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Abstract

Background: Closed-loop control clinical research trials have been considerably accelerated by in silico trials
using the Food and Drug Administration–accepted type 1 diabetes mellitus (T1DM) simulator. We have
recently demonstrated that postprandial insulin sensitivity (SI) in T1DM subjects was lower at breakfast (B)
than lunch (L) and dinner (D), but not significantly, because of the small population size. The goal of this study
was therefore to incorporate this novel information into the University of Virginia/Padova T1DM simulator and
to reproduce in silico the observed circadian variability.
Subjects and Methods: Twenty T1DM subjects received an identical mixed meal at B, L, and D. SI was
calculated for each meal using the oral glucose minimal model. Seven SI daily patterns were identified, and their
probabilities were estimated. Each in silico subject was linked to a time-varying SI profile, while random
deviations of up to 40% were allowed.
Results: Simulations were compared with experimental data. The integrated area above the basal glucose curve
values were 2.60 – 0.91 (B), 1.38 – 0.91 (L), and 1.44 – 1.07 (D) 104 min$mg/dL in silico versus 2.87 – 1.65 (B),
1.98 – 1.56 (L), and 2.16 – 2.00 (D) 104 min$mg/dL in vivo. Incremental peak glucose values were 109 – 33 (B),
80 – 29 (L), and 81 – 30 (D) mg/dL in silico versus 136 – 39 (B), 126 – 37 (L), and 125 – 48 (D) mg/dL in vivo.
Conclusions: The incorporation of a time-varying SI into the simulator makes this technology suitable for
running multiple-meal scenarios, thus enabling a more robust design of artificial pancreas algorithms.

Introduction

S ignificant and rapid technological advances in-
volving glucose sensing (continuous glucose monitors1)

and insulin delivery systems (insulin pumps or continuous
subcutaneous insulin infusion2), with control algorithms
linking the two, have made closed-loop control for patients
with type 1 diabetes mellitus (T1DM) an imminent reality. In
the last few years there have been several reports of short-term
clinical trials conducted for testing various artificial pancreas
(AP) prototypes (see Cobelli et al.3 for a review).4–12 Most of
these AP prototypes received the approval from the Food and
Drug Administration or local ethical committees on the basis
of in silico simulations of glucose metabolism.13

In particular, in 2008 the Food and Drug Administration
accepted the University of Virginia/Padova type 1 diabetes
simulator (S2008)13 as a substitute for preclinical trials of AP
algorithms. The simulator has been recently updated (S2013)14

and validated against clinical data.15 Such in silico simulation
studies are necessary with subsequent clinical testing of the
algorithms, especially if the simulations reveal potentially
large effect sizes on day-to-day glucose control. Unfor-
tunately, the S2013 is inadequate for this purpose because, as
originally conceived, its domain of validity is limited to a
single-meal scenario.

We have recently described the existence of diurnal pat-
terns of postprandial insulin sensitivity (SI) in individuals
with T1DM16 applying state of the art methodologies. In
particular, we found that SI was lower at breakfast (B) than at
lunch (L) and dinner (D), but this was not statistically sig-
nificant because of large intersubject variability (Fig. 1).

This information is crucial to the control algorithm be-
cause postprandial SI is a major determinant of postprandial
glucose excursion in any individual by virtue of its inhibitory
effect on hepatic glucose production and stimulatory effect
on whole-body glucose uptake. Moreover, it has been
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recently shown in simulation that introducing a temporal
variation on SI may improve AP glucose control.17

The current report therefore represents a natural and crit-
ical extension of our work by incorporating this information
into the S2013, allowing us to run multiple-meal scenarios,
thus enabling a more robust design of AP algorithms. The
aims of this study are thus (1) to use the data that we previ-
ously generated16 to set up a model of SI pattern variability in
the T1DM population, (2) to incorporate this variability
model into the S2013, and (3) to reproduce the variability
observed in the experimental data and thus validate the re-
fined simulator for future use.

