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The universal second messenger cAMP is generated upon stimulation of Gs protein-coupled receptors, such as the
β2-adreneoceptor, and leads to the activation of PKA, the major cAMP effector protein. PKA oscillates between an on and off
state and thereby regulates a plethora of distinct biological responses. The broad activation pattern of PKA and its
contribution to several distinct cellular functions lead to the introduction of the concept of compartmentalization of cAMP.
A-kinase anchoring proteins (AKAPs) are of central importance due to their unique ability to directly and/or indirectly interact
with proteins that either determine the cellular content of cAMP, such as β2-adrenoceptors, ACs and PDEs, or are regulated by
cAMP such as the exchange protein directly activated by cAMP. We report on lessons learned from neurons indicating that
maintenance of cAMP compartmentalization by AKAP5 is linked to neurotransmission, learning and memory. Disturbance of
cAMP compartments seem to be linked to neurodegenerative disease including Alzheimer’s disease. We translate this
knowledge to compartmentalized cAMP signalling in the lung. Next to AKAP5, we focus here on AKAP12 and Ezrin (AKAP78).
These topics will be highlighted in the context of the development of novel pharmacological interventions to tackle
AKAP-dependent compartmentalization.

Abbreviations
AKAP, A-kinase anchoring protein; AKIP, A-kinase interacting protein; APP, amyloid precursor protein; CREB, cAMP
response element-binding protein; CSE, cigarette smoke extract; Epac, exchange factor directly activated by cAMP;
GSKIP, GSK3β interaction protein; LTD, long-term depression; MAGUK, membrane-associated guanylate kinase; MAP2,
microtubule-associated protein 2; MLC, myosin light chain; PKI, PK inhibitor; PP2B/CaN, phosphatase 2B/calcineurin
(also PPP3); PSD, postsynaptic density; RhoGDI, Rho guanine-nucleotide-dissociation inhibitor; RI, regulatory subunit I
of PKA; RII, regulatory subunit II of PKA; SKIP, sphingosine kinase interacting protein
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Introduction
GPCRs, such as the Gs-coupled β2-adrenoceptor, currently
represent one of the largest groups of drug targets
(Rask-Andersen et al., 2011). After receptor binding of
β2-agonists, such as isoprenaline and fenoterol, elevation in
the cellular content of cAMP is catalyzed by membrane-
bound ACs (Hanoune and Defer, 2001; Beavo and Brunton,
2002; Dessauer, 2009), a process known to be shaped by
cAMP-degrading PDEs (Conti and Beavo, 2007; McCahill
et al., 2008; Houslay, 2010; Keravis and Lugnier, 2012;
Cheepala et al., 2013). Among the PDE superfamily members,
PDE4, PDE7 and PDE8 exhibit substrate specificity towards
cAMP (Houslay, 2010; Keravis and Lugnier, 2012).

The best known effector of cAMP is PKA. The PKA holo-
enzyme consists of two catalytic (C) subunits, which exist in

three isoforms (Cα, Cβ and Cγ), and two regulatory (R) subu-
nits. There are two major isoforms of PKA, designated as
PKA(I) and PKA(II), which differ exclusively due to the RI and
RII subunits, each again subdivided in an α and β isoform
(RIα, RIβ, RIIα, RIIβ). Upon binding of the two cAMP mol-
ecules to each R subunit, the dimer releases the C subunits
and thereby initiates target protein phosphorylation. PKA is
known to oscillate between an on and off state and thereby
regulates a plethora of cellular responses (Taylor et al., 2013).
With the discovery of the exchange factor directly activated
by cAMP (Epac) (Kawasaki et al., 1998; de Rooij et al., 1998),
the subset of biological functions driven by cAMP started to
become even more diverse (Cheng et al., 2008; Oldenburger
et al., 2012a; Dekkers et al., 2013; Schmidt et al., 2013), and
thereby further supported the concept of compartmentaliza-
tion of cAMP. Tough cyclic nucleotide-gated ion channels
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represent another cAMP-targeted group, a detailed descrip-
tion of this is beyond the scope of our current review and we
would like to refer the reader to a recent review (Biel, 2009).

Concept of compartmentalization of cAMP
The localization of the different PKA isoforms and of the Epac
proteins as well as of cAMP generating and degrading
enzymes is strictly regulated. Indeed, PKA has already, some
time ago found to be activated in either particulate or soluble
cellular fractions (Corbin et al., 1977; Hayes et al., 1980).
Clustering of PKA to lipid rafts and caveolae further support
the existence of subcellular regions specialized in cAMP sig-
nalling that are characterized by a rather dynamic composi-
tion of a specific subset of signalling molecules, which
include Gs-coupled receptors, ACs, PDEs and Epac (Insel and
Ostrom, 2003; Hanzal-Bayer and Hancock, 2007; Gosens
et al., 2008; Patel et al., 2008; Parton and del Pozo, 2013).

About 40 years ago, studies primarily performed in heart
tissue reported that the two prototypical Gs-coupled receptor
agonists isoprenaline and PGE1 elevated both the cellular
content of cAMP, while only isoprenaline increased cardiac
contractility (Corbin et al., 1977; Hayes et al., 1979; 1980;
Buxton and Brunton, 1983). Based on these early studies, the
concept of compartmentalization of cAMP signalling was
introduced, which ignited a new surge of cAMP-related
research. Since then, several studies have provided further
insights into the diversity of cellular strategies to compart-
mentalize intracellular signalling, a concept currently
believed to enable a tightly and fine-tuned control of biologi-
cal functions. Of particular interest is a recent study from
Feinstein et al. (2012). Combining mathematical modelling
and experimental measurements, the authors demonstrated
that the microvascular endothelial barrier strictly relies on
subtle local changes in cellular cAMP. Cytosolic-produced
cAMP disrupted the microvascular endothelial barrier integ-
rity, whereas cAMP produced at the plasma membrane
increased pulmonary microvascular endothelial barrier integ-
rity (Feinstein et al., 2012). Thus, studies on compartmentali-
zation of cellular cAMP emerged as a theme of central
importance to unravel the multiple facets of cAMP signalling
and its effect in physiological and pathophysiological situ-
atons. Such cAMP gradients may display high spatial resolu-
tion, as cAMP signalling often occurs within one protein
complex orchestrated by a scaffold protein; the most studied
family of scaffold proteins coordinating cAMP signalling is
the A-kinase anchoring protein (AKAP) family, outlined in
the next paragraph.

AKAPs
Microtubule-associated protein 2 (MAP2) was found to be
the AKAP that tethers PKA together with microtubules
(Theurkauf and Vallee, 1982). Members of the AKAP family
represent important scaffolding proteins, which determine
the specificity of cellular cAMP signalling. AKAPs control the
spatio-temporal activity of the main cAMP effector PKA and
some AKAPs have been shown to bind Epac (Dodge-Kafka
et al., 2005; Nijholt et al., 2008; Sehrawat et al., 2011).

Through their association with cAMP-elevating receptors,
ACs and/or cAMP-degrading PDEs, AKAPs are able to create
and maintain local cAMP pools (Dodge et al., 2001; Smith

et al., 2006a; Dessauer, 2009; Willoughby et al., 2010). To
date, over 50 members and splice variants of the AKAP family
have been identified (Tasken and Aandahl, 2004; Pidoux and
Tasken, 2010; Skroblin et al., 2010; Welch et al., 2010; Scott
et al., 2012; Troger et al., 2012).

