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Cell free circulating microRNAs (cfmiRNAs) have been recog-
nized as robust and stable biomarkers of cancers. However, lit-
tle is known about the prognostic significance of cfmiRNAs in 
esophageal adenocarcinoma (EA). In this study, we explored 
whether specific cfmiRNA profiles could predict EA prognosis 
and whether Helicobacter pylori (HP) infection status could influ-
ence the association between cfmiRNAs and EA survival outcome. 
We profiled 1075 miRNAs in pooled serum samples from 30 EA 
patients and 30 healthy controls. The most relevant cfmiRNAs 
were then assessed for their associations with EA survival in an 
independent cohort of 82 patients, using Log-rank test and multi-
variate Cox regression models. Quantitative real-time PCR (qRT-
PCR) was used for cfmiRNA profiling. HP infection status was 
determined by immunoblotting assay. We identified a panel of 18 
cfmiRNAs that could distinguish EA patients from healthy sub-
jects (P = 3.0E–12). In overall analysis and in HP-positive sub-
type patients, no cfmiRNA was significantly associated with EA 
prognosis. In HP-negative patients, however, 15 cfmiRNAs were 
significantly associated with overall survival (OS) (all P < 0.05). 
A combined 2-cfmiRNA (low miR-3935 and high miR-4286) risk 
score was constructed; that showed greater risk for worse OS 
(HR = 2.22, P = 0.0019) than individual cfmiRNA alone. Patients 
with high-risk score had >10-fold increased risk of death than 
patients with low risk score (P = 0.0302; HR = 10.91; P = 0.0094). 
Our findings suggest that dysregulated cfmiRNAs may contribute 
to EA survival outcome and HP infection status may modify the 
association between cfmiRNAs and EA survival.

Introduction

Esophageal adenocarcinoma (EA) is one of the most aggressive 
gastrointestinal cancers. Despite advances in diagnostic and thera-
peutic strategies, the prognosis of EA remains relatively poor, with 
5-year overall survival rate approximately 10% in Western countries 
(1). Moreover, the incidence of EA is steadily increasing, with 4- to 
5-fold increase in the North America in the last four decades (2). At 
present, the most important prognostic factor for EA is histological 
stage (The TNM staging system [3]). However, large variations in the 
clinical outcomes of patients with the same pathological stage have 
been observed, suggesting that the histological staging system is inad-
equate for accurately defining prognosis. Moreover, the TNM cancer 

staging systems predict survival on the basis of anatomic extent of the 
tumor rather than on molecular changes, providing little information 
for developing novel therapeutic strategies. Recent studies suggest 
that several broad categories of molecules, including gene expression, 
protein biomarkers and genetic polymorphisms may contribute to EA 
prognosis (4); but most of these biomarkers had moderate predictive 
powers and were not cell- or tissue-type specific. Thus, there is an 
urgent need to identify novel biomarkers that are more crucial to EA 
prognosis.

MicroRNAs (miRNAs) are endogenous non-coding RNAs that post-
trancriptionally control gene expression and regulate various biologic 
functions, such as cellular proliferation, differentiation and apoptosis 
(5). Aberrant miRNA expression in tumor tissues has been associated 
with the development and progression of various types of cancers (6), 
including EA (7). However, the invasive procedure of obtaining tumor 
tissue samples limits the application of tumor tissue for miRNA bio-
marker studies. Recently, increasing evidences have shown that tumor 
cells can release miRNAs into the circulation (8) and profiles of cell 
free circulating miRNAs (cfmiRNA) in plasma and serum have been 
found to be altered in cancers and other benign diseases (9), suggest-
ing broad opportunities for development of cfmiRNAs as less-inva-
sive biomarkers. Importantly, cfmiRNAs stable in serum or plasma, 
and freeze/thaw as well as prolonged storage at room temperature do 
not affect cfmiRNA levels (10). Because of the stability in circulation 
and evidence for their association with pathological changes, growing 
attentions have been paid to the study of cfmiRNAs as biomarkers 
of cancer diagnosis and prognosis. Indeed, many studies have shown 
that individual cfmiRNAs are potential biomarkers for prognosis of 
cancers (11), including esophageal squamous cell carcinoma (12,13). 
However, few studies have comprehensively investigated the roles of 
cfmiRNAs in cancer prognosis on an epigenome-wide scale. Little is 
known about the clinical utility of cfmiRNAs in EA (6,9).

