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Twelve Burkholderia pseudomallei isolates collected over a 32-month period from a patient with chronic melioidosis demon-
strated identical multilocus sequence types (STs). However, whole-genome sequencing suggests a polyclonal infection. This
study is the first to report a mixed infection with the same ST.

Burkholderia pseudomallei is a Gram-negative bacterium that
causes the potentially fatal disease melioidosis (1). Melioidosis

is the most common cause of community-acquired bacteremic
pneumonia in the tropical Top End of the Northern Territory,
Australia (2), with annual infection rates in recent years of up to 50
per 100,000 people (3). Multilocus sequence typing (MLST) is a
widely adopted genotyping method for characterizing bacterial
pathogens, including B. pseudomallei (4–6). MLST has been used
to demonstrate that B. pseudomallei is among the most recombi-
nogenic bacterial species studied to date, with a recombination-
to-mutation ratio more than twice that of Streptococcus pneu-
moniae (7). Although useful for identifying strain relatedness,
MLST is insensitive to genome-wide variation. To investigate
genome-wide variation and better detect polyclonal infections,
whole-genome sequencing is essential.

Case history. The Darwin Prospective Melioidosis Study
(DPMS) has documented all known Top End melioidosis cases
since October 1989 (2). The 103rd enrolled DPMS patient, P103,
was a 49-year-old male who had a history of asthma and chronic
lung disease and who had received intermittent therapy with oral
prednisolone. Although P103 had positive B. pseudomallei sero-
logical titers since he was first tested in August 1990, serology itself
is not an accurate diagnostic tool, particularly in regions where
melioidosis is endemic; culture confirmation is required for a de-
finitive melioidosis diagnosis (8). Given his positive serology,
P103’s sputum was repeatedly tested for B. pseudomallei, but it
remained culture negative (9, 10) until September 1994, when B.
pseudomallei isolate MSHR338 was obtained. Upon diagnosis,
standard therapy comprising 2 weeks of intravenous ceftazidime
followed by 3 months of oral doxycycline was commenced. De-
spite an improvement in symptoms, the sputum was again culture
positive in December 1994. An additional round of intravenous
ceftazidime followed by oral therapy with various combinations of
doxycycline, trimethoprim-sulfamethoxazole, and chloramphen-
icol was administered. However, P103 still remained culture pos-
itive, with isolates retrieved from sputum or throat specimens 4, 7,
15, 21, and 30 months after obtaining MSHR338 (Table 1). All
samples collected after March 1997 were B. pseudomallei negative.
MIC testing of MSHRs 338 and 346 demonstrated that these iso-
lates remained sensitive to ceftazidime, doxycycline, trim-
ethoprim-sulfamethoxazole, and chloramphenicol. From the 888

melioidosis cases enrolled in the DPMS to August 2014, only 1
other case, P314, demonstrated long-term B. pseudomallei persis-
tence. P314 has ongoing B. pseudomallei respiratory tract coloni-
zation that was first diagnosed in 2000 (11); in contrast, B. pseu-
domallei was eventually eradicated in P103 32 months after the
initial diagnosis and the commencement of therapy.

MLST analysis. MLST was initially performed on seven iso-
lates derived from six clinical specimens over a 32-month period
(Table 1). DNA was extracted from single purified colonies as
previously detailed (12). All seven isolates were sequence type 243
(ST-243), which has only been identified in isolates from this pa-
tient (http://bpseudomallei.mlst.net/).

Genomic analysis. Illumina GAIIx or HiSeq 2000 (Illumina,
Inc., San Diego, CA) whole-genome sequencing was performed on
12 P103 B. pseudomallei isolates, including 5 isolates derived from
three clinical specimens to more thoroughly sample within-host
B. pseudomallei diversity (Table 1). Comparative genomic analy-
ses were performed using SPANDx v2.3 (13), and maximum par-
simony phylogenetic reconstruction of orthologous core single-
nucleotide polymorphism (SNP) variants was carried out using
PAUP* v4.0b (14). 454 GS FLX� sequencing (454 Life Sciences,
Branford, CT) was also performed on MSHR338. The 454 reads
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were combined with Illumina data for de novo genome assembly,
as previously described (11), and checked for errors with iterative
correction of reference nucleotides (iCORN2) (15) using the Illu-
mina reads. The final MSHR338 hybrid assembly (GenBank ac-
cession no. ATJY00000000.1) is in 59 high-quality contigs totaling
7,317,227 bp.

