to note that our predictive models are not aimed at testing the

relevance of this variable (which would require variable elimin-

ation to avoid circularity), but to use this formally recognized

association for prediction. In other words, we use A (assessed

species) modelled by B (novel framework and independent vari-

ables) to predict C (not yet assessed species), not to make

inference about A.
3. Results
(a) Assessed species
For the 16 mammal orders analysed, the threat probabilities

(whether a species is non-threatened or threatened) predicted

by the models successfully explain observed variation in
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Figure 3. The geography of observed and predicted mammal threat levels and richness. Panels illustrate the observed and predicted grid cell proportions of all
species assessed by IUCN to be threatened and analysed here ((a,b) 3703 species, for model details; see the electronic supplementary material, table S1), and the
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those data-deficient species predicted by the combined spatial, phylogenetic and environmental model to be non-threatened ((e) n ¼ 152 of 483 species), and
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assessed threat score (R2 values were typically approx. 40% or

greater; electronic supplementary material, table S1) and effec-

tively predict species threat category (figure 1a). Range size and

body mass were generally strong correlates of threat status,

with smaller ranging and larger species typically being subject

to greater threat (electronic supplementary material, table S1).

Given the inherent role of range size in the IUCN assessment

process [11], these associations are not altogether unexpected

and confirm previous findings [19,20,55,56]. Less consistently

than recently observed in all terrestrial birds [20], land-cover

encroachment and human influence measures are strongly

positively correlated with IUCN threat category in several

orders. This contributes to the overall predictive ability of

the models and confirms the relevance of such variables

for threat predictions (electronic supplementary material,

table S1).

In addition to the strong phylogenetic dependence of body

mass (electronic supplementary material, table S2), nine of

the orders showed phylogenetic or spatial dependence in the

residuals of the models for IUCN threat. The degree of net phy-

logenetic signal in the residuals of the final models is generally

low, with the phylogenetic effect estimated as zero for seven and

very low (0.1 or less) for five orders. Notably, higher estimates

are obtained for primates (0.66). Six orders showed strong

spatial signals, with estimates of the spatial coefficient, w, as

high as 0.6–1.0 (electronic supplementary material, table S1).

The threat probabilities resulting from our models are the
probabilities that each species is in one of the threatened states

rather than not threatened, given the mean and variance

predicted by the model (see Material and methods). The ROC

plot (figure 1b) indicates a very strong discrimination of threa-

tened from non-threatened species with an AUC of 0.90

for the whole dataset and a median of 0.91 for all orders.

These were associated with high degrees of sensitivity and

specificity (typically ca 0.8–0.9; electronic supplementary

material, table S1). Predicted threat probabilities are remarkably

effective in delimiting threat status, as especially illustrated by

the most and least threatened IUCN classes: only 4% of species

assessed to be of ‘Least Concern’ were predicted to have a threat

probability of 0.5 or greater (figure 1c; see the electronic sup-

plementary material, figure S1, for order-level plots) and only

11% of species assessed to be ‘Critically Endangered’ were

assigned a threat probability lower than 0.5 (figure 1c). Across

all threat categories, 61% of species assessed as being under

some degree of threat had estimated threat probabilities greater

than 0.6 and with nearly 31% greater than 0.8 (figure 1c). Over-

all, our predicted threat probabilities are a strong discriminator

of threat status with particularly high values (more than 0.8)

extremely unlikely for species that are not actually threatened.