Subjects and Methods

Database and protocol

Twenty T1DM subjects (nine females; 42.9 – 14.4 years of
age; body mass index, 24.9 – 3.9 kg/m2; carbohydrates-to-
insulin ratio [CR], 8.6 – 2.1 g/U) were admitted for a 3-day
study in the Clinical Research Unit of the Mayo Center
for Clinical and Translational Science (Rochester, MN). In-
clusion criteria were age of 18–60 years, body mass index
of < 40 kg/m2, hemoglobin A1c level of £ 8.5%, creatinine
level of £ 1.5 mg/dL, and normal gastric emptying to solids
and liquids. Exclusion criteria were significant gastrointes-
tinal symptoms by questionnaire, hypoglycemia unaware-
ness by Clarke questionnaire, documented recent upper
gastrointestinal disorder, medications affecting gastric motility
(e.g., erythromycin), pregnancy or breast feeding, or other
comorbidities (e.g., nephropathy, neuropathy, macrovascular
disease, hypertension) precluding participation. Those with
stable background diabetic retinopathy were included. Medi-
cations (except stable thyroid hormone or hormone replace-
ment therapy) that could influence glucose tolerance were
exclusionary. Subjects did not engage in vigorous physical
activities for 72 h prior to screen and study visits.

In brief, once a day, a triple-tracer mixed-meal study
protocol was performed during B, L, or D in a Latin square
design, with identical meal composition. Blood samples were
collected at - 180, - 30, 0, 5, 10, 20, 30, 60, 90, 120, 150,
180, 240, 300, and 360 min, with t = 0 corresponding to the
timing of the meal, for measurement of plasma glucose and
insulin concentrations in order to estimate SI with the oral
minimal model.18 More details on the study protocol can be

found in Hinshaw et al.16 Figure 1A shows the average SI at
B, L, and D reported by Hinshaw et al.16 with the addition of
data from the present study. As discussed earlier, there was a
trend in the group showing lower SI at B, but this was not
statistically significant because of the large intersubject var-
iability (Fig. 1B).

Probability of SI pattern

To highlight the characteristic SI pattern in each subject,
each SI value was first normalized to the maximum observed
in the same patient. Then, values > 60% were labeled as high
(h), whereas values < 60% were labeled as low (l). This
choice is justified by the fact that a 40% difference is im-
putable to a fortuitous variation and will be subsequently
modeled as a random effect. More precisely, SI was estimated
with a precision of 20%, on average; assuming SI maximum
at B (i.e., 100%), we considered the SI values at L and D
to be different from that at B if they were outside the
95% confidence interval (i.e., in this case below 100% - 2 ·
20% = 60%). With this definition, there are seven candidate
empirical classes, each one associated with a particular pat-
tern of SI at B, L, and D (Fig. 2):

� Class 1: h-h-h (equivalent to l-l-l)
� Class 2: h-h-l
� Class 3: h-l-h
� Class 4: h-l-l
� Class 5: l-h-h
� Class 6: l-h-l
� Class 7: l-l-h

Each subject was univocally associated with one of the above
classes. The probability of each class is then calculated as:

P(Classi)¼ Ni

Ntot

(1)

where Ni is the number of subjects belonging to the i-th Class
and Ntot is the total number of subjects.

Modeling the SI pattern

A brief description of the simulator is reported first, fol-
lowed by an explanation of how the intraday variability of SI

was incorporated into the simulator.
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FIG. 1. (A) Average insulin sensitivity at the different diurnal portions (breakfast [B], lunch [L], and dinner [D]). Data are
mean – SE values. (B) Percentage intraday insulin sensitivity variation at the different diurnal portions (B, L, and D).
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The T1DM simulator. The T1DM simulator, accepted by
the Food and Drug Administration as a substitute for pre-
clinical animal trials for certain insulin therapies, including
the AP,13,14 consists of a model of glucose–insulin–glucagon
dynamics during a meal and a population of 100 virtual adults,

100 adolescents, and 100 children with T1DM, respectively.
Each virtual subject is represented in the simulator by a vector
containing subject-specific model parameters (e.g., SI). These
were generated by randomly extracting different realizations
of the parameter vector from an appropriate joint parameter
distribution, a process that has been demonstrated to well span
the variability of the T1DM population observed in vivo.14,15

However, as already mentioned, an important limitation of
the simulator is that it does not take into account the in-
traindividual diurnal variability of SI.