AKAPs: PKA-RI and PKA-C
Differentiation between AKAPs is based on their ability to
bind exclusively to PKA-RI, PKA-RII subunits or in the case of
dual-specific AKAP members both PKA-R subtypes. Most of
the AKAP superfamily members bind the PKA-RII subunit
(Skroblin et al., 2010). In 2010, however, sphingosine kinase
interacting protein (SKIP) was identified as the first mamma-
lian AKAP specific for the binding of PKA-RI (Kovanich et al.,
2010; Means et al., 2011; Burgers et al., 2012). In RIα −/−
mouse embryonic fibroblasts, SKIP was unable to bind any
PKA thereby strongly supporting the notion that SKIP specifi-
cally binds PKA-RI (Means et al., 2011). SKIP is also one of the
few AKAPs shown to sequester two PKA holoenzymes thereby
leading to their sequestration at the inner mitochondrial
membrane (Means et al., 2011). Most AKAPs bind with the R
subunits and thereby interact also indirectly with the C
subunit of PKA. This is distinctly different from the scaffold-
ing proteins A-kinase interacting protein (AKIP1) (Sastri et al.,
2005) and caveolin-1 (Razani et al., 1999), which directly
interact with the C subunit. Upon binding to both the C
subunit of PKA and the p65 subunit of NF-κB, AKIP1 seems to
act as a molecular switch for PKA-driven NF-κB signalling
(Gao et al., 2010; King et al., 2011). In cardiomyocytes, AKIP1
protected against ischaemia/reperfusion damage by decreas-
ing reactive oxygen species generation, a process requiring
the mitochondrial localization of AKIP1 (Sastri et al., 2013).
As both SKIP and AKIP1 seem to exert their primary biological
functions in close proximity to mitochondria, it is tempting
to speculate that AKAP scaffolding mechanisms via the
PKA-RI subunit and/or PKA-C subunit most likely represent
novel molecular mechanisms to unravel yet undefined cellu-
lar roles of AKAP-dependent compartmentalization of cAMP.

AKAPs: functional diversity
and oligomerization
Utilization of distinct combinations of broad-spectrum sig-
nalling proteins, such as PKA, PKC and protein phosphatase
2B/calcineurin (PP2B/CaN), on the same AKAP, namely
AKAP5, modulated the activity of the two distinct neuronal
ion channels: AMPA-type glutamate receptor and M-type
potassium channels, thereby triggering precise localized cel-
lular responses (Hoshi et al., 2005). With this notion, it is
meanwhile generally accepted that AKAPs act as a Swiss army
knife that seem to execute differential cellular tasks upon
subtle changes in their interacting proteins. Together with
the huge number of different members of the AKAP family,
the multitude of cellular tasks being performed in different
cellular compartments is largely increased.

Even further complexity is added with the finding that
AKAPs form homodimers (Baisamy et al., 2005; Gao et al.,
2011b; Gold et al., 2011) and heterodimers (Gao et al.,
2011a), a process initially described for AKAP-Lbc (Baisamy
et al., 2005). For example, overexpression of AKAP12 in cells
that endogenously express AKAP5, such as HEK293 or A431
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cells, potentiates AKAP5-mediated phosphorylation of
ERK1/2 in response to the β2-agonist isoprenaline (Gao et al.,
2011a). Interestingly, however, AKAP12-mediated recycling
of the β2-adrenoceptor was unaffected upon AKAP5 overex-
pression (Gao et al., 2011a) (Figure 1). Thus, oligomerization
of AKAP family members may regulate a distinct subset of
signalling properties. However, mechanisms involved in
AKAP oligomerization, and how such dimer formation is
triggered by molecular cues still remain obscure.

For the purpose of this review, we will summarize the
most important features of AKAP5, AKAP12 and Ezrin
(AKAP78) (Table 1). Neuronal key discoveries will be recapitu-
lated to introduce paradigm shifts that illustrate the general
spatio-temporal nature of the compartmentalized cAMP sig-
nalling. Our goal is to translate the lessons learned from
neurons to the lung as our current knowledge about cAMP
compartmentalization in the airways is rather limited. Before
that, we will focus in the next section on cAMP compartmen-
talization via AKAPs acting alone with PKA or in concert with
Epac, starting in the following section with the different tools
currently available or under development.

Tools to study compartmentalization
of cAMP

In the following section, we will highlight novel tools used to
study the effect of AKAP-bearing multiprotein complexes on
a diverse subset of biological functions. As some AKAPs bind
to Epac in addition to PKA, we will briefly discuss some tools
that are used to interfere at the level of PKA or Epac. For
further details about Epac, we would like to refer the reader to
recent reviews on this topic (Oldenburger et al., 2012a;
Dekkers et al., 2013; Schmidt et al., 2013). Our main focus is
the tools that interfere with AKAP-bearing multiprotein
complexes.

Epac and PKA
To distinguish between PKA and Epac, cell membrane-
permeable cyclic nucleotide analogues have been developed,
such as N6-benzyladenosine-3′,5′-cyclic monophosphate for
PKA or 8-(4-chlorophenylthio)-2′-O-methyl-cAMP for Epac
(Holz et al., 2008; Grandoch et al., 2010; Schmidt et al., 2013).

Figure 1
Members of the AKAP family and the function of the β2-adrenoceptor (β2–AR). Left: AKAP5 has been shown to constitutively associate with the
β2-adrenoceptor receptor (Fraser et al., 2000; Lynch et al., 2005; Chen and Malbon, 2009). Upon β2-adrenoceptor activation, AKAP5-bound PKA
phosphorylates the receptor, facilitates the switch of Gs to Gi and thereby permits signalling to ERK (Fraser et al., 2000; Lynch et al., 2005). In
addition, AKAP5-bound PKA phosphorylates GRK2, enhances the affinity of GRK2 for Gβγ subunits and subsequent interaction with the
β2-adrenoceptor (Cong et al., 2001). Middle: Receptor-bound GRK2 has the ability to interact with Ezrin (AKAP78), the latter known to be required
for the internalization of the β2-adrenoceptor (Cant and Pitcher, 2005). Right: β2-adrenoceptor activation leads also to phosphorylation of AKAP12
via bound PKA and increases the association of AKAP12 with the β2-adrenoceptor receptor, a process known to be essential for the recycling of
the β2-adrenoceptor (Shih et al., 1999; Tao et al., 2003).
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In addition, inhibitors of PKA have also been synthesized,
such as Rp-8-CPT-cAMPS, and have been shown to abolish
the dissociation of PKA-C subunits from the PKA-R subunits
(Grandoch et al., 2010). These compounds seem to provide
more specificity compared with PKA inhibitors known to act
on the ATP binding site, such as H-89 (Bain et al., 2007).
Inhibition of PKA can also be achieved with the PKA inhibitor
(PKI) (Yan et al., 2011). Very recently, pharmacological inhibi-
tors of Epac have been identified, which seem to act primarily
on Epac1 (CE3F4) or Epac2 (ESI-05) (Courilleau et al., 2012;
Tsalkova et al., 2012a,b). Even though researchers worldwide
use the novel compounds to gain insight into the contribu-
tion of Epac1 and/or Epac2 to biological functions (Chen
et al., 2013), their mode of action and specificity warrants
further studies (Rehmann, 2013). Specific activators for Epac1
and Epac2 are still lacking.

AKAPs: genetically modified mice
To address the physiological importance of specific AKAPs in
vivo, mice deficient for a specific AKAP gene (e.g. AKAP5−/−) or
for a specific AKAP-protein interaction, for example by intro-
ducing a truncation for AKAP5-PKA interactions have been
developed (AKAP5Δ36). Ablation of AKAP members has led to
several phenotypes such as decreased fertility (e.g. AKAP1,
AKAP4), cardiac arrhythmias [e.g. AKAP10 (D-AKAP2)], devel-
opmental [e.g. mAKAP (AKAP6), WAVE-1] and neuronal
defects (e.g. AKAP5, MAP2) (Hundsrucker and Klussmann,

2008; Skroblin et al., 2010). Based on these findings, it has
been suggested that drug targets interfering at the level of
AKAPs might have the ability to disturb signalling driven
by cAMP and might, therefore, represent a novel layer
of pharmacological interventions (Dodge-Kafka et al., 2008;
Hundsrucker and Klussmann, 2008; Troger et al., 2012).