Currently, more than 2000 human miRNAs have been identified 
and each of these may target around 1000 genes, leading to complex 
layer of control of signally pathways important to the development 
or progression of cancers (14,15). Thus, high-throughput analysis is 
clearly important to our understanding of miRNA functions in dis-
ease. However, studies on high-throughput platforms usually require 
large sample size to provide adequate statistical power for association 
analyses, limiting its applications in uncommon diseases where large 
samples are extremely difficult to obtain. One of the most useful solu-
tions that have been applied to high-dimensional biological data is 
sample pooling (16). It is a technique where subsets of samples are 
randomly selected and pooled within each group, for estimating aver-
age levels of biomarkers within a group. Pooling helps to reduce cost, 
time, and amount of starting material required (17).

Helicobacter pylori (HP) is a gram-negative bacterium causally 
implicating in many gastric diseases, including duodenitis, gastritis, 
peptic ulcers and gastric cancer (18). In contrast to its association with 
gastric disorders, numerous studies have demonstrated that HP infec-
tion is inversely associated with the development of EA. Results of 
several meta-analyses consistently showed that HP infection is asso-
ciated with a nearly 50% reduction in the risk of EA (19,20). While 
the inverse association of HP infection with EA risk is well-recog-
nized, little is known about the impact of HP infection on survival out-
comes in patients with EA. Recent studies suggest that HP infection 
can modify the biological functions of miRNAs (21,22). However, 
the contribution of HP-related miRNA dysregulation to EA prognosis 
remains unclear.

In this study, we applied miRNome arrays to screen for candidate 
cfmiRNAs that can differentiate EA patients from healthy individu-
als, using pooled serum samples from EA patients and controls. We 
then used custom miRNA arrays to investigate whether EA-associated 

Abbreviations:  cfmiRNA, cell free circulating microRNA; EA, esophageal 
adenocarcinoma; FC, fold change; miRNA, microRNA; HP, Helicobacter 
pylori; OS, overall survival; qRT-PCR, quantitative real-time PCR.
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cfmiRNA profiles could serve as prognostic biomarkers for EA. 
Specifically, we tested the hypothesis that HP infection status may 
influence the associations of aberrant cfmiRNA profiles with EA 
prognosis.

Materials and methods

Study design
A two-phase test was designed to identify prognostic cfmiRNAs for EA. In the 
discovery phase, equivalent amounts of serum RNAs from 30 EA cases and 30 
healthy controls were randomly divided into 3 EA pools and 3 control pools. 
Each pool contained serum RNAs from 10 samples. Serum levels of miRNAs 
in pooled samples were quantified by quantitative real-time PCR (qRT-PCR), 
using the miRNome array that contains probes for 1075 human miRNAs. 
Subsequently, the associations of the most relevant cfmiRNAs with overall 
survival (OS) of EA were further studied in a cohort of 82 EA cases (Figure 1).

Study population
This study was approved by the Human Subjects Committees of Massachusetts 
General Hospital (MGH) and Harvard School of Public Health (HSPH). Study 
subjects were selected from an existing case-control study of EA at MGH. 
Details of this study population have been previously reported (23). All sub-
jects provided informed, written consents to the participation of the study. 
Blood samples from EA patients were taken at diagnosis before treatment. 
Blood samples from controls were obtained at recruitment. EA cases were 
incident patients with newly diagnosed and histologically confirmed EA that 
were recruited prospectively at MGH between 1992 and 1996. For this study, 
EA was defined as a tumor center located at or above the gastroesophageal 
junction and had at least two-thirds of the bulk tumor located in the esophagus. 
Subjects mixed with Barrett’s esophagus (BE) or BE patients were excluded 
from the present study. Controls were accrued from a common control pool 
originally recruited for multiple case-control studies of lung and esopha-
geal cancers (23). Controls were healthy friends and non-blood-related fam-
ily members who were visiting hospital patients. All controls had never had 
received a diagnosis of cancer.

Circulating RNA extraction
Peripheral venous blood sample was drawn from each subject and serum sam-
ple was separated within 2 h. Serum was isolated by centrifugation at 2000 
r.p.m. for 10 min at 4°C and stored at −80°C until analysis. Total RNA was 
extracted from 200 µl aliquots of serum using the miRNeasy Serum/Plasma 
Kit (Qiagen, Valenca, CA), according to the manufacturer’s instruction. For 
normalization of sample-to-sample variation during the RNA isolation pro-
cedures, synthetic cel-miR-39 mimic was added to each serum sample before 
RNA extraction. Extracted RNA was eluted in 14 μl of RNase-free water and 
then stored at −80°C. Concentration and purity of RNA was measured by a 
GenQuant spectrophotometry (Pharmacia Biotech, Piscataway, NJ). The ratios 
of A260/280 were used to indicate the purity of total RNA. RNA yield was 
expressed as ng/µl serum.