Incorporation of the model of intra-day variability of SI into
the T1DM simulator. In order to implement the intraday
variability of SI into the T1DM simulator, each in silico
subject was randomly assigned to one of the seven classes,
according to the estimated probability (see Results). The fact
that a subject belongs to the i-th Class means that the SI daily
pattern of that subject is on average the one associated to the
i-th Class. For instance, if the j-th subject, characterized by
insulin sensitivity SI

j, belongs to Class 5 (l-h-h), its param-
eters will be, on average, aSI

j, SI
j, and SI

j, respectively, at B,
L, and D, with a < 1. However, deviations from this nominal
profile are allowed, by modulating the nominal pattern with a
multiplicative random noise, described by a normal distri-
bution N(l, r2), withl = 1 and r = 0.2. Parameter r was
chosen in order to explain as a random effect deviation up to
40% of the maximum.

The actual SI pattern is then transformed in the corre-
sponding time-varying parameter SI(t) (i.e., an almost step-
wise-line signal that varies three times a day [at 4 a.m., 11
a.m., and 5 p.m.]). Figure 3 shows the procedure described
above for an illustrative subject of Class 5.

Simulation scenario

The simulation scenario reproduces the experimental
protocol described above. More specifically, the 100 in silico
subjects received B at 7 a.m., L at 1 p.m., and D at 7 p.m., with
the appropriate amount of ingested carbohydrates.16 The
optimal basal insulin was infused in each virtual subject. In
contrast, the premeal insulin bolus was reduced, on average,
by 2 U with respect to the one calculated with the patient-
specific CR. In fact, by definition, with the optimal CR,
plasma glucose would have returned to the target within the
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FIG. 2. Seven classes of insulin
sensitivity pattern. B, breakfast;
D, dinner; L, lunch.
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3-h experiment, whereas the data show that the plasma glu-
cose level was still above target at t = 360 min. It is worth
noting that, with this reduction, the average amount of insulin
administered with the bolus was similar in the real and virtual
population (3.93 – 0.22 U vs. 3.54 – 0.16 U, respectively).

Statistical analysis

Two-way analysis of variance, including both the main
effects and a term for interaction, has been used to assess
difference between type of data (real vs. simulated) at B, L,
and D. In particular, we focused on the significance of the
interaction term, which indicates whether or not the differ-
ences among B, L, and D are affected by the factor ‘‘type of
data.’’ A P value of < 0.05 is considered significant.

Results

Probability of SI pattern

Figure 4 summarizes the classification results obtained in
the 20 T1DM subjects of the database:

� Two subjects into Class 1/P(Class 1) = 0.1
� One subject into Class 2/P(Class 2) = 0.05
� One subject into Class 3/P(Class 3) = 0.05
� Two subjects into Class 4/P(Class 4) = 0.1
� Four subjects into Class 5/P(Class 5) = 0.2
� Four subjects into Class 6/P(Class 6) = 0.2
� Six subjects into Class 7/P(Class 7) = 0.3

In each class, ‘‘low’’ SI values were (mean – SD)
40% – 23% of the ‘‘high.’’ Thus, a was set to 0.4.

Simulation versus data

Figure 5 shows the comparison of simulated (left) versus
above-basal plasma glucose (right) curves at B, L, and D. The
over-basal glucose area under the curves values were
2.60 – 0.91 (B), 1.38 – 0.91 (L), and 1.44 – 1.07 (D) 104 mg/
dL$min in silico versus 2.87 – 1.65 (B), 1.98 – 1.56 (L), and
2.16 – 2.00 (D) 104 mg/dL$min in vivo. Over-basal peak val-
ues were 109 – 33 (B), 80 – 29 (L), and 81 – 30 (D) mg/dL in
silico versus 136 – 39 (B), 126 – 37 (L), and 125 – 48 (D) mg/
dL in vivo. The peak times were 125 – 51 (B), 96 – 46 (L), and
94 – 44 (D) min in silico versus 81 – 24 (B), 74 – 21 (L), and
68 – 24 (D) min in vivo. The interaction term from two-way
analysis of variance was not significant in all the comparisons.