AKAPs: dynamics of PKA and AKAP
To assess the dynamics of the primary AKAP interaction
partner PKA in vivo, several FRET tools have been developed,
taking advantage of the genetically encoded A-kinase activity
reporters (Nagai et al., 2000; Zhang et al., 2001; 2005; Allen
and Zhang, 2006; Depry et al., 2011; Komatsu et al., 2011).
The addition of cellular localization signals permits the
recruitment of these tools to subcellular compartments,
including the cytosol, the nucleus, the sarcoplasmic reticu-
lum, the mitochondria (using an AKAP-based localization),
the plasma membrane (Allen and Zhang, 2006; Liu et al.,
2011) and even the raft or non-raft domains of the cell mem-
brane (Depry et al., 2011). Interestingly, the PKA-based bio-
sensors have been transferred to AKAP research by combining
them with AKAP12 (Tao et al., 2010) and AKAP5 (Kocer et al.,
2012). Using this novel approach, distinct dynamics of PKA
bound to either AKAP12 or AKAP5 at the membrane com-
pared with cytosolic/perinuclear regions were identified (Tao
et al., 2010; Kocer et al., 2012). Currently, several novel
insights into the subcellular dynamics of AKAP-bound PKA

Table 1
Subset of AKAP family members known to regulate biological functions in the lung and brain

AKAP Interactions Processes involved

AKAP5 (HUGO)
AKAP79 (Human)
AKAP150 (Murine)
AKAP75 (Bovine)
H21

AKAP12, AKAP5
β1/β2-adrenoceptor
AC5, Epac2
PKB/Akt, PKC
PP2A/B, Calcineurin, Calmodulin
PSD-95, MAGUK, SAP97
PIP2, F-actin
E-/N-Cadherin
AMPA/NMDA receptor
Cav1.2

β2-AR switching to ERK
β2-AR desensitization
Cell cycle progression
Synaptic plasticity

AKAP12 (HUGO)
AKAP250
Gravin (Human)
SSeCKS (Murine)
Tsga12
Srcs5
AI317366

AKAP5, AKAP12
β2-adrenoceptor
PKC

β2-AR resensitization
Cell cycle progression
Synaptic plasticity

Ezrin
AKAP78
Cytovillin
p81
Villin-2

EBP50 (NHERF1)
GRK2
RhoGDI
Rho
Rac
Epac

β2-AR internalization
Actin-binding linker protein

The most important AKAP interactions are highlighted, except of their primary binding partner PKA. Text between parentheses, AKAP
synonym using the HUGO gene nomenclature or name of a certain orthologue. For further details and references, see text. β2-AR,
β2-adrenoceptor.

BJPA-kinase anchoring proteins in chronic diseases

British Journal of Pharmacology (2014) 171 5603–5623 5607



are based on cell transduction with PKA-defined AKAP report-
ers and studies in genetically modified mice.

AKAPs: pharmacological tools
Novel pharmacological tools have been developed to over-
come the technical limitations and to study the biological
effect of AKAP-based multiprotein complexes in vivo. A con-
served amphipathic helix represents a well-defined domain
structure present in all AKAP superfamily members, which is
required for the interaction with the primary AKAP-binding
partner PKA (Malbon et al., 2004; Wang et al., 2006). The
amphipathic helix is inserted into the hydrophobic pockets
formed by the dimer of the PKA-R subunits (Gold et al., 2006;
Kinderman et al., 2006). It is this amphipathic helix that
provided the first basis for the design of dominant interfering
peptides able to disrupt the interaction between PKA and
AKAP, such as Ht31 (Figure 2A). The stearated form of Ht31,
st-Ht31, exhibits an improved membrane permeability
(Skroblin et al., 2010). It is important to note that the gen-
eration of such PKA-AKAP interfering peptides has enabled
the research community to gain insights into the contribu-
tion of AKAP–PKA interactions to a diverse subset of cellular
functions in physiology and pathophysiology (Tasken and
Aandahl, 2004; Hundsrucker and Klussmann, 2008; Skroblin
et al., 2010; Troger et al., 2012).

The original peptides, however, provided little, if any,
distinction between PKA-RI and PKA-RII subtypes and
members of the AKAP family. Through bioinformatics RI
[A-kinase binding (AKB), RI anchoring disruptor] (Burns-
Hamuro et al., 2003; Carlson et al., 2006) and RII-specific
[AKB-RII, (Super)-AKAP-IS] (Alto et al., 2003; Burns-Hamuro
et al., 2003; Gold et al., 2006) compounds were designed to
discriminate between different type of PKA–AKAP interac-
tions, PKA-RI or PKA-RII subunits. In attempts to overcome
the central limitation in the current AKAP research field, a
recent study from Scott and colleagues reported on the design
of Rselect peptides, based on the RII subunits of PKA that seem
to exhibit selective affinity for certain members of the AKAP
family (Gold et al., 2013). Intriguingly, using a phage selec-
tion procedure combined with high-resolution structural bio-
informatics AKAP2 (AKAP-kidney/lung) and AKAP7 (AKAP18)
selective Rselect peptides were validated by biochemical and
cell-based experiments (Gold et al., 2013). The AKAP5
(AKAP79, AKAP150) Rselect peptide, however, not only inter-
fered with the binding of PKA to AKAP5, but also its binding
to AKAP7 and AKAP11 (Gold et al., 2013). Functional data for
these new tools have yet to come; however, the importance of
this development is evident as for the first time it is possible
to distinguish between the individual PKA compartmentaliz-
ers without genetic modifications.

In addition, recent studies intend to facilitate a distinc-
tion between different AKAPs based on their ability to inter-
act with a discrete interaction partner and/or on mechanisms
distinct from the AKAP–PKA interaction outlined earlier. The
dominant interfering peptide, GSKIPtide, structurally based
on the glycogen synthase kinase 3β (GSK3β) binding site of
GSK3β interaction protein (GSKIP), competes with AKAP
members known to bind to GSK3β, including GSKIP, AKAP11
and MAP2D (in rat) and thereby to disrupt the compartmen-
talization of GSK3β (Chou et al., 2006) (Figure 2B).
Meanwhile, similar peptides were designed, such as a phos-

pholamban peptide, which is able to prevent the interaction
with AKAP7δ (Lygren et al., 2007), and EBP50 (also known as
NHERF1, SLC9A3R1) peptide, which prevents the interaction
with Ezrin (AKAP78) (Stokka et al., 2009) (Table 1). Also of
particular interest are peptides that specifically inhibit the
interaction between mAKAP and the AC isoform 5 (AC5),

Figure 2
Strategies for disrupting AKAP complexes. Schematic illustration of
the different ways to disrupt AKAP complexes. (A) Using PKA-AKAP
dominant interfering peptides, such as Ht31, to displace PKA as the
archetypical AKAP interaction partner. (B) Using dominant interfering
peptides to disrupt interactions between proteins and AKAPs, such as
GSKIPtide, to remove GSK3 from AKAP complexes. (C) Similar strat-
egies are now applied using small molecules such as FMP-API-1. For
further details, see text.

BJP W J Poppinga et al.

5608 British Journal of Pharmacology (2014) 171 5603–5623



leaving the interaction between AKAP5-AC5 unaltered
(Kapiloff et al., 2009). Recently, a disruptor for the Hsp20-
PDE4 interaction has been described that liberates PDE4 from
the AKAP-Lbc based complex (Sin et al., 2011).

Most tools being developed thus far, however, are still
peptide based and might therefore exert some unknown
interactions. For example, it has been reported that st-Ht31P,
generated from st-Ht31 by two proline substitutions believed
to render the molecule incapable of disrupting the AKAP–PKA
interaction (Skroblin et al., 2010), seems to inhibit PKA
(Klussmann et al., 1999). The aim of current research is to
design small-molecule inhibitors for PKA–AKAP interactions
(Christian et al., 2011; Schafer et al., 2013). Intriguingly, it has
been reported that the small molecule 3,3′-diamino-4,4′-
dihydroxydiphenylmethane (FMP-API-1) and its derivatives
inhibit AKAP–PKA interactions in vitro and in cultured car-
diomyocytes (Christian et al., 2011) (Figure 2C). As FMP-
API-1, however, also activates PKA (Christian et al., 2011),
synthesis of additional small molecules is still warranted.
Indeed, new terpyridine scaffolds has been recently synthe-
sized (Schafer et al., 2013), representing the non-peptidic
compounds which might exert less unwanted biological side
effects.