Phylogenetic reconstruction of the P103 genomes using
default (i.e., permissive) SNP density filtering parameters in
SPANDx (whereby only regions containing �3 SNPs within 10 bp
are excluded [16]) demonstrated that MSHRs 346A, 346B, 376,
391, 443, 2845, and 2849 were identical. MSHRs 487, 2844, and
2848 each differed by one SNP (Fig. 1A). In contrast, 842 SNPs
separated MSHR338 from the dominant genotype. No large dele-
tions (�50 bp) were observed in any P103 strains compared with
MSHR338, although 36 unique insertions or deletions (indels)
were found in MSHR338 (Table 2). No indels were found among

the other 11 strains. Given the relatively large genetic distance
between MSHR338 and the subsequent P103 isolates, the poten-
tial for additional genotypes within the original MSHR338 culture
stock was explored further. This stock was plated onto chocolate
agar, and 10 individual colonies were screened using allele-specific
real-time PCR (17) interrogation of an SNP at position 332 of the
MSHR338 Seq0033 contig, which differentiates MSHR338 from
other P103 isolates. All 10 colonies matched the dominant geno-
type. One colony (MSHR338 –5) was fully sequenced (Table 1)
and was identical to the dominant genotype, confirming the pres-
ence of this genotype in the original clinical specimen.

Given the ST-243 diversity in P103, the relative roles of recom-
bination and mutation were investigated. A recombination filter-
ing parameter (i.e., excluding regions with �3 SNPs within 300
bp) was first applied to the 12 P103 genomes. Using this filter, the
majority of SNP differences (n � 778; 94%) in MSHR338 were
removed (Fig. 1B). Closer examination of these SNPs in Integra-
tive Genomics Viewer 2.3.34 (18) showed that the vast majority
(99.9%) of SNPs in MSHR338 were colocated within a 1.3-Mbp
region (Fig. 2). These results strongly suggest that one or more
recent recombination events led to the ST-243 diversity in P103.
Given that no other isolates with similar variants were found in
P103, this recombination event probably occurred prior to infec-
tion, although the possibility of within-host recombination with
an unrelated ST that was not sampled or that became extinct can-
not be ruled out.

To the best of our knowledge, this study is the first to report
a polyclonal infection with the same ST, and it demonstrates
that MLST can be insensitive for detecting polyclonality. Two
previous studies of mixed B. pseudomallei infections using vari-
ous genotyping methods estimated a B. pseudomallei polyclonal
infection rate of between 1.5 and 28% (19, 20); however, the true
rate remains unknown. Within-host evolution in P103 is unlikely
given the relatively low diversity in other reported melioidosis

TABLE 1 Bacterial strains collected from P103

Strain Collection date

MSHR338 September 1994
MSHR338-5a (MSHR338) September 1994
MSHR346Ab January 1995
MSHR346Bb January 1995
MSHR376 April 1995
MSHR2844a (MSHR376) April 1995
MSHR2845a (MSHR376) April 1995
MSHR391 December 1995
MSHR443 June 1996
MSHR487 March 1997
MSHR2848a (MSHR487) March 1997
MSHR2849a (MSHR487) March 1997
a An additional subculture from the original stock (denoted in parentheses) to identify
mixed genotypes.
b Morphological variants that were observed within the same clinical specimen.

FIG 1 Maximum parsimony phylogenetic analyses of P103 Burkholderia pseudomallei isolates over a 32-month infection. All isolates are ST-243; however,
MSHR338 is an outlier according to whole-genome sequencing. Colored shading indicates isolates that were derived from the same clinical specimen. (A) Default
single-nucleotide polymorphism (SNP) density filtering in SPANDx (excluding regions with �3 SNPs per 10 bp). Single SNPs in MSHR487, MSHR2844, and
MSHR2489 are present but not visible due to scale. (B) Moderate recombination SNP filtering in SPANDx (excluding regions with �3 SNPs per 300 bp). Only
SNPs on the MSHR338 branch were removed with the recombinogenic filter. SNPs in MSHR487, MSHR2844, and MSHR2489 are visible. The consistency index
for both trees is 1.0.
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cases (20–22), including a 12-year chronic-carriage case (11). We
therefore conclude that the genotypes recovered from P103 re-
sulted from inoculation with two or more genotypes. The
MSHR338 genotype was only detected in the first culture speci-
men from this patient and at low frequency (�10%) and might
have been missed with less intensive sampling. Increased adoption
of whole-genome sequencing, in combination with greater sam-
pling efforts, will unveil further instances of polyclonality in clin-
ical specimens. We speculate that polyclonal infection may have
led to the difficulties in pathogen eradication observed in this case.
However, a greater understanding of pathogen evolution and ad-
aptation within the human host is needed to better inform the
precise clinical ramifications of polyclonal infections.

Nucleotide sequence accession number. The sequence deter-
mined in this study has been deposited in GenBank under acces-
sion no. ATJY00000000.1.
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