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The evolution of pulmonary disease in cystic fibrosis (CF) usually begins when bacteria get trapped in mucus in the lungs and become
established as a chronic infection. While most CF patients experience periods of stability, pulmonary exacerbations (PEs) can occur
multiple times per year and result in permanent damage to the lungs. Little is known of the shift from a period of stability to a PE, but
this shift is likely to be attributed to changes in the bacterial community. Here, we identified changes in the lung microbiota to deter-
mine if they reflect patient health, indicate the onset of exacerbations, or are related to antibiotic treatment. In contrast to most bacte-
rial studies on CF, we collected weekly samples from an adult CF patient over a period of 3 years and performed quantitative PCR
(qPCR) and Illumina sequencing on those samples. While many DNA-based studies have shown the CF microbiota to be relatively
stable, we observed an increase in the total bacterial abundance over time (P < 0.001), while the number of different taxa (bacterial
richness) and the number of different taxa and their abundances (diversity) significantly decreased over time (P < 0.03), which was
likely due to repeated antibiotic exposure. Using genus-specific primers with qPCR, we observed an increase in the abundance of Burk-
holderia multivorans, a CF-associated pathogen, prior to the occurrence of a PE (P � 0.006). Combining these DNA-based tech-
niques with frequent sampling identified a potential initiator for exacerbations and described a response of the CF microbiota to
time and antibiotic treatment not observed in previous CF microbiota studies.

Bacterial infections with consequent progressive lung disease
are the leading cause of death in persons with cystic fibrosis

(CF), a disease that affects an estimated 30,000 people in the
United States and 70,000 people worldwide (1). Prior to the past 2
decades, it was assumed that the CF lungs were colonized with
only a few different bacteria, including Pseudomonas aeruginosa,
Haemophilus influenzae, Staphylococcus aureus, and members of
the Burkholderia cepacia complex (BCC) (2). It has been shown in
CF patients that chronic infection with these CF-related bacteria
(CFRB) is linked to an increase in mortality (3, 4).

Pulmonary exacerbations (PEs), which may develop multiple
times per year in CF patients, are often caused by a disturbance to
a stable chronic bacterial infection (5, 6). The exact cause of a PE,
often identified by an increase in pulmonary disease symptoms,
remains uncertain but is commonly attributed to factors associ-
ated with established bacteria, and possibly to viruses or newly
acquired bacterial strains (7, 8). In 2004, Rogers et al. used termi-
nal restriction fragment length polymorphism (TRFLP) analysis
to target the bacterial 16S rRNA gene in order to analyze DNA
extracted from sputum samples from CF patients. This method of
analysis revealed a complexity that included 15 species not previ-
ously identified in the lungs. The study by Rogers et al. laid the
foundation for redefining CF as a polymicrobial disease (9). These
culture-independent studies have led to clinical treatment for CF
lung infections focused on multiple species instead of a single
agent.

The frequency of PEs has been connected to increased mortal-
ity and results in a permanent impairment in lung function (6).
Early treatment intervention might reduce the length and severity
of a PE; however, attempts at developing tools to predict a PE have
had limited success (10, 11). A DNA-based study by Stressman et
al. (12) used quantitative PCR (qPCR) on bacterial DNA isolated
from sputum samples collected weekly over a 12-month period to

identify the cause of PEs in 12 CF patients. Using this quantitative
analysis, Stressman et al. (12) showed that the bacterial load, in-
cluding the dominant pathogen, P. aeruginosa, did not change 1 to
3 weeks prior to the onset of a PE.

Because a single sputum sample can provide only a snapshot of
the community profile at any given time, the identification of
changes in the microbiota that precede PE onset would require
frequent longitudinal sampling (13, 14). Our long-term study was
designed to determine if combining quantitative and deep-se-
quencing techniques with intensive sampling from a single patient
over a time period of years would reveal population changes, un-
detected in previous studies, prior to the onset of antibiotic treat-
ment or a PE. If bacteria are involved in eliciting a PE, bacterial
population changes could be used as an early indicator of a PE
(11).

We used Illumina sequencing and qPCR to examine changes in
the microbial community diversity and abundance of the total
bacteria and of two taxa, Pseudomonas and Burkholderia, in spu-
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tum samples collected from a 30-year-old CF patient at least once
a week over a 3-year period. The samples collected from this pa-
tient were sufficient to generate conclusions based on statistically
significant changes in the microbiota. We identified a correlation
between the time period shortly before the onset of a PE and an
increase in the abundance of Burkholderia, a major CF pathogen
within a microbial community dominated by Pseudomonas. Mon-
itoring these changes to the microbiota allowed us to determine
how individual taxa, including specific pathogens, change over
time, change prior to a PE, and respond to antibiotic therapy.