The area under the over-basal insulin curve values were
1.33 – 0.47 (B), 1.26 – 0.46 (L), and 1.25 – 0.46 (D) 104 pmol/
L$min in silico versus 1.42 – 0.98 (B), 0.86 – 0.67 (L), and
1.10 – 1.00 (D) 104 pmol/L$min in vivo. Over-basal peak
values were 94 – 28 (B), 93 – 38 (L), and 93 – 39 (D) pmol/L
in silico versus 116 – 59 (B), 102 – 86 (L), and 98 – 57 (D)
pmol/L in vivo. The peak times were 46 – 9 (B), 45 – 7 (L),
and 45 – 7 (D) min in silico versus 60 – 44 (B), 61 – 36 (L),
and 49 – 37 (D) min in vivo. The interaction term from two-
way analysis of variance was not significant in all the com-
parisons except for the peak times (P = 0.036).

Simulated plasma glucose values are, on average, slightly
lower and with the peaks occurring somewhat later than the data.

Discussion

The analyses described in this article represent the natural
extension of our previous work on diurnal patterns of post-

prandial insulin action in individuals with T1DM.16 Apply-
ing a carefully controlled study design that was necessary to
minimize potential confounders of insulin action (e.g.,
varying meal sizes and composition, varying levels of
physical activities, etc.), we observed that, for the most part,

0

50

100

(%
)

B L D

Class 1   (10%)

0

50

100

(%
)

B L D

Class 2   (5%)

0

50

100

(%
)

B L D

Class 3   (5%)

0

50

100

(%
)

B L D

Class 4   (10%)

0

50

100
(%

)

B L D

Class 5   (20%)

0

50

100

(%
)

B L D

Class 7   (30%)

0

50

100

(%
)

B L D

Class 6   (20%)

FIG. 4. Percentage intraday insulin sensitivity variation at
the different diurnal portions (breakfast [B], lunch [L], and
dinner [D]), clustered among the seven variability classes.
Percentage values reported on the top of each panel repre-
sent the percentage of the population belonging to the re-
spective variability class.

4 VISENTIN ET AL.



postprandial insulin action (SI) was lower at B than at L or D.
However, this difference was not statistically significant be-
cause of large intersubject variability (Fig. 1B). Furthermore,
it was noteworthy that the numerical spread of SI values
throughout the day was considerable even for identical meals
with identical macronutrient and calorie contents consumed
at different times of the day with a fixed activity program that
ensured that subjects exerted themselves at a grade consistent
with activities of daily living, thus minimizing any carryover
effect of physical activity. This underscores the formidable
challenges that physiologists and engineers have to contend
with while developing next-generation closed-loop control
algorithms.

By applying a classification method based on the per-
centage variation of diurnal SI, we were able to discern
seven distinctive patterns of diurnal SI variability in T1DM
subjects.

Exploiting this information, we built a suitable model of
intraday SI variability and incorporated it into the last version
of our T1DM simulator (S2013).14 This was required in order
to make the S2013 more physiological and adequate to test in
silico the closed-loop control algorithms for a longer time
duration that includes multiple meals. In particular, the im-
plemented model assumes that each in silico subject is as-
signed to one of the seven SI variability classes defined above,
characterized by a nominal profile that varies at prefixed
transition times. Moreover, a modulation of the nominal
profile is allowed by modify the nominal pattern with a
multiplicative random noise, in order to better reproduce the
intersubject variability.

To validate the model, we analyzed the results obtained
by simulating the same experimental protocol described
above and then compared the simulation results with the
clinical results presented by Hinshaw et al.16 As shown in
Figure 5, the simulated above-basal plasma glucose level
was higher at B than at L and D, reflecting what was ob-
served by Hinshaw et al.,16 even though, on average, the
simulated postprandial excursions were slightly lower, with
glucose peaks occurring later than those observed in the
study. This can be justified by the fact that the T1DM sub-
jects studied by Hinshaw et al.16 present, on average, a
lower CR with respect to the in silico population (CRreal =
8.6 – 2.1 [range, 6–13] g/U vs. CRvirtual = 15.9 – 5.3 [range,

7–30] g/U), hence being less sensitive to insulin. This
probably explains the existing difference in glucose dy-
namics, resulting in slower action in simulations.