The relative richness of species assessed as being threatened

is geographically very uneven (figure 3a). Applied to assessed

species, our model predicts this observed pattern very well

(figure 3b). Overall, however, there is a strong association

between the predicted average probability or predicted
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Figure 4. Relationships between observed and predicted threat levels of grid cell assemblages. The model-based predictions of average probability (a) and total pro-
portion (b) of species threatened successfully captures the observed variation in proportion species threatened ((a) Spearman’s r ¼ 0.72; (b) r ¼ 0.66; 3,703 species; cf.
figure 3a,b). Observed and predicted richness of threatened assessed species is tightly associated ((c) r ¼ 0.77, cf. figure 3d ). By contrast, the predicted average threat
levels and proportions of data-deficient species (cf. figure 3c) show only very weak association with the proportional threat patterns of assessed species ((d) r ¼ 0.33;
(e) r ¼ 0.23; 843 data-deficient species). Equally, the areas with high richness of data-deficient species predicted to be threatened shows little covariance with those of
high assessed threatened richness (( f ) r ¼ 0.31, cf. figure 3f ). Darker grey represent higher density of points, line indicates a 1 : 1 relationship. A total of 11 331 110 km
equal area grid cells that had more than or equal to 50% dry land or were oceanic islands and had more than or equal to 2 assessed species were analysed.
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proportion of species threatened and the observed proportion of

species assessed threatened (r ¼ 0.74 and r¼ 0.68, respectively;

figure 4a,b) as well as, expectedly, between predicted and

observed threatened richness (r ¼ 0.82; figure 4c). This suggests

that our models successfully capture the biogeography of

assessed threatened species.
(b) Data-deficient species
Data-deficient species are predicted to be substantially more

likely to be threatened than assessed species (figure 1d), with

an average predicted threat probability of 0.40 compared

with 0.21 in assessed species. For data-deficient species, 28%

of threat probability estimates were greater than 0.6, whereas

for assessed species it was only 11%. Overall threat probabil-

ities were higher for data-deficient species in 10 orders, and

statistically significantly so for seven orders (figure 2). Classi-

fying data-deficient species into binary threat categories

using a standardized order-specific threshold (the value at

which sensitivity equals specificity) results in a total of 331

of 483 species predicted threatened, i.e. 69% of species threa-

tened compared to 29% among assessed species. This

difference is repeated among almost all orders, with a total

of 298 potentially threatened data-deficient species identi-

fied among the Chiroptera, Rodentia and Eulipotyphla alone

(for species-level results, see the electronic supplementary

material, table S3).

Geographically, data-deficient species are predicted to exhi-

bit substantially higher average probabilities and proportions of
species threatened (grid cell assemblage values of 0.12 and 0.17,

respectively) than assessed species (0.06 and 0.06, respectively).

At the grid cell level, the predicted average threat probabili-

ties or proportion of data-deficient species shows barely any

relationship with the proportion of species assessed to be threa-

tened (Spearman rank correlations: r ¼ 0.30 and r ¼ 0.29,

respectively; figure 4d,e). Equally, the richness of data-deficient

species predicted to be threatened is only weakly correla-

ted with that of species assessed to be threatened (r ¼ 0.30,

figure 4f). The discordance in geographical ‘hotspots’ of pre-

dicted assessed and data-deficient threat is apparent when

comparing the maps of their predicted threat probabilities and

species richness in figure 3. Threat levels predicted for data-

deficient species substantially exceed those of assessed species

in many locations (note different colour scales). Data-deficient

species hold much higher predicted threat levels than assessed

species in Colombia and Central America, Southern South

America and parts of Southeast Asia. In terms of species rich-

ness (figures 3f and 4f), data-deficient species are predicted to

strongly increase the number of at-risk species in Sumatra,

New Guinea, Colombia and especially Sulawesi, where in

grid cell 10 likely threatened mammal species add to the

known 16. This suggests that these regions are even more

important for conservation than previous global conservation

prioritization analyses may have suggested [57,58]. By contrast,

data-deficient species predicted not to be threatened occur both

outside (e.g. Southern South America) and inside (e.g. Borneo,

Central and West African forests) some main areas of known

(assessed) high prevalence of threatened species (figure 3d,e).
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4. Discussion
In this study, we have shown that data-deficient species are

much more likely to be under threat than those that have

already been assessed and that the geographical distribution

of data-deficient species that are probably threatened is

different to that of assessed threatened species. This may

have important implications for global mammal conservation

strategies [59]. According to our analysis, it is extremely likely

that well over 300 additional mammal species (69% of those

data-deficient) are threatened, many of them potentially

severely so. This is over an order of magnitude more than

suggested by Davidson et al. [19] which identified 28 data-

deficient mammal species as potentially threatened, but did

not use environmental, spatial or phylogenetic information.