MATERIALS AND METHODS
Patient characteristics. The patient is a 30-year-old adult male who was
diagnosed with CF at 2 weeks of age and voluntarily participated in this
study. His treatment regimen during the study included oral enzymes for
CF-related malabsorption, along with antibiotics administered as pro-
phylactic agents and various antibiotics (Table 1), as prescribed by the
patient’s pulmonologist. The subject has a heterozygous deltaF508/un-
known CF transmembrane conductance regulator (CFTR) genotype and
no other CF-associated complications. The forced expiratory volume in 1
s (FEV1) values measured during routine clinic appointments over the
course of the study ranged from 33% to 40% of the predicted value, which
is consistent with severe obstruction. He experienced nine PEs that re-
quired antibiotic intervention during the course of this study. Each PE was
diagnosed by an experienced CF pulmonologist on the basis of a change in
sputum production, an increase in cough, a decrease in lung function, an
increase in dyspnea, and/or the occurrence of hemoptysis.

Samples. Serial expectorated sputum samples were obtained with in-
formed consent, according to an institutional review board (IRB)-ap-
proved protocol, twice weekly for a period of almost 3 years. The samples
were collected in the morning by the patient expectorating sputum into a
sterile 15-ml Falcon tube, which was placed on ice during transport to the
lab and then stored at �80°C until use. The transportation time was no
more than 45 min. DNA was extracted within 35 months of collection.
The samples chosen for analysis were selected to represent both periods of
stability and exacerbation.

Sputum homogenization, viable cell selection, and DNA extraction.
The sputum samples were mixed in a 1:3 ratio of sputum and 0.1% di-
thiothreitol solution and incubated at 37°C for 1 h, followed by mechan-
ical homogenization for 1 min using a microblender. To amplify DNA
from living cells only, propidium monoazide (Biotium, Hayward, CA)
was then added to a final concentration of 50 �mol/ml, and DNA cross-
linking was induced using a 400-W halogen light source (15). DNA was
extracted using the IT 1-2-3 VIBE sample purification kit (BioFire Diag-
nostics, Inc., Salt Lake City, UT) and its concentration determined using a
NanoDrop 2000 spectrophotometer (Thermo Scientific, Wilmington,
DE). All extracted DNA was immediately stored at �20°C until it was
subjected to qPCR.

Abundances of total bacteria, Pseudomonas, and Burkholderia in
sputum samples. The qPCR mixture contained 10 �l of PerfeCTa SYBR
green FastMix reagent low ROX (Quanta Biosciences, Gaithersburg,
MD), 0.5 �l of 100 pmol/�l each primer, 5 �l of sample DNA, and 4 �l of
nuclease-free water to a final volume of 20 �l. Universal primers (16) were
used to amplify a conserved 466-bp 16S rRNA gene fragment to measure
the abundance of the total bacteria in the sample. B. cepacia complex-
specific primers (17) and Pseudomonas-specific primers (18) were used to
selectively amplify genomic DNA sequences from each genus, yielding
333-bp and 93-bp fragments, respectively. qPCR was performed using the
ABI 7500 Fast real-time PCR system (Applied Biosystems, Carlsbad, CA)
with an initial step of 10 min at 95°C, 40 cycles of 15 s at 95°C, and 1 min
at 60°C. Melting curves were determined following qPCR by 1 cycle of 15
s at 95°C, 1 min at 60°C, 30 s at 95°C, and 15 s at 60°C. Standard curves
were created for each primer pair using 10-fold dilutions of amplicons
generated using an Escherichia coli strain as the DNA template for the 16S
rRNA gene sequence primers, P. aeruginosa for the Pseudomonas-specific
primers, and Burkholderia multivorans for the BCC-specific primers. The
DNA copy number per g of sputum was calculated for each sample based
on a standard curve with a 1 � 105-fold linear range in threshold cycle
(CT) values. To ensure precision in the qPCR data, three technical repli-
cate reactions were performed for each sample.

Illumina sequencing library preparation. The samples were prepared
for 16S rRNA gene Illumina sequencing targeting the V6 hypervariable
region with a two-stage PCR strategy. The samples were PCR amplified in
the first stage using primers that included barcodes in both the forward
and reverse oligonucleotides for sample identification in a multiplex fash-
ion (see Table S1 in the supplemental material). A secondary stage of PCR
utilized a set of primers that overlapped the 5= ends of the first set of
primers and added bases complementary to the Illumina flow cell adapt-
ers for sequencing (see Table S1).

The thermal cycling conditions were as follows: an initial denaturation
step at 94°C for 3 min, followed by a touchdown protocol beginning at
94°C for 45 s, 61°C for 45 s, with a 1°C drop each cycle for a total of 5 cycles,
an additional 15 cycles at 51°C for 45 s, 72°C for 45 s, and a final elongation
at 72°C for 2 min. Fifteen microliters of the first PCR products was utilized
in the second stage of PCR. The second PCR consisted of one denatur-
ation step of 94°C for 3 min, 15 cycles at 94°C for 45 s, 65°C for 45 s, 72°C
for 45 s, and a final extension step at 72°C for 2 min.