Some considerations have to be taken regarding the tran-
sition time and the modulation of the nominal pattern into the
SI variability model. Clearly, the choice of the transition
times at which nominal SI varies is arbitrary; however, the
idea is to set them in order to have a stable SI value around
each meal. Moreover, SI modulation with the multiplicative
random noise allows for a subject to temporarily migrate to
another class different from the nominal one. However, the
random noise amplitude set in this study permits only mi-
grations to contiguous classes: for example, a subject be-
longing to Class 3 can temporarily migrate to Class 1, 4, or 5
but not to Class 2.

We also acknowledge that the choice of the cutoff value,
here set to 60%, is somewhat arbitrary. Thus, we tested
also different cutoff values: 50% and 70%. Using a 50%
cutoff, we obtained P(Class 2) = 0, whereas using a 70%
cutoff, P(Class 3) = 0. On the other hand, all the classes had
nonzero probabilities using the 60% cutoff. In some sense
the small sample size has conditioned the choice of the
cutoff level.

What we have presented here, of course, is only a first
step, and refinements are required to overcome certain
limitations. In fact, it is likely that SI would change with
varying meal content, composition, and calories consumed,
degree of preceding glycemic control, etc. Thus, such
studies are necessary to determine the effects of the above
variables on diurnal patterns of insulin action. Moreover,
future development, such as the variation of model param-
eters describing the meal glucose absorption, could be
helpful to take into account different meal composition (i.e.,
complex carbohydrates or high-fat meals, rather than sim-
ple carbohydrates/rapid-absorption meals). Additionally,
physical activity of varying grades and intensities also af-
fects glucose excursions and insulin sensitivity.19–22 How-
ever, it is important to stress that, as reported by Hinshaw
et al.,16 the subjects remained in the resting state for at least
3 h prior to assessment of postprandial insulin sensitivity for
B, L, or D. None of the subjects performed unaccustomed
vigorous physical activity preceding the study visit, and
they did not perform unusual activity during the study
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period. In fact, the extent of day-to-day physical activity, as
measured by triaxial accelerometers and expressed as ac-
celerometer units, was similar during the study days.16

Hence any confounding effect of unequal physical activity
on the interpretation of diurnal patterns of SI was also
minimized.

Finally, it is important to realize the implications of in-
corporating the intraday SI variability into the T1DM simu-
lator that could influence the testing of the closed-loop
control algorithms. In fact, it is clear that variations of SI

perturb the in silico subjects from their ideal condition, thus
requiring modification of each subject’s parameters, such as
CR and correction factor, rather than modulations of basal
insulin profile. Therefore, in this context, such simulations
could be critical to test the performance of self-adaptive
control algorithms, which aim at day-to-day optimal tuning
of subject-specific parameters.

However, the proposed intraday SI is based on data of 3-
day (virtually 1-day) inpatient experiments, for which mini-
mal model techniques were applicable. It would be certainly
of interest to investigate on SI variations in a long-term sce-
nario (e.g., exploiting the data provided by a 1-year study on
T1DM subjects23). Unfortunately, the method to estimate SI

with the oral minimal model18 is unsuitable for the dataset of
Bergenstal et al.23 because of the availability of only con-
tinuous glucose monitor and insulin pump data. However, we
have recently proposed a method for the estimation of SI in
T1DM subjects from continuous glucose monitor and insulin
pump data,24 thus allowing the intraday SI model refinement
in the near future. Moreover, the availability of these data
could be helpful also for a more informed choice of the cutoff
used in the classification.

In summary, in this work we incorporated a model of in-
traday variability of SI into the University of Virginia/Padova
T1DM simulator. The physiological behaviors obtained in
silico reflect those observed in a clinical trial, thus further
validating the simulator. Hence, this improved version of
T1DM simulator could be a useful tool to fine-tune and
validate new and informed next-generation closed-loop
control algorithms, an essential pathway to individualize
T1DM management.
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