Using eigenvectors, no encroachment data and model vali-

dation with only bats, Jones & Safi [18] estimated 35% of

481 data-deficient mammal species to be potentially threa-

tened. Our statistically more robust approach [28,29] that

additionally uses remotely sensed encroachment information

thus suggests much greater levels of threat in data-deficient

species than previously thought. The relatively low degree

of phylogenetic signal of IUCN status we found here con-

trasts with previous related results in carnivores [17]. This

difference has two sources: (i) from the inclusion of species’

body masses in our analyses, and (ii) from the inclusion of

spatial effects, which also has phylogenetic signal. In particu-

lar, mean mass is both strongly phylogenetically determined

in all orders and strongly related to IUCN status (electronic

supplementary material, table S1). Accounting for body

mass thus decreases the detectable phylogenetic signal.

Our findings suggest that data-deficient species cannot be

ignored in conservation threat assessments and in interpret-

ation of threat status for policy setting. In mammals, data-

deficient species are clearly more likely than non-data-deficient

species to be under significant threat. The association between

threat status and data deficiency arises, because narrow-ranged

(and thus often scarce), large-bodied (that thus often low-

density, long generation time) species, are also very likely to

be those for which little data exist (electronic supplementary

material, table S1; see also [47]). There are notable exceptions:

for instance, the threat probability of data-deficient primates

is no higher than that of those that have been assessed, prob-

ably reflecting the relatively higher research effort directed at

primates in the past. By contrast, rodents are much more diffi-

cult to study (they are small, live in inaccessible habitat and are

frequently nocturnal) and for them over half of data-deficient

species are predicted to be threatened, whereas only 16%

have been assessed as threatened (figure 2). Our findings con-

trast with recent results for birds, where just 0.6% of species are

data-deficient and where species that were recently moved

from this category were found to be less threatened than

non-data-deficient species [13]. However, these only recently

assessed bird species are probably not a representative

sample of data-deficient species as whole, as data-deficient
species assessed first will probably be ones that are more

easily studied (and thus face different, potentially lesser

threats) than those assessed last. The statistical results gathered

from all species may offer more reliable guidance.

Our general aim was to demonstrate how readily available

information can be used to make initial predictions about the

probable conservation status of species for which a formal

assessment has not yet been possible. If a similar proportion

of data-deficient yet threatened mammal species (69%) was

to be found among data-deficient amphibians (1600 out of

6312 species are data-deficient [3]), it would represent a very

large increase of amphibian species at risk. Such a scenario

would add many new species to the threated categories in

the Red List with strong potential consequences for geographi-

cal conservation prioritization. The transferability of mammal-

based estimates to other taxa is of course unclear, but this

realization highlights the importance of expanding assessment

work and seizing the increasing opportunities for rigorous stat-

istical inference of threat status.

The strong importance of select life-history traits and range

size for predicting threat status has previously been illustrated

[16]. Recently, the complementary power of remotely sensed

measures of human land encroachment to predict threat

status has also been demonstrated for birds [20]. Combined

with an increasingly thorough understanding of the spatial

context of species [15] and ever-improving data on the phylo-

genetic signal, a general predictive framework is emerging

that may be instrumental for statistically assessing the thou-

sands of species for which an individual evaluation is time-

or cost-prohibitive. By identifying already assessed species

with highly over- or under-predicted threat status for further

scrutiny, it may also someday help improve the Red Listing

process which is not without human error. Clearly, the pre-

sented framework is no silver bullet to replace the need for

expert assessment based on field ecological data. We expect

that assessment data for at least 50% of species, depending

on representativeness, is needed to provide reasonably reliable

threat predictions, but this will vary by group and probably

often be higher. But this does potentially free up resources

and lower completion thresholds [60,61] that would benefit

the assessment of neglected taxa such as invertebrates and

plants. More generally, a complementary approach to tra-

ditional expert-based assessment may emerge that combines

available phylogenetic/biological data with improved species

distribution knowledge linked to a remotely sensed monitor-

ing of land-cover [15]—all facilitating a dynamic and

continuous baseline assessment of the state of species.
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