The PCR fragments were visualized on a gel, quantitated on a Nano-
Drop ND-3300 fluorospectrometer (Thermo Scientific, Wilmington, DE)
using PicoGreen to determine the concentration of double-stranded DNA
(dsDNA), and pooled in equimolar amounts for sequencing.

Sequence analysis. Illumina HiSeq 2000 technology was used to se-
quence the 72 samples used for this study. Raw paired-end sequences were
processed as described previously (19–21). Briefly, a minimum of 70 con-
tinuous matching nucleotides across the length of the ungapped align-
ment were required to produce each merged sequence. A total of
70,550,318 sequences, with an average length of �77 bases, met our

TABLE 1 Antibiotic treatment regimen for nine pulmonary exacerbations

Antibiotic
administration
route Antibiotica

Patient antibiotic use for exacerbation period (mo/day/yr)b

3/15/09–
4/5/09

6/26/09–
6/27/09

11/5/09–
11/28/09

1/7/10–
1/23/10

4/12/10–
4/24/10

7/9/10–
7/15/10

3/3/11–
3/8/11

7/27/11–
8/1/11

12/22/11–
1/4/12

Oral Ciprofloxacin
Bactrim
Minocycline

i.v.c Ceftazidime

a Prophylactic antibiotics, including inhaled tobramycin, inhaled aztreonam, and azithromycin were not included in the analysis due to their intermittent use, which was
independent of the occurrence of a PE.
b The shaded areas represent periods of patient antibiotic use.
c i.v., intravenous.
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merging and extending criteria, which were fed into the Abundan-
tOTU� version 0.93b program (http://omics.informatics.indiana.edu
/AbundantOTU/otu�.php) with the -abundantonly option. Abun-
dantOTU� clustered those sequences into 127 operational taxonomic
units (OTUs), incorporating 70,310,410 (99.66%) of all the merged
sequences. The sequences that were not incorporated into an OTU
were excluded from further analyses. For the purpose of detecting
chimeric OTUs, we used UCHIME (22) and UPARSE (23) in conjunc-
tion with the GOLD reference database (24); neither reported any
chimeras in our 127 OTUs.

Taxonomic classification was achieved by first aligning the OTU se-
quences to the Silva database (release 108 [http://www.arb-silva.de/]) us-
ing BLASTn version 2.2.26� with an expectation value of E-5. Next, the
standalone version of the Ribosomal Database Project (RDP) classifier ver-
sion 2.5 (25) was used to classify the full-length Silva sequences with the best
BLASTn match to the OTU sequence requiring an RDP confidence score of
�80%. This was done to compensate for the short read length of the gener-
ated OTUs. The raw counts for each OTU were normalized and log trans-
formed according to the equation log10[(OTU raw count/no. of sequences in
sample � average no. of sequences per sample) � 1].

Principal coordinate analysis (PCoA) was done using mothur version
1.25.0 (26) and a Bray-Curtis dissimilarity matrix generated from the
log10-normalized counts.

Alpha diversity measures (richness for observed species and Shannon
diversity) were calculated on the raw counts after rarefying to 198,500
sequences per sample (where 198,500 is number of sequences in the sam-
ple with the smallest number of sequences).

RESULTS
qPCR measurements reveal a steady increase in bacterial load.
To characterize microbial variation over time in a single CF pa-
tient, we collected 130 sputum samples over a time period of 1,063
days. We used qPCR to independently amplify the 16S rRNA gene
sequences common to all bacteria (Fig. 1A), Pseudomonas (Fig.
1B), and Burkholderia (Fig. 1C), and we measured the changes in
bacterial load over time. Both the total bacterial load (Fig. 1A) and
Burkholderia abundance (Fig. 1C) increased steadily over the en-
tire sampling period, while Pseudomonas abundance steadily in-
creased over the first 2 years of our study, followed by an apparent
plateau (Fig. 1B).

Our qPCR measurements have a high variance; it is not un-
common for measurements taken close in time to differ by as
much as a log10 unit. Despite this, if we model the relationship
between qPCR signal and time, using a simple first-order linear
model for Burkholderia and 16S rRNA (see Table S2, model 1 in
the supplemental material) or a second-order linear model for
Pseudomonas that allows us to capture the saturation relationship
(see Table S2, model 2), we observed a highly significant correla-
tion between PCR abundance and time (see Table S2). Despite the
short-term variability inherent in any individual qPCR measure-
ment, there is a clearly significant increase in bacterial load over
the multiyear time course of our study.