Relation to disease

Disturbance of AKAPs either at the level of their expression
profile or biological functions has been associated with a
variety of diseases (Tasken and Aandahl, 2004; Hundsrucker
and Klussmann, 2008; Skroblin et al., 2010; Troger et al.,
2012). For example, AKAP12, also known as AKAP250 or
Gravin, was first identified as an auto-antigen in myasthenia
gravis (Nauert et al., 1997). Down-regulation of AKAP12 is
associated with prostate hyperplasia (Akakura et al., 2008)
and several types of cancer (Gelman, 2010), including gastric
cancer (Choi et al., 2004). It is tempting to speculate that
down-regulation of AKAP12 might be mediated by promoter
hypermethylation, a mechanism described before in the
context of oesophageal and colon cancer (Mori et al., 2006;
Jin et al., 2008; Paintlia et al., 2009). Such a mechanism is
important for the promotion of cancer cell invasiveness by
AKAP12 (Su et al., 2010). In line with this, AKAP12 inhibits
cell proliferation (Gelman, 2010; Akakura and Gelman,
2012). In addition to AKAP12, other members of the
AKAP family, such as AKAP4 and AKAP9, are discussed as
cancer markers (Hasegawa et al., 2004; Sharma et al., 2005;
Ferrari et al., 2007; Chiriva-Internati et al., 2008; Frank et al.,
2008).

In the following sections, we will first focus on the com-
partmentalization of cAMP maintained by AKAPs in the
context of neuronal learning and memory processes related
to neurodegenerative diseases, including Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease, multiple sclerosis
and Wallerian degeneration. Then, we will highlight our
current knowledge about compartmentalized cAMP signal-
ling networks in the context of obstructive pulmonary dis-
eases, such as chronic obstructive pulmonary disease and
asthma, and whenever appropriate we will emphasize the
effect of AKAP-based multiprotein complexes.

Lessons from neurons and
neurodegenerative diseases

In the following sections, we will discuss the most recent
findings on compartmentalized cAMP signalling to maintain
proper neuron functions and to alleviate symptoms of neu-
rodegenerative disease. In particular, we will highlight studies
that focus on members of the AKAP family.

Concept of neuronal cAMP
compartmentalization: PKA and Epac
Neurons represent highly polarized structures, displaying
short, tapered dendrites and long, thin axons (Andersen and
Bi, 2000; Hutchins, 2010; Shelly et al., 2010). In primary rat
hippocampal neurons, Poo and colleagues demonstrated that
liver kinase B1 phosphorylation by PKA represents an early
event in axonal differentiation, whereas Smurf1 phosphor-
ylation by PKA directs selective neuronal degradation of Par6
or RhoA (Shelly et al., 2010; Cheng et al., 2011). In rat dorsal
root ganglion neurons, local cAMP levels regulate axonal
guidance through the attraction and repulsion of axons, a
process involving netrin-1 and myelin-associated glycopro-
tein (Murray and Shewan, 2008; Murray et al., 2009). High
cAMP levels during the embryonic stage regulate axonal guid-
ance by Epac, whereas low cAMP levels during the postnatal
stage result in growth cone repulsion by PKA (Murray et al.,
2009).

Local changes in cAMP determine hippocampus-
dependent learning and memory stages such as acquisition,
consolidation, retrieval, reconsolidation and extinction (Abel
and Lattal, 2001; Abel and Nguyen, 2008). Since the pioneer-
ing work in Aplysia 30 years ago (Castellucci et al., 1980;
Abrams et al., 1984), several studies link cAMP and PKA to
locally defined synaptic plasticity, learning and different
memory stages (Arnsten et al., 2005; Abel and Nguyen, 2008;
Gelinas et al., 2008; Nijholt et al., 2008; Nijholt et al., 2007).
In addition, several recent genetic and pharmacological
studies report on the role of Epac in a context-dependent
fear-conditioning paradigm (Morozov et al., 2003; Ouyang
et al., 2008; Kelly et al., 2009; Ma et al., 2009; Ostroveanu
et al., 2010; Schutsky et al., 2011; Srivastava et al., 2012;
Yang et al., 2012).

Concept of compartmentalization of
cAMP: AKAP5
As outlined earlier, both PKA and Epac seem to sense local
changes in cAMP to control neuronal development and dif-
ferentiation, learning and memory. Compartmentalization of
cAMP in the brain seems to be maintained primarily by
AKAP5 (Moita et al., 2002). AKAP5 is regulated during neuro-
nal development (Robertson et al., 2009) and provides a plat-
form to integrate neuronal cAMP signalling networks (Nijholt
et al., 2008). Thus, AKAP5 most likely coordinates the fine
tuning of cAMP by regulating the temporal and spatial events
controlling cAMP levels. Indeed, a neuronal cAMP-sensing
multiprotein complex maintained by AKAP5, PKA, Epac2 and
PKB(Akt)-controlled the survival PKB (Akt) pathway (Nijholt
et al., 2008).
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AKAP5: neurotransmission, learning
and memory
Binding of PKA to AKAPs alters synaptic protein phosphor-
ylation and thereby controls synaptic plasticity and memory
consolidation (Moita et al., 2002). In hippocampal neurons,
AKAP5 acts as a postsynaptic scaffold protein that also binds
to PP3 in addition to PKA protein PP2B/CaN (Bauman et al.,
2004) and PKC (Smith et al., 2006c; Tunquist et al., 2008)
(Figure 3). The postsynaptic AKAP5 localization is dependent
on its association with the actin cytoskeleton, acidic phos-
pholipids and cadherins (Gomez et al., 2002; Gorski et al.,
2005b). Binding of AKAP5 with membrane-associated gua-
nylate kinase (MAGUK) is required for maturation of den-
dritic protrusions into large, dendritic spines with an
increased density of synaptic AMPA receptors (Robertson
et al., 2009). The functional relation between AKAP5 and
AMPA receptors may also be linked to the binding of AKAP5
to the MAGUK family member SAP-97 (Colledge et al., 2000).
AKAP5 can also bind the postsynaptic density protein

(PSD)-95 to regulate NMDA receptors (Smith et al., 2006b;
Bhattacharyya et al., 2009) (Figure 3). Next to the interaction
of AKAP5 with several members of the scaffold protein PSD
family, binding of AKAP5 to cadherins may also influence
synaptic plasticity mechanisms, a process implicated in
the regulation of NMDA receptors (Gorski et al., 2005a)
(Figure 3).

AKAP5 directly interacts with the neuronal L-type
calcium channel subunit Cav1.2 (Oliveria et al., 2007), and
thereby forms a complex with AC, PKA and PP2A, and is,
therefore, able to modulate Ca2+ signalling downstream of the
β2-adrenoceptor (Davare et al., 2001). Anchoring of PP2B/
CaN to AKAP5 regulates internalization and rapid dephos-
phorylation of the AMPA receptor, and most likely reflects
a form of molecular and cellular memory associated with
long-term depression (LTD) (Figure 3B) (Smith et al., 2006b).
Indeed, brain slices derived from adult AKAP5 knockout mice
display normal basal hippocampal spine density and synaptic
transmission, but exhibit a deficiency in LTD, learning and
memory (Robertson et al., 2009). Malenka and colleagues
(Jurado et al., 2010) reported that AKAP5 modulates LTD,
most likely through binding of AKAP5 to PSD-95, causing the
release of PP2B/CaN, and subsequently enhances endocytosis
of synaptic AMPA receptors. As a consequence, AKAP5 may
leave the spine and thereby contribute to the shrinkage of
spines that accompanies LTD (Jurado et al., 2010). Currently,
the best genetic models for studying AKAP5 function are the
Δ36 mice, which lack the PKA binding site at the C-terminus
of AKAP5 (Lu et al., 2007), and AKAP5-deficient mice
(Weisenhaus et al., 2010). Δ36 mice display both long-term
potentiation and LTD defects. In contrast, the AKAP5-
deficient mice exhibit only LTD defects. Such differences
suggest that the most critical function of AKAP5 is most likely
related to its interaction with PKA, to control the formation
and/or maintenance of dendritic spines (Lu et al., 2011). It is
clear that regulation of PKA signalling by AKAP5 is necessary
to facilitate neurotransmission, learning and defined stages of
the memory.