Serum miRNA profiling and data normalization
For qRT-PCR assay, 4 µl enriched RNAs from the 20 µl elute of RNA isola-
tion was reverse-transcribed to cDNA using the miScript II RT Kit (Qiagen 
Sciences, Germantown, MD) in a total reaction volume of 10 µl. A 1:20 dilu-
tion of RT products was used as template for the PCR stage. cfmiRNA profiles 
in pooled samples were measured using the CS2041 Human whole-miRNome 
Array by qRT-PCR and the miScript SYBR green PCR kit (Qiagen Sciences) 
following the manufacturers’ instructions.

Custom miRNA arrays for analysing the selected cfmiRNAs were ordered 
from Qiagen (Qiagen Sciences), using the custom Qiagen plates with specific 
primer probes. Candidate cfmiRNA levels were analysed by qRT-PCR using 
the same miScript SYBR green PCR kit (Qiagen) and protocols as that for 
pooled samples.

All qRT-PCR reactions were carried out in 384-well plates including syn-
thetic miRNAs miRTC and positive PCR control as internal references. All 
qRT-PCR reaction was conducted on the ABI 7900HT Real-Time PCR System 
(Applied Biosystems) under the following conditions: 15 min at 95°C and 40 
cycles of 15 s at 94°C, 30 s at 60°C and 30 s at 72°C.

Raw data were normalized against the reference miRNAs that were included 
in all plates. Only values below a minimum threshold (CT < 32) were nor-
malized in order to avoid artefactual regulation due to sample normalization. 
To exclude the possibility that results were influenced by the normalization 
method, we repeated normalization analysis with a different method: the 
median normalization method in which each sample was against the median 
value of all miRNA samples. The two different normalization methods yielded 
similar results (r2 = 98; P < 2.2e−16).

Detection of Helicobacter pylori infection
Serum HP infection status was determined using the Helicoblot 2.1 kit 
(Genelabs Diagnostics®, Singapore) according to manufacturer’s instructions 
(24). This immunoblotting assay is known to have high sensitivity and speci-
ficity in detecting the IgG of HP in serum samples stored for up to 15 years 
(25). Positive and negative controls and blinded duplicate samples were run 
for each reaction.

Statistical analysis
Quantitative data was expressed as mean ± standard deviation. Fisher’s exact 
chi-square tests were applied to categorical variables, and the student’s t test 
was used to compare the differences between continuous data. The relative lev-
els of miRNA were quantified using the 2-ΔΔCT method, where ΔCT = CTtarget 
− CTreference.

The primary outcome of this study was OS, measured from the date of path-
ological diagnosis to the date of death (event) or last known to be alive (cen-
sored). Associations between cfmiRNAs and outcomes (OS) were estimated 
using the method of Kaplan–Meier to generate survival curves and assessed 
using the log-rank tests. Cox proportional hazards models were used as our 
primary analyses, adjusting for age, gender, stage, performance status, smok-
ing status, BMI and HP infection status. Censoring refers to the patients who 
may drop out or still are alive at the end of the study. All statistical tests were 
two-sided, and a P-value less than 0.05 was considered significant.

Results

Characteristics of study population
Supplementary Table I, available at Carcinogenesis online, and Table 
I list the clinical characteristics of subjects in the discovery and valida-
tion sets, respectively. Age, gender, smoking status and HP infection 
status did not differ significantly between EA patients and controls 
in the discovery set. Moreover, no significant differences between 
HP-positive and HP-negative patients were observed in terms of age, 
pathological stage and smoking.

Identification of differential cfmiRNA profiles between pooled EA 
and control samples
To derive a relative concentration for a given miRNA, we normalized 
the CT values against the mean CT of miRNAs that were expressed in 
both case and control pools and had a CT < 32, where CT is the fractional 
cycle number at which the fluorescence signal exceeds background. 
The fold change (FC) value was estimated by: FC = 2(ΔCt,control–ΔCt,case). 
After data filtering, a total of 657 cfmiRNAs were stably detectable in 
both the case pools and control pools. Among them, 301 cfmiRNAs 
(fold changes between EA pools and control pools were >2, >4, and 
>6 for 184, 56 and 23 cfmiRNAs, respectively) with FC >2.0 were 
selected for volcano plot analysis. We used the following criteria to 
identify the most differentiated cfmiRNAs (i) the fold change between 
EA pools and control pools was over the upper 95th percentile or 
below the lower 5th percentile; (2) the P values of t test were less 
than 0.05. cfmiRNAs that met both two criteria were selected as can-
didate cfmiRNAs. Based on these criteria, we identified 18 cfmiR-
NAs that were significantly differentiated between EA and control 
(median FC = 5.76). (Figure 2, Supplementary Table II, available at 

Discovery phase

EA cases = 30; Healthy controls = 30

Quantitative RT-PCR

miRNome array (miRNAs = 1075)

Selection of differential cfmiRNAs 

miRNAs = 30

Validation phase

EA cases = 82

Quantitative RT-PCR

Custom array (miRNAs = 30)

Log-rank test

Cox regression model

Fig. 1.  Study flow chart.
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Carcinogenesis online) The effectiveness of these aberrant cfmiRNAs 
in differentiating EA from control was further analysed by hierarchi-
cal clustering model. Multivariate analysis (Hotelling T test) showed 
that this signature of 18 cfmiRNAs clearly separated the EA samples 
from control samples (P = 3.0E–12) (Figure 3).

Association of aberrant cfmiRNAs with survival outcomes EA
We constructed custom arrays that included probes for: (1) 18 miR-
NAs identified by volcano plot and hierarchical clustering model 
(Figure  2I); (2) 12 miRNAs whose average FC levels between EA 

pools and control pools were greater than 6. We used these 30 miRNA 
custom arrays to quantify cfmiRNA levels in an independent cohort of 
82 EA patients. In multivariate Cox regression analysis in the entire 
cohort, no candidate cfmiRNA was significantly associated with OS 
(Table II). Moreover, HP infection was not found to be associated with 
OS of EA (HR = 0.645; 95%CI: 0.16–2.54; P = 0.5302). To investigate 
whether HP infection status may influence the associations of cfmiR-
NAs with EA survival outcome, we divided subjects into two groups: 
HP-positive patients (n = 24) and HP-negative patients (n = 58). In HP-
positive subgroup patients, no cfmiRNAs were found to be associated 

Table I.  Characteristics of EA patients

Characteristics All cases HP positive (n = 24) HP negative (n = 58) P-valuea

Age 63.31 ± 10.57 65.03 ± 10.70 62.61 ± 10.53 0.8887
Sex
  Male 69 17 52
  Female 13 7 6 0.0474
Stage
  I 7 2 5 0.7708
  II 36 9 27
  III 21 6 15
  IV 18 7 11
Smoking
  Never 17 3 14 0.2892
  Former 44 16 28
  Current 21 5 16
  Packyears 30.0 (0–133) 35 25 0.1872
GERD
  Yes 40 11 29 0.8105
  No 42 13 29
HP infection status
  Positive 24
  Negative 58

Data are means ± SD for age and frequency for other variables.
aComparing HP positive patients versus HP negative patients.

Fig. 2.  Volcano plot illustrates the frequency distribution of FC values and the distribution of FC with corresponding P-values (all values were log transformed). 
The vertical dash lines represent the cut-off levels of upper 95th percentile and lower 5th percentile of FC values, respectively. The horizontal dash line indicates 
the significant level (0.05) in log10 scale. cfmiRNAs with FCs either above the 95th percentile or below the 5th percentile and with P-values <0.05 were selected 
as the most differentiated cfmiRNAs. FC, fold change.
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with EA survival outcome. In patients without HP infection, however, 
15 cfmiRNAs were significantly associated with EA survival outcomes 
(all P values <0.05, Table II). The associations remain significant even 
after adjusting for age, gender, stage, performance status, smoking and 
gastroesophageal reflux disease symptoms.

To explore the combined effect of prognostic cfmiRNAs on OS 
of EA, we developed a cfmiRNA score to predict EA survival out-
come. We constructed correlation structure using the 15 candidate 
cfmiRNAs. We selected cfmiRNAs that had low correlations with 
other cfmiRNAs (r2 < 0.7) (Supplementary Table III, available at 
Carcinogenesis online) to calculate a risk score for each patient. Two 
cfmiRNAs (miR-3935, miR-4286) were selected to build the risk 
score. A patient’s risk score was calculated as the sum of expression 
level of each cfmiRNA, multiplied by the corresponding multivari-
ate Cox regression coefficients (Risk score  =  −0.80287*mir3935 + 
0.83495*mir4286). Patients were classified as having a high-risk 
cfmiRNA score or a low-risk cfmiRNA score, with the median 
value of the risk score (−2.29) as the threshold value. The median 
risk score was chosen as the threshold value in order to eliminate the 
effect of extreme values in the cohort. The cfmiRNA score showed 
a better prediction of survival than did individual cfmiRNA alone 

(HRtrend = 2.22; 95%CI: 1.34–3.68; P = 0.0019). Compared with low-
risk group, patients in high score group had a significantly worse OS 