Antibiotic treatment temporarily depresses total bacterial
and pathogen loads. We next asked whether we could observe a
difference in bacterial load based on treatment status. We defined
four different treatment conditions as (i) before treatment, de-
fined as samples collected �30 days prior to antibiotic treatment
for a PE, (ii) treatment, defined as any sample collected during the
administration of antibiotics used to treat a PE, (iii) recovery,
defined as samples collected �30 days after antibiotic treatment
for a PE, and (iv) stable, defined as any sample not meeting any of
the above criteria. We used a series of linear models to evaluate

whether these treatment categories were associated with differ-
ences in qPCR signals. Our linear models had terms for time (for
Burkholderia or total bacteria) or time-squared (second-order
model) for Pseudomonas, as well as terms for treatment category
and interactions between time and treatment variables (see Table
S2, models 3 and 4 in the supplemental material). An analysis of
variance (ANOVA) (utilizing an F-test comparing the full model
to a reduced model with interactions terms set to zero) found that
P values associated with interactions terms were all �0.05. To
simplify the interpretation of our models, we dropped the inter-
action terms, thus removing them as complicating conditional
effects, to yield models 5 and 6 in Table S2. The fit from these
models is shown in Fig. 1. An ANOVA (utilizing an F-test com-
paring the full model to a reduced model with terms for treatment
set to zero) evaluating the null hypothesis that treatment has no
effect was rejected for Burkholderia (P � 0.003), Pseudomonas
(P � 0.0006), and 16S rRNA (P � 0.002), as measured by qPCR.
In terms of our model, these P values can be interpreted as testing
the hypothesis that separate lines for each treatment category have
identical intercepts given a constant slope (for 16S rRNA and
Burkholderia) or shape (for Pseudomonas). That is, we tested the
null hypothesis that a single line (the reduced model) can fit the
qPCR data as well as the four separate lines (the full model) shown
in Fig. 1. Our model’s rejection of this null hypothesis suggests
that we are able to detect antibiotic treatment temporarily de-
pressing bacterial load, despite the high variability of each individ-
ual measurement.

To further explore the idea that antibiotic treatment decreases
bacterial load, we visualized our 130 data points by treatment
category independent of time (Fig. 2). Viewed this way, antibiotic
treatment clearly temporarily depresses Pseudomonas (Fig. 2B)
and 16S rRNA (Fig. 2C) but not Burkholderia (Fig. 2A). We could
not use simple t tests to evaluate the statistical significances of
these relationships because the data viewed in this way contain
multiple samples from the same individual binned across time
points, which would violate the assumption of independence in a
test statistic that did not explicitly consider time. We can, how-
ever, use models 5 and 6 in Table S2 in the supplemental material
to test the hypothesis that the intercepts (in Fig. 1) from the line of
best fit for the data from any pair of treatment conditions are
identical. Under this procedure, we find that the higher bacterial
loads observed during the postantibiotic recovery time points,
compared to those during treatment for Burkholderia (Fig. 2A),
Pseudomonas (Fig. 2B), and 16S rRNA (Fig. 2C), are all statistically
significant (Table 2). We also find that bacterial load is signifi-
cantly lower in treatment than in before treatment for Pseudomo-
nas (Fig. 2B) and 16S rRNA (Fig. 2C), with a nonsignificant trend
for Burkholderia (Fig. 2A and Table 2). Our data are consistent
with the conclusion that antibiotics relieve exacerbating symp-
toms by temporarily depressing the bacterial load.

An increase in Burkholderia abundance is associated with
onset of a pulmonary exacerbation. If any one taxon is an indi-
cator for onset of a PE, we would expect to observe a change in
the abundance of that taxon before antibiotic treatment is ad-
ministered. The abundance of Burkholderia is significantly
higher (P 	 0.006) in the before treatment time points, which
indicate the beginning of a PE, than in the stable time points (Fig.
2A). Pseudomonas is less abundant before treatment than in the
stable time period (Fig. 2B), but our model (model 6 of Table S2 in
the supplemental material) does not assign significance to this
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difference (P 	 0.32). No significant change was observed in the
total bacterial load between the stable and before treatment time
points. Interestingly, the change in abundance of Burkholderia
exhibits a pattern consistent with a posttreatment rebound, even

while the patient showed improved symptoms. Our data are
therefore consistent with an increase in Burkholderia being asso-
ciated with the onset of a PE but not as an indicator of overall
patient health.
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FIG 1 Variation in abundances of total bacteria (A), Pseudomonas (B), and Burkholderia (C) in sputum samples collected over a 35-month period during which
nine exacerbations occurred. Treatment was considered to be during or within 48 h of termination of antibiotics given to treat an exacerbation. The time points
are plotted as red squares, before treatment (�30 days before an exacerbation); yellow triangles, treatment (samples collected during and within 48 h of
termination of treatment); green circles, recovery (�30 days after an exacerbation); and black diamonds, stable (�30 days prior to or after an exacerbation).
Universal primers targeting the 16S rRNA gene, Pseudomonas-specific primers, and Burkholderia-specific primers were used to measure abundance, which is
expressed as log10 DNA copy number per g of sputum (y axis) over the collection period (x axis). The best fit line for before treatment in panels A and B is
superimposed with the line for recovery, due to their similarity. The error bars represent the standard deviation of three technical replicate reactions; most error
bars are smaller than the symbols for each sample. The best fit lines are red for before treatment, yellow for treatment, green for recovery, and black for stable.

Stokell et al.

240 jcm.asm.org January 2015 Volume 53 Number 1Journal of Clinical Microbiology

http://jcm.asm.org


Relative abundance of microbiota remains stable over time.
qPCR measures absolute abundance but is not an efficient method
to generate information about all members of the microbiota
found within sputum samples. In order to more fully characterize
the microbial community, we utilized 16S rRNA gene Illumina
sequencing on some of the sputum samples. Funding limited our
analysis to 72 of the 130 samples, chosen based on their time of
collection under the four treatment conditions (see above). The
sequences were clustered with AbundantOTU�, and the consen-
sus sequences for each OTU were classified to the family level
using the RDP classifier (see Materials and Methods). Compari-
sons between the CF-associated taxa at the family and genus levels
within our pipeline and within the QIIME pipeline showed a sim-
ilar response to antibiotics and time (data not shown). We chose
the family level because the RDP calls to the family level were
generally consistent between our pipeline and a parallel analysis
using the QIIME pipeline, but there was considerable divergence

at the genus level (data not shown). Given the short sequence
(�100 bp) reads of the Illumina sequencing technology we used,
such divergence at more narrow taxonomic levels is not surprising
between different analysis methods.

Out of the �70.3 million sequences, Pseudomonadaceae was
the dominant family, representing �89% of all sequences (see
Table S3 in the supplemental material). Two other typical CF
pathogens from the families Burkholderiaceae and Streptococ-
caceae made up approximately 8% of all sequences (see Table S3).
The remaining sequences were mostly nontypical CF-associated
bacteria (27) and were classified as either Micrococcaceae, Veillo-
nellaceae, each of which consisted of �1% of all sequences, or less
prevalent families, representing �2% of all other sequences (see
Table S3).

The microbial profiles of the most abundant individual taxa
within the sputum samples showed little variability across the
study period (Fig. 3). No pattern of change in the relative abun-

FIG 2 Comparison of stable, before treatment, treatment, and recovery qPCR values for Burkholderia (A), Pseudomonas (B), and the 16S rRNA gene (C). The
box plots show the same data as in Fig. 1 collapsed across time points. The asterisks indicate significant differences between the conditions, with significance
determined by pairwise comparisons from model 5 (for Burkholderia and 16S rRNA) and model 6 (for Pseudomonas) from Table S2 in the supplemental material,
which contains a term for time and is therefore not in violation of the assumption of independence (see the text). *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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dances of the top five families was observed surrounding the oc-
currence of a PE. Pseudomonadaceae was the most dominant fam-
ily and showed little change in its relative abundance in the
majority of the sputum samples. An increase in the relative abun-
dance of Burkholderiaceae or Streptococcaceae was observed only
in those samples in which the relative abundance of Pseudomon-
adaceae showed short-term decreases (Fig. 3A); this, however, did
not correspond to the occurrence of a PE and likely reflects the
compositional nature of relative abundance measures (28, 29).
Little variation in relative abundance was observed over time
when the other less abundant families were combined into the
“other” category (Fig. 3B). Using model 10 (see Table S2 in the
supplemental material), we were able to test the hypothesis that
the relative abundance of any individual family significantly
changed over time. We did not achieve significant results for this
model for the abundant taxa Pseudomonadaceae, Burkholderi-
aceae, and Streptococcaceae. The slope of the fit for 14 of the less
abundant families, however, did not exhibit a significant decrease,
while the slope of the fit for one family significantly increased over
time (see Table S3 in the supplemental material). The relative
abundance of each of these less abundant families consisted of
�0.5% of the total sequences. We conclude that for all but a few of
the least abundant taxa, our sequencing data are consistent with
overall stability over time.

Illumina sequencing reveals a decrease in richness over time.
To determine if long-term exposure to antibiotics in our subject
decreased microbial diversity, we used a simple first-order linear
model to evaluate the relationship between the diversity or the
richness of the sequencing data and time (see Table S2, model 7 in
the supplemental material). We observed a significant inverse cor-
relation between time and richness (P � 0.02) and between time
and diversity (P � 0.03) (see Table S2 and Fig. 4).

To determine if our treatment categories were associated with
differences in diversity and richness, we used a series of linear
models similar to those used for the qPCR analysis. These models
had terms for time, as well as terms for treatment category and

interactions between time and treatment variables (see Table S2,
model 8 in the supplemental material). ANOVA found that the P
values associated with the interaction terms were all �0.05, so the
interaction terms were dropped to yield model 9 in Table S2. An
ANOVA evaluating the null hypothesis that treatment has no ef-
fect was rejected for richness (P � 0.001) but not for diversity (P 	
0.688).

Similar to our absolute abundance described above (Fig. 2), we
visualized diversity and richness for each of the 72 samples accord-
ing to treatment status and independent of time (Fig. 5). We once
again derived P values for pairwise comparisons for this visualiza-
tion from the models in Table S2 in the supplemental material).
For diversity, no significant change was observed over time or in
samples collected during any one of the treatment status catego-
ries (Fig. 5B). The decrease in richness, however, was highly sig-
nificant when the samples collected during treatment (P 	
3.67e�05) or recovery (P 	 5.49e�03) were compared to those
samples collected during the stable time period (Fig. 5A). These
data are consistent with repeated antibiotic treatment leading to a
temporary decrease in the number of taxa present.

DISCUSSION

This study represents the most intensive sampling of a single CF
patient to date. Our goals were to determine if changes in bacterial
abundance may predict an oncoming PE and to identify changes
in the microbiota associated with antibiotic use or time. While
other studies have attempted to identify biomarkers that aid in the
prediction of a PE and the progression of lung disease in CF (11,
30), ours is the first to obtain samples so frequently from a CF
patient over a long-term period. Our study was based upon the
assumption that a detectable shift in the bacterial community pre-
cedes a PE. Testing our assumption required a longitudinal study
to reveal the relationship between disease progression, the occur-
rence of a PE, and various components of a bacterial community,
such as the change in diversity, richness, or the abundances of
specific members of the microbiota (31). Our goal was to deter-

TABLE 2 Data for Fig. 2 by treatment category

Treatment category Bacterial group

Treatment category

Stable Before treatment Treatment Recovery

Stable Total bacteria 0.1781a 0.0522 0.2131
Pseudomonas 0.3182 2.00e-042b 0.4402
Burkholderia 0.0061c 0.3072 0.0011c

Before treatment Total bacteria 0.2912d 3.87E-042b 0.9781
Pseudomonas 0.4091d 0.0022c 0.8671
Burkholderia 0.0152d,e 0.0632 0.3671

Treatment Total bacteria 0.1041d 0.0031c,d 0.0011c

Pseudomonas 0.0041c,d 0.0071c,d 0.0031c

Burkholderia 0.4251d 0.1141d 0.0121e

Recovery Total bacteria 0.3192d 0.9782d 0.0062c,d

Pseudomonas 0.4951d 0.9182d 0.0092c,d

Burkholderia 0.0062c,d 0.4402d 0.0272d,e

a Arrows represent an increase (1) or decrease (2) in abundance relative to the treatment category in the 1st column.
b Significant at a P value of �0.001.
c Significant at a P value of �0.01.
d Data adjusted for multiple hypothesis testing with the Benjamini-Hochberg method.
e Significant at a P value of �0.05.
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mine if a bacteria-derived biomarker can be identified and result
in antibiotic treatment being initiated early in the course of a PE
and reduce the symptoms that would otherwise cause damage to
the lungs. Identifying a change in microbiota that precedes a PE
requires frequent patient sampling, since the length of time be-
tween the changes in the bacterial community and PE onset is
unknown (14). Previous cross-sectional studies examining the di-
versity of the microbiota in the lungs of CF patients collected
samples at a frequency or for a length of time that did not reveal
potential short-term changes associated with a PE (32, 33).

qPCR reveals unstable microbiota over time. A great deal of
sample-to-sample variation was observed in our qPCR data over
the sampling period. This change in absolute bacterial abundance
between adjacent samples may be subject to misinterpretation if a
sputum sample containing a low number of bacteria was com-
pared to a sequential sample that originated from a region of the
lungs containing a large number of bacterial cells. Recent culture-

independent studies have revealed a spatial distribution of distinct
microbial communities in the CF lung. Goddard et al. (34) and
Willner et al. (35) both observed distinct clustering of microbial
communities in various areas of the lung by examining explant
lung samples. These studies suggest that since the origin of expec-
torated sputum cannot be identified, any two sputum samples
collected from an individual patient are expected to vary. The
degree to which the microbiota may vary between samples may be
difficult to resolve using 16S rRNA gene sequencing due to, as
Willner et al. (35) stated, “spatial heterogeneities.” Based on these
studies and our small standard deviation in the qPCR data be-
tween at least three technical replicates for each sample (see Fig.
1), it is likely that the variation in our qPCR data may have oc-
curred due to spatial distribution of dense bacterial clusters within
the lungs. As we demonstrated across a 3-year period, a high vari-
ation between any two samples can be compensated for by fre-
quent collection of samples.
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FIG 3 Change in relative abundance of taxa classified to the family level during the sampling period. The families in the top five of relative abundance are shown
(dark blue, Pseudomonadaceae; red, Burkholderiaceae; purple, Streptococcaceae; purple, Micrococcaceae; light blue, Veillonellaceae). The relative abundances of all
other families, each representing �0.5% of the community, are grouped in the “other” (orange) category. The colored bars represent the proportion of (unlogged
[A], log10 [B]) reads mapped to each family. The dates on the x axis are in month/day/year format.
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Our qPCR data show a highly significant increase over time for
both Pseudomonas and Burkholderia. In contrast, our sequencing
data show a much less significant increase in these taxa over time
(see Table S3 in the supplemental material). While we recognize
that our observations are from a single patient, we would expect
that any cross-sectional analysis of sputum samples collected from
a CF patient would be at risk for misinterpretation due to there
being little association in the change of bacterial abundance in an
individual sputum sample and a change in patient health.

An increase in the abundance of a CF pathogen occurs prior
to PE onset. A 2011 study by Stressman et al. (12) found no evi-
dence of changes in bacterial density in sputum samples obtained
from 12 patients at 21, 14, and 7 days prior to the occurrence of a
PE (12). Unlike the 1-year sampling period of the Stressman et al.

study, we sampled at least weekly for 3 years, which spanned nine
PEs, allowing us to group samples into categories relative to the
occurrence of a PE. Our strategy revealed moderate changes in
bacterial abundance that occurred before, during, and after a PE,
which likely would have been missed with less frequent sampling
over a shorter time period.

The antibiotic treatment regimen for each PE (see Table S2 in
the supplemental material) was prescribed to target the two major
pathogens in this patient, Pseudomonas and Burkholderia, and a
different pattern of bacterial abundance change was observed for
each. Interestingly, we observed a possible saturation phase of the
most abundant pathogen, Pseudomonas, toward the second half of
our study period. This saturation may reflect the effectiveness of
the antibiotic regimen that was tailored to Pseudomonas. Consis-
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FIG 4 The changes in bacterial richness (A) and bacterial diversity (B) from 72 sputum samples are shown over time. Richness (P 	 0.018) and diversity (P �
0.050) decreased significantly over the sampling period. Richness but not diversity showed a significant (P 	 6.59e�05) decrease during treatment for a PE
compared to those variables in the stable time period. The time points are plotted as before treatment (red squares) (�30 days before an exacerbation), treatment
(yellow triangles) (samples collected during and within 48 h of termination of treatment), recovery (green circles) (�30 days after an exacerbation), and stable
(black diamonds) (�30 days prior to or after an exacerbation). (B) The best fit line for the stable time period is superimposed with the line for recovery due to
their similarity. The best fit lines are red for before treatment, yellow for treatment, green for recovery, and black for stable.
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tent with this idea is the finding that Pseudomonas was signifi-
cantly lower in abundance in the treatment category than in any of
the other treatment status categories (Table 2). The second most
abundant pathogen measured in our samples, Burkholderia, de-
creased in abundance during treatment compared to that before
treatment, but this decrease was not significant (Table 2). The lack
of a significant decrease in the abundance of Burkholderia in sam-
ples collected before treatment compared to those collected dur-
ing treatment suggests that the antibiotic regimen was less effec-
tive against this taxon, which may be due to increased antibiotic
resistance or other unidentified factors.

One anomaly in our data is that the total bacterial abundances
are less than those for Pseudomonas in several of the sputum sam-
ples, as determined by qPCR. Possible explanations for this in-
clude a difference in the efficiencies of these two reactions due to
using a different amplicon size or to stochastic effects generated by
primers targeting different regions of genomic DNA. Even with this
anomaly, we were able to use both data sets in this study because we
generated separate standards for each primer set, used the same
genomic DNA for each reaction, and compared each target sepa-
rately.

The age and disease status of our patient may be reasons why
we observed so few changes over time. Adult CF patients typically
exhibit low diversity, with few established pathogens dominating
the microbial community (31, 36). Even with these factors, we saw
consistent trends in which (i) there was a spike in Burkholderia
abundance before most, but not all PEs, (ii) antibiotics temporar-
ily depressed bacterial load, and (iii) over a time frame of years,
bacterial load increased. These data are consistent with the obser-
vation that antibiotics provide a temporary relief of symptoms,
but they are in apparent contradiction with studies that indicate
that a spike in bacterial load is not the cause of PEs (12, 14, 37, 38).

Antibiotics reduce richness but not diversity. We used a bar-
coded strategy for Illumina sequencing to determine the changes
in bacterial diversity and richness. Next-generation sequencing
has shown that little change in diversity occurs over time in spu-
tum samples collected from CF patients (31). A decade-long bac-
terial study by Zhao et al. (31) examined the diversity in sputum
samples, which were collected and grouped according to treat-
ment status, from six adult CF patients, three with stable lung

disease and three with progressive lung disease. Bacterial diversity
remained stable over the course of the study in the stable patients
but showed a significant decrease over time in the progressive
patients. The authors did detect a significant decrease in diversity
during treatment for all six patients (31). Similar to the Zhao et al.
study, we observed a significant decrease in diversity over time in
our patient, an adult with CF who was considered to have progres-
sive lung disease, but unlike in their study, diversity remained
stable across changes in treatment status. A possible explanation
for the difference in the change in diversity during treatment be-
tween these two studies may have been due to a difference in
sampling frequency. Another possibility arises from our having
used propidium monoazide (PMA) pretreatment. Rogers et al.
(39) reported that diversity can be under- or overestimated with-
out prior PMA treatment.

The fact that we saw no significant change in diversity between
the samples collected during our defined treatment categories in-
dicates that changes in diversity were not involved in the occur-
rence of a PE in our patient. Our observations again demonstrate
the importance of frequent sampling. Since changes in patient
health may occur between sample collections, there is a risk of
choosing a sample that provides data that do not properly repre-
sent or may underestimate associated responses in the microbial
community. Because the duration of the response may be short-
lived, infrequent sampling may not provide an accurate baseline
against which to compare changes in the microbial community
that correlate with antibiotic treatment.

Change in richness was also not an indicator of PE in our pa-
tient. We observed no significant change in richness in the samples
collected prior to antibiotic treatment compared to that in the
samples collected during periods of stability, although a highly
significant decrease in richness was seen during antibiotic treat-
ment. A similar decreased richness during antibiotic treatment
has been reported in other studies that examined serially collected
sputum samples (14). For example, Fodor et al. (37) observed an
impact of antibiotic treatment on both the relative sequence abun-
dances of seven OTUs and on taxon richness from sputum sam-
ples collected from 23 patients at the onset of a PE and at the end
of treatment. Additionally, Daniels et al. (14) used TRFLP to show
that mean taxon richness decreases in sputum samples as a re-

FIG 5 Comparison of Shannon diversity and richness of sequences in four treatment categories. The asterisks indicate significant differences between the
categories of treatment status, with significance determined by pairwise comparisons from model 9 from Table S2 in the supplemental material, which contain
a term for time and are therefore not in violation of the assumption of independence (see the text). A highly significant (P 	 6.59e�05) decrease in richness was
observed in samples collected during antibiotic treatment compared to that in samples collected during periods of stability. Richness also decreased in a
comparison of the samples collected before treatment to treatment (P 	 0.0013) and stable to recovery (P 	 0.0104). *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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sponse to antibiotic treatment for a PE. That richness is decreased
during treatment in the Fodor and Daniels studies and signifi-
cantly reduced during treatment in our study suggests there is a
concomitant effect of antibiotics on bacteria other than the major
pathogens (see Table S3 in the supplemental material).

Relative abundance of microbiota appears to be stable over
time. Our sequencing results suggest an overall stability in the
microbial community over a long-term period. These results are
consistent with those of previous studies that used pyrosequenc-
ing to characterize the microbial community and found high
overall levels of stability (34, 37). In contrast, our qPCR results
suggest a steady increase in bacterial load over time. We are inves-
tigating the possibility that the discrepancy between the two meth-
ods is caused by saturation effects and the compositional nature of
the sequencing data. In sequencing reactions in which Pseudomo-
nas represents the vast majority of sequencing reads, as it does
here, increases in absolute Pseudomonas abundance may not be
reflected by a corresponding increase in relative abundance. The
discrepancy between our Burkholderia qPCR and sequencing re-
sults is harder to understand but may involve the saturation of
nonquantitative PCR steps that are a necessary precursor to 16S
rRNA sequencing, as well as complex compositional effects that
can skew sequencing results in low-diversity environments (28,
29). Taken together, our qPCR results suggest that our sequencing
results, as well as the sequencing results from other studies, may
exaggerate the stability of the dominant pathogens within the low-
diversity CF microbial community.

Conclusions. Ours is the first study to use Illumina sequencing
and qPCR to examine the diversity and abundance of bacteria in
frequently collected sputum samples from a single CF patient over
a multiyear period. Based on our sequencing data alone, time and
antibiotic use appeared to decrease the number of different taxa in
the lungs but only of those taxa that are the least abundant (see
Table S3 in the supplemental material) in the sputum of our CF pa-
tient. That antibiotics usually alleviate PE symptoms while affecting
the less abundant taxa suggests that identifying the role of taxa other
than the major pathogens may be useful in understanding the pro-
gression of lung disease and the occurrence of exacerbations.

Our study also demonstrates the advantage of combining ge-
nus-specific qPCR with statistical linear models to identify
changes in abundance over time and in treatment status. For ex-
ample, we observed a reduced load of Pseudomonas but not of
Burkholderia during times of antibiotic use over our study period,
throughout which there was no decline in patient lung function.
The results suggest that antibiotics helped to maintain a relatively
stable health condition but did not affect the persistent increase in
Burkholderia, a potential driver of PE onset. Based on the qPCR
results alone, we can speculate that if the greater recovery of Burk-
holderia after antibiotic treatment that we observed were to con-
tinue to exceed that of Pseudomonas, Burkholderia would eventu-
ally become the dominant pathogen.

There are statistical limitations to using a single patient only,
such as not being able to generalize our results. However, we were
able to identify changes over time that have been only partially
documented in other quantitative and deep-sequencing studies of the
CF lung microbiota. These changes were identified because of the
frequent sampling regimen used. The current sampling methods of a
CF patient typically limit the identification of changes in the micro-
bial community to after the PE has been diagnosed in a clinical set-
ting. Frequent sampling increases the likelihood of collecting a

pre-PE sample, which would be beneficial in studies aimed at identi-
fying the biological initiators of a PE. The identification of microbiota
indicators is the first step toward making this approach technically
and financially viable in a clinical setting. We plan to similarly exam-
ine additional patients to determine if our observations represent a
theme common to CF or if microbiota changes are patient specific.
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