Throughout the mouse brain, AKAP5 is widely distributed
in regions linked to learning and memory in rodents, such as
the cortex, the hippocampus and the amygdala (Glantz et al.,
1992; Ulfig and Setzer, 1999; Moita et al., 2002; Ostroveanu
et al., 2007). Using contextual fear conditioning in mice, the
expression of AKAP5 protein was increased in the hippocam-
pus in a late phase of memory consolidation of associative
memory (Nijholt et al., 2007). Disruption of hippocampal
AKAP–PKA interactions by st-Ht31 or st-superAKAP-IS facili-
tates the extinction and impairs the consolidation of contex-
tual fear memories, whereas acquisition and retrieval remain
unchanged (Nijholt et al., 2008) (Figure 3). Disruption of
AKAP–PKA interactions by st-Ht31 in the rat lateral amygdala
impaired memory consolidation in auditory fear condition-
ing (Moita et al., 2002). Using the Morris water maze to study
learning and spatial memory, AKAP5-deficient mice exhibit
deficits in spatial memory retention most likely caused by
delocalization of PKA and subsequent alterations in the local
environment of cAMP signalling in the hippocampus
(Tunquist et al., 2008). Taken together, the results from
several recent studies illustrate the importance of AKAP5 for
maintaining neuronal compartmentalized cAMP signalling to
coordinate learning and memory.

Figure 3
Compartmentalization of cAMP in neurons in relation to neurode-
generative diseases. (A) Illustration of cAMP compartmentalization
with emphasis on AKAP5 and selected adaptor proteins in neurons
and their alterations under pathological conditions including Alzhei-
mer’s disease, Parkinson’s disease, Huntington’s disease, multiple
sclerosis and Wallerian degeneration. (B) An example of disrupted
cAMP compartmentalization, as it was shown that AKAP5 coordi-
nated calcineurin (CaN) was required for AMPA receptor internaliza-
tion and LTD, removal of the AKAP5 caused an impairment of this
LTD. For further details, see text.
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AKAP5: lessons from Alzheimer’s disease
As discussed earlier, cAMP in neurons is crucial for learning,
memory and physiological events but it is not known how
this system is altered under pathological neurodegenerative
circumstances. Elucidating this is likely to provide mechanis-
tic insights that may give some clues for the development of
novel pharmacological tools. Ample evidence suggests that
perturbation of local cAMP signalling contributes to the
development and progression of neurodegenerative diseases.
Here, we focus on the role of the players discussed previously
in the context of Alzheimer’s disease.

Alzheimer’s disease is a neurodegenerative disease char-
acterized by the progressive decline of cognitive function
and memory, and is the fourth largest cause of death for
people over 65 years of age (Sonkusare et al., 2005). The
disease is characterized by extracellular β-amyloid plaques,
intracellular neurofibrillary tangles, cholinergic transmission
defects and neuronal loss preferentially in the entorhinal
cortex and hippocampus (Sonkusare et al., 2005). As several
inflammatory markers are up-regulated in Alzheimer’s
disease, it is generally assumed that inflammation is linked
to the pathogenesis of Alzheimer’s disease. Indeed, amyloid
plaques seem to trigger inflammatory processes (McGeer
and McGeer, 1995; Martinez et al., 1999; Halliday et al.,
2000; Rogers, 2008).

Chronic infusion of lipopolysaccharide (LPS) has been
used as an experimental model to mimic certain aspects of
Alzheimer’s disease (Jaeger et al., 2009). Chronic lipopolysac-
charide infusion into the fourth ventricle of young rats
induces brain inflammation and subsequently activation of
microglial, a process accompanied by a reduction in the
expression of adenosine A2B receptors and cAMP (Rosi et al.,
2003). Mengod and colleagues (Perez-Torres et al., 2003),
using in situ hybridization, showed that at early stages of
Alzheimer’s disease, PDE4, in particular PDE4B, and PDE7 are
up-regulated, while at later stages of Alzheimer’s disease,
PDE8 is up-regulated (Perez-Torres et al., 2003). Both studies
imply that progression of Alzheimer’s disease is associated
with a limitation in cellular cAMP.

Accumulating evidence suggests that Aβ-induced neuro-
toxicity alters NMDA receptor signalling through the cAMP
response element-binding protein (CREB), a transcription
involved in learning and memory processes (Snyder et al.,
2005). Moreover, CREB phosphorylation was reduced
in the hippocampus of Alzheimer’s post-mortem brains
(Yamamoto-Sasaki et al., 1999). Intriguingly, Shelanski and
colleagues showed that treatment of rat hippocampal
neurons with Aβ peptides decreases the dissociation of PKA C
and R subunits and thereby phosphorylation of downstream
targets such as CREB (Vitolo et al., 2002). The PDE4 inhibitor
rolipram promotes the dissociation of PKA’s C and R subunits
and reverses the inhibitory effects of Aβ peptides on CREB
phosphorylation (Vitolo et al., 2002; Cheng et al., 2010;
Wang et al., 2012). As PKA-dependent signalling studied by
CREB phosphorylation in the hippocampus of Alzheimer’s
post-mortem brains was reduced (Yamamoto-Sasaki et al.,
1999), Arima and colleagues proposed that CREB phosphor-
ylation may serve as a molecular biomarker of ageing-related
pathological processes (Satoh et al., 2009), in particular of
Alzheimer’s disease.

In addition to PKA, recent studies indicate that Epac may
also be linked to Alzheimer’s disease. Lezloualc’h and col-
leagues show that the Epac effector Rap1 promotes the acti-
vation of Rac, and subsequently leads to the cleavage of the
amyloid precursor protein (APP) and production of secreted
APPα (sAPPα) (Maillet et al., 2003). Rap1 can directly interact
with Sif- and Tiam1-like exchange factor, a specific guanine
exchanging factor (GEF) for Rac1, and this association is
involved in the secretion of the sAPPα (Zaldua et al., 2007).
Moreover, activation of the serotonin receptor of the subtype
4 increases sAPPα through Epac1/Rap1/Rac (Robert et al.,
2005). It has been postulated that sAPPα acts as a memory
enhancer and neuroprotector (Maillet et al., 2003; Robert
et al., 2005). Thus, production of sAPPα by Epac may reduce
the symptoms of Alzheimer’s disease. Indeed, in human brain
regions associated with Alzheimer’s disease, Epac1 mRNA is
up-regulated, which is accompanied by a down-regulation of
Epac2 mRNA (McPhee et al., 2005).

Next to Alzheimer’s disease, cAMP and its players are
associated with others neurodegenerative disease such as Par-
kinson’s disease, Huntington’s disease, multiple sclerosis and
Wallerian degeneration (Table 2). Several lines of evidence
indicate that alterations in local cAMP dynamics might be
caused by inhibition of PKA, up-regulation of a specific PDE
subset, up-/down-regulation of Epacs or a combination of
these events. Persistent limitations in the cellular cAMP level,
due to either defects in the cAMP-producing receptors and/or
elevations of the cAMP-degrading PDEs, such as PDE4, seem
to underpin the development and progression of neurode-
generative diseases (Table 2). Even though not yet being
studied in detail in the context of neurodegenerative diseases,
a central role for the AKAP family member AKAP5 might
be envisaged due to its ability to interact with the
β2-adrenoceptor and/or PDE4 (Lynch et al., 2005), and due to
its ability to maintain neuronal cAMP compartmentalization.

Airway smooth muscle and obstructive
pulmonary diseases

Chronic obstructive pulmonary disease (COPD) and asthma
are both obstructive inflammatory airway diseases character-
ized by chronic inflammation, airway obstruction and airway
remodelling, albeit with different aetiology and specific
pathological features (Barnes, 2008; Hogg and Timens, 2009).
COPD is predicted to be the third leading cause of death by
disease worldwide in 2020 (Rycroft et al., 2012). Airflow limi-
tation in asthma is reversible with bronchodilators and asso-
ciated with airway hyperresponsiveness, whereas airway
obstruction in COPD is largely irreversible and lung function
decline is progressive (Meurs et al., 2008; Guerra, 2009; Hogg
and Timens, 2009; Barnes, 2011). Airway smooth muscle cells
contribute to disease symptoms in both asthma and COPD
due to their multifunctional behaviour that supports airway
remodelling and airway obstruction, causing the limitation of
airflow (Halayko et al., 2008; Damera and Panettieri, 2011;
Billington et al., 2013).

Different classes of bronchodilators are used in practice:
β2-adrenoceptor agonists (β2-agonists), muscarinic receptor
antagonists (anticholinergics), individually or in combina-
tions, with or without the addition of anti-inflammatory

BJPA-kinase anchoring proteins in chronic diseases

British Journal of Pharmacology (2014) 171 5603–5623 5611



glucocorticosteroids (Peters et al., 2010; Vogelmeier et al.,
2011; Sethi et al., 2012; Kandeel et al., 2013; Meurs et al.,
2013). The main targets for the therapeutic treatment of
obstructive pulmonary diseases have a direct or indirect link
to GPCR signalling, mainly to the β2-adrenoceptor and the M3

muscarinic receptor. In obstructive airway diseases, increase
in smooth muscle mass and hypercontractility cause severe
limitations in the airflow. Airway smooth muscle cell growth
is inhibited by several β2-agonists such as fenoterol and sal-
butamol (Ibe et al., 2006; Yan et al., 2011). Increased smooth
muscle mass is believed to reduce the lumen size of the
airways, a process associated with aberrant β2-adrenoceptor
signalling (Deshpande and Penn, 2006). Despite the fact that
β2-agonists are generally well tolerated (Donohue et al., 2008;
Hanania et al., 2010), long-term use of β2-agonists caused
variations in the treatment outcome in asthma and COPD
patients, being either less efficacious in COPD patients or
even leading to an increased incidence of asthma exacerba-
tions and other markers of morbidity and mortality (Liesker
et al., 2002; Giembycz and Newton, 2006; Aguilaniu, 2010;
Kliber et al., 2010).

Another treatment option in obstructive airway diseases is
represented by PDE inhibition, for instance the selective
PDE4 inhibitors rolipram and roflumilast (Calverley et al.,
2009; Global Initiative for Chronic Obstructive Lung Disease,
2010; Rabe, 2011). PDE inhibitors increase the cellular level of
cAMP by preventing its degradation. Although both

β2-agonists and PDE inhibitors show anti-inflammatory prop-
erties in vitro (Hallsworth et al., 2001; Kaur et al., 2008; Spina,
2008), a notable difference is seen in vivo. PDE4 inhibitors
show anti-inflammatory properties in vivo, but largely lack
airway smooth muscle relaxing properties. In contrast,
β2-agonists show bronchorelaxing properties in vivo, but lack
anti-inflammatory properties (Calverley et al., 2009; Hurst
et al., 2010). Possible explanations for this discrepancy are
most likely β2-adrenoceptor desensitization and/or biased sig-
nalling of the β2-adrenoceptor towards ERK signalling (Dickey
et al., 2010; Walker et al., 2011), features largely absent with
PDE4 inhibitors due to their post-receptor mode of action.
Both the process of β2-adrenoceptor desensitization and
biased signalling seem to be facilitated by scaffolding proteins
such as AKAP5 and AKAP12 (Lefkowitz et al., 2006; Tao and
Malbon, 2008) (Figure 1). Subcellular localized cAMP pools
seem to cause differential biological effects upon scaffolding
protein-mediated targeting of either the β2-adrenoceptor or
PDEs.

An innovative alternative is, therefore, urgently required
to safeguard long-term treatment of obstructive lung disor-
ders. Compartmentalized cAMP signalling may provide a
novel opportunity for pharmacological interventions. For
example, targeting downstream of the β2-adrenoceptor will
most likely circumvent receptor desensitization. One might
also expect that such strategies will increase treatment speci-
ficity, and thereby minimize unwanted side effects, by target-

Table 2
cAMP compartmentalization in neurodegenerative diseases

Pathology
Modulator
involved cAMP-dependent effects References

Alzheimer’s
disease

PKA Reduced phosphorylation of CREB Cheng et al., 2010

Inactivation of PKA Vitolo et al., 2002

τ phosphorylation at Ser214 and Ser409 Jicha et al., 1999

Down-regulation of A2B receptor/PKA signalling Rosi et al., 2003

Epac sAPPα production via Epac1/Rap1/Rac Zaldua et al., 2007

AKAPs AKAP79, associated with neurofibrillary pathology Jicha et al., 1999

PDEs PDE4, PDE4B and PDE7 up-regulation at early stage of Alzheimer’s disease Perez-Torres et al., 2003

PDE8 up-regulation at later stage of Alzheimer’s disease

Parkinson’s
disease

PKA Down-regulation of A2A receptor/PKA signalling Hara et al., 2010

α-synuclein stimulates τ phosphorylation by PKA Qureshi et al., 2011

PDEs PDE7 and PDE4 inhibition enhances neuroprotection Morales-Garcia et al., 2011

Yang et al., 2008

Huntington’s
disease

PKA Decreased levels and CREB activation Gines et al., 2003

Sugars et al., 2004

PDEs Inhibition of PDE4 or PDE10A promotes neuroprotective effects DeMarch et al., 2007;
Giampa et al., 2009; 2010

Multiple
sclerosis

PKA β2-AR deficient astrocytes produce less cAMP Chesik et al., 2008

Lipoic acid treatment increased PKA activity Salinthone et al., 2010

PDEs Lovastatin treatment and inhibition of PDE4 promote neuroprotection
and neurorepair

Paintlia et al., 2009

For further details, see text.
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ing only the desired cAMP pool. In the following section, the
potential effect of compartmentalized cAMP signalling in the
lung for further improvement of obstructive airway diseases
will be discussed.

AKAPs: signalling in the airway
smooth muscle
In the airway smooth muscle, the main signalling pathways
that determine its functionality are receptors coupling to Gq

or Gs proteins. The Gq protein-coupled receptor family is the
M3 muscarinic receptor known to be activated by ACh and to
be inhibited by anticholinergics such as tiotropium (Meurs
et al., 2013). After agonist binding, the Gαq subunit activates
PLC, thereby leading to the elevation in cellular calcium and
activation of calcium/calmodulin-dependent myosin light
chain (MLC), a process known to result in airway smooth
muscle contraction (Billington and Penn, 2003; Mizuno and
Itoh, 2009). Activation of PKC by DAG also alters the
(de)phosphorylation of the MLC through several pathways
and thereby contributes to the airway smooth muscle tone
(Billington and Penn, 2003). Activation of the Gs protein-
coupled receptors by drugs targeting the β2-adrenoceptor
causes elevation of cAMP production via Gs and subsequent
activation of ACs (Figure 4).

Two members of the AKAP superfamily are known to
interact with the β2-adrenoceptor, AKAP5 and AKAP12.
Whereas the association of AKAP5 with the β2-adrenoceptor is
constitutive (Fraser et al., 2000; Lynch et al., 2005), agonist
binding to the β2-adrenoceptor increases the interaction of
the receptor with AKAP12 (Tao et al., 2003). Despite the fact

that AKAP5 and AKAP12 share many common features, no
redundancy is seen between them with regard to this cellular
response (Tao and Malbon, 2008). AKAP5 has been reported
to switch the coupling of the β2-adrenoceptor from Gs to Gi,
a process most likely facilitated by a PKA-mediated phospho-
rylation of the receptor (Daaka et al., 1997; Fraser et al., 2000;
Hill and Baker, 2003; Lynch et al., 2005) (Figure 1). It has
been reported that coupling of the β2-adrenoceptor to Gi leads
to activation of ERK signalling (Chen and Malbon, 2009). The
ERK pathway is known to be linked to both proliferative and
cytokine production pathways in airway smooth muscle
(Roscioni et al., 2011a,c; Dekkers et al., 2013; Schmidt et al.,
2013). In the context of obstructive pulmonary diseases, it is
worthwhile to emphasize reports indicating that AKAP5
seems to determine the cell surface expression of the
β2-adrenoceptor by increasing the affinity of GPCR kinase 2
(GRK2) for βγ subunits of the G-proteins, causing their trans-
location to the membrane, leading to the desensitization and
internalization of the β2-adrenoceptor (Cong et al., 2001)
(Figure 1). In contrast, after desensitization, AKAP12 is essen-
tial for the dephosphorylation, resensitization and recycling
of the β2-adrenoceptor back to the cell membrane (Tao et al.,
2003; Tao and Malbon, 2008; Chen and Malbon, 2009). In
addition, interaction of GRK2 with Ezrin (AKAP78) deter-
mines the β2-adrenoceptor internalization (Cant and Pitcher,
2005) (Figure 1).

Based on these findings, it is reasonable to assume that
β2-adrenoceptor functions are determined by the balance
between AKAP5, AKAP12 and Ezrin (AKAP78) (Figure 1).
Indeed, a recent study from Penn and colleagues reported on
the expression of AKAP5, AKAP12 and Ezrin (AKAP78) in

Figure 4
Compartmentalization of cAMP in relation to airway smooth muscle functioning. Schematic illustration of central biological ASM functions,
namely contraction, cytokine secretion and proliferation. Endogenous expression of AKAP5, AKAP12 and Ezrin (AKAP78) in ASM seems to maintain
defined subcellular signalling compartments. Abbreviations not mentioned in the text; CaM, calmodulin; ROCK, Rho-kinase.
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human airway smooth muscle cells (Horvat et al., 2012).
Penn and colleagues did not observe effects of Ht31 or
AKAP-IS studying whole-cell cAMP after stimulation with iso-
prenaline or the direct AC activator forskolin. However, using
a cyclic nucleotide-gated ion channel reporter, the authors
showed that local cAMP concentrations close to the near-
membrane compartment were significantly and transiently
increased (Horvat et al., 2012). Using a combination of
st-Ht31 and a PDE inhibitor cocktail, the authors demon-
strated that disruption of PKA–AKAP interactions resulted in
sustained AC activity (Horvat et al., 2012). Mathematical
models predicted that tethering of PKA to AKAP should cause
a threefold increase in PKA at the β2-adrenoceptor compart-
ment, thereby decreasing input of the β2-adrenoceptor acting
as a negative feedback for AC and PDE activity (Horvat et al.,
2012). Indeed, direct inhibition of PKA with the PKI com-
pletely blunted the rapid decay of the cAMP signal over time
(Horvat et al., 2012). With multiple AKAPs possibly involved
to create such PKA pool, utilization of tools recently described
by Gold et al. (2013) would be necessary to assess the indi-
vidual contribution of each AKAP.

In the following sections, we will discuss the role of cAMP
compartmentalization in some of the important features of
COPD: contraction, inflammation and remodelling. Herein,
we will keep the focus on studies performed in airway smooth
muscle.

AKAPs: airway smooth muscle contraction
Elevation of cAMP leads to the activation of both PKA and
Epac and thereby modulates airway smooth muscle responses
(Dekkers et al., 2013; Schmidt et al., 2013). It is well estab-
lished that PKA on its own deactivates MLC kinase and desen-
sitizes the inositol 1,4,5-triphosphate (IP3) receptor, thereby
functionally counteracting the PLC-PKC pathway. In our
research group and by others, Epac has been identified as a
novel factor being involved in the regulation of airway
smooth muscle relaxation. Epac, acting most likely via its
main effector Rap1, deactivates RhoA and up-regulates Rac1
activation, causing the balance to shift from phosphorylated
MLC to non-phosphorylated MLC and thus to airway smooth
muscle relaxation (Roscioni et al., 2011b; Zieba et al., 2011)
(Figure 4). Interestingly, Ezrin (AKAP78) is phosphorylated by
Rho-regulated Rho-kinase and binds via its ezrin-radixin-
moesin domain, the Rho inhibitor Rho guanine-nucleotide-
dissociation inhibitor (RhoGDI) (Bretscher et al., 2002).
Airway smooth muscle cells express both Epac and Ezrin
(AKAP78) (Roscioni et al., 2009; Horvat et al., 2012). Thus
deactivation of Rho by Epac might involve mechanisms
driven by Ezrin (AKAP78) and RhoGDI.

In a Madin-Darby canine kidney cell line, activated Ezrin
(AKAP78) binds in a calcium-dependent manner to Rac and
thereby delayed membrane localization of E-cadherin
(Pujuguet et al., 2003). Calcium also underlies cellular com-
partmentalization and cross-talk with cAMP, a process being
facilitated by members of the AKAP family. For example,
AKAP5, known to be involved in β2-adrenoceptor desensiti-
zation as outlined earlier (Figure 1), interacts with calcineurin
(Coghlan et al., 1995; Oliveria et al., 2003) and calmodulin
(Sarkar et al., 1984). Calmodulin competes with PKC in a
Ca2+-dependent manner for binding to AKAP5 (Faux and
Scott, 1997). More recently, AKAP12, known to be involved in

β2-adrenoceptor sensitivity (Figure 1), rapidly redistributes
from the plasma membrane to the cytosol upon stimulation
with calcium-elevating agents such as ionomycin or thapsi-
gargin (Schott and Grove, 2013). Moreover, it has been
reported that AKAP12 displace PKA-RII from the membrane
(Schott and Grove, 2013).

A striking example of cooperativity between cAMP and
calcium facilitated by AKAPs is shown for AKAP11 upon
assembly of a complex that includes IQGAP1, GSK3β and
PKA. It has been shown that binding of AKAP11 and IQGAP2
requires high intracellular calcium levels (Logue et al.,
2011a,c). At lower intracellular calcium, AKAP11-anchored
PKA phosphorylates IQGAP2 and thereby leads to an increase
in Rac binding. In the presence of inactive GSK3β, however,
AKAP11 serves as a platform for the assembly of a complex
between IQGAP and cytoplasmic linker proteins-associating
proteins 2 (CLASP2), a plus-end microtubule tracking protein
involved in microtubule polymerization. PKA phosphoryla-
tion of GSK3β and elevations in calcium cooperatively drive
the formation of an IQGAP1-CLASP2. Both the IQGAP1-Rac
and IQGAP1-CLASP2 complexes have been suggested to be
involved in microtubule dynamics and cell motility (Logue
et al., 2011a,c). AKAP11 was found to be expressed in airway
smooth muscle (Horvat et al., 2012). In addition, Epac not
only interacts with AKAP5, but also with the microtubule
network and with the calcium-elevating PLCε1 (Schmidt
et al., 2013). Future studies should point out if similar mecha-
nisms contribute to airway smooth muscle contraction.

AKAPs: airway smooth muscle inflammation
Recently, we reported in human airway smooth muscle cells
that direct pharmacological activation of PKA and Epac syn-
ergistically enhances Gq protein-coupled receptor-induced
release of the neutrophil chemoattractant CXCL8 (IL-8)
(Roscioni et al., 2009). Silencing of Epac expression decreased
not only IL-8 release in response to Epac activation but also in
response to PKA activation, and vice versa PKA inhibition by
Rp-8-CPT-cAMPS reduced CXCL8 release induced by both
PKA and Epac (Roscioni et al., 2009). Using st-Ht31 to disrupt
PKA–AKAP interactions (Figure 2A), preliminary results of our
group suggest that PKA and Epac regulate the CXCL8 release
in an AKAP-dependent manner.

Results from our research groups and others implicate
that such close interconnectivity requires the presence of
spatial regulation. AKAP5 was shown to be present in the
same AKAP-PKA-Epac complex described before in neuronal
cells (Nijholt et al., 2008). In a related study, we showed that
induction of CXCL8 release by cigarette smoke extract (CSE)
was attenuated by the β2-agonist fenoterol, seemingly via
Epac and PKA (Oldenburger et al., 2012b). Disturbance of
AKAP-based multiprotein complexes might be expected due
to the down-regulation of Epac1 and members of the AKAP
family by CSE (Oldenburger et al., 2012b; 2014). Indeed,
AKAP12 is down-regulated in lung cancer (Wikman et al.,
2002). With AKAP5 and AKAP12 known to determine
β2-adrenoceptor functions (Figure 1), an important role for
PKA and Epac localization close to GPCRs in asthma and
COPD could be imagined. This could explain the varying
treatment outcomes seen for these bronchodilators in COPD
(Liesker et al., 2002; Aguilaniu, 2010; Kliber et al., 2010).
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The underlying molecular mechanisms of the attenuation
of CXCL8 release by cAMP seem to be coordinated via parallel
routes. Epac was shown to inhibit the NF-κB translocation to
the nucleus caused by CSE, and PKA counteracts CSE-induced
ERK phosphorylation, both known to underlie CXCL8
production (Oldenburger et al., 2012b; Saito et al., 2012).
Although limited knowledge is currently available on Epac
compartmentalization, both NF-κB and ERK are known to
interact with proteins that anchor C and/or R PKA subunits
respectively (Gao et al., 2008; 2010; King et al., 2011; Smith
et al., 2011). Thus, it is tempting to speculate that a distinct
subset of AKAP members mediate the anti-inflammatory
properties of both PKA and Epac, a research topic open for
future investigation.

Our current knowledge implicates AKAPs as important
factors of both inflammation and contraction. The question
that remains: what role AKAPs play in airway remodelling?

AKAPs: airway smooth muscle remodelling
Another important functional feature of airway smooth
muscle cells encompasses the existence of multiple pheno-
types, a process reported to involve both PKA and Epac. Upon
chronic exposure to stimuli, such as growth factors, airway
smooth muscle cells switch between a contractile and prolif-
erative (synthetic) phenotype (Halayko et al., 2008). Some
researchers have suggested that ASM proliferation is primarily
inhibited by Epac, but not by PKA (Kassel et al., 2008), while
others state a more prominent role for PKA (Ibe et al., 2006;
Yan et al., 2011). Recently, our research group demonstrated
that pharmacological activation of either Epac or PKA pre-
vented PDGF-induced hypocontractility of airway smooth
muscle strips and airway smooth muscle proliferation, a
process being accompanied by the inhibition of ERK1/2
(Roscioni et al., 2011a,c), suggesting a possible synergism
between PKA and Epac. Our findings were strengthened by
other studies in vascular smooth muscle cells (Hewer et al.,
2011). Here, a concerted action of PKA and Epac inhibited
serum-induced bromodeoxyuridine incorporation, Rb phos-
phorylation and the expression of cell cycle progression pro-
teins, in a Rap1a-independent fashion (Hewer et al., 2011).

Several signalling pathways have been shown to be
involved airway smooth muscle cell proliferation, including
ERK1/2 (Lee et al., 2001) and phosphoinositide 3-kinase/PKB
(Akt) (Ibe et al., 2006; Ma et al., 2011). Until now, molecular
interactions between the cAMP effectors PKA and Epac have
been studied in great detail in non-pulmonary systems point-
ing to compartmentalization of both cAMP effectors via
muscle-specific mAKAP (Dodge-Kafka et al., 2005), via
β2-adrenoceptor-associated AKAP5 (Nijholt et al., 2008) and
via the cytoskeletal scaffolding AKAP11 complex (Logue et al.,
2011b). Interestingly, AKAP11 was found to be expressed in
ASM using real-time PCR (Horvat et al., 2012). AKAP11 is not
only able to bind PKA, but also GSK3, a kinase shown to be
involved in expression of contractile proteins in airway
smooth muscle (Oenema et al., 2012), their proliferation
(Gosens et al., 2007; Nunes et al., 2008) and profibrotic sig-
nalling (Baarsma et al., 2011). Thus, AKAP11-driven cAMP
compartmentalization may regulate airway smooth muscle
remodelling.

In summary, several lines of evidence point towards the
logical conclusion that AKAP family members are most likely

of key importance for cAMP compartmentalization and
thereby signalling to maintain a fine-tuned control over
structural lung cell responses. Future studies will surely add
additional insights into our current knowledge of signal com-
partmentalization and perhaps cross-talk between calcium
and cAMP in the lung.

Outlook and future perspectives

Compartmentalization of cAMP by AKAP family members
represents a highly specialized and dynamic process to fine-
tune intracellular signalling. Disturbance of cAMP compart-
mentalization, either due to alterations in AKAP expression or
complex composition with a variety of tools outlined herein,
seems to profoundly regulate biological functions and
thereby to contribute to neurodegenerative and obstructive
lung diseases.

Ageing of the worldwide population will require further
improvement of the management of chronic diseases.
Notably, cAMP and its effectors seem to be critical in regulat-
ing several processes both in chronic brain and lung diseases.
Next to PKA, Epac seems to act as a novel pharmacological
target in both groups of diseases; however, the impact of Epac
compared with PKA might be diverse and sometimes even
conflicting. Members of the AKAP superfamily maintain cel-
lular compartmentalization of cAMP primarily via direct
interaction with PKA, a process now also linked to Epac. As
AKAP-bearing multiprotein complexes regulate receptor
desensitization and are able to target simultaneously cAMP
and calcium, the AKAP superfamily most likely represent an
interesting novel pharmacological concept. In COPD, target-
ing calcium-mediated bronchoconstriction and cAMP-
mediated bronchorelaxation by one AKAP-related drug might
give an additional benefit above the current combination
therapy with anticholinergics and β2-agonists (Karner and
Cates, 2012).

As outlined herein, the design of small molecule inhibi-
tors seems to represent one of the most recent key findings in
the field of AKAP research (Christian et al., 2011; Schafer
et al., 2013). The AKAP–PKA interaction has also been used as
a template for drug design based on the ‘Dock-and-Lock
method’ (Rossi et al., 2012a,b). Here, a trivalent drug is
created upon conjugation of two identical (pro-) drugs [e.g.
IFN-α 2b (Rossi et al., 2013)] to the PKA-RII dimer and
another drug-(targeting) antibody to an AKAP peptide
derived from the amphipathic helix (such as AKAP-IS) (Rossi
et al., 2012a,b; 2013), a process being stabilized by cysteine
residues allowing covalent ‘locking’ of the subunits via disul-
phide bridges. In theory, it should be possible to combine any
RII module with any AKAP module (Rossi et al., 2012a,b), the
benefit of this method most likely should be envisaged for the
creation of a diverse set of potential pharmacological drugs.

Within the AKAP research field, pharmacological tools
focus on PKA–AKAP interactions and disruption of other
interaction partners from the AKAP complexes. Until now,
however, no reports focus on the disruption of AKAP-Epac
complexes. Even though an increasing amount of evidence
indicates that Epac interacts with AKAPs, and other scaffolds
independently of PKA (Schmidt et al., 2013). These Rap-GEF
interacting proteins might add another dimension to the
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concept of subcellular compartmentalization of cAMP, in par-
ticular in the context of the physiology and pathophysiology
of biological functions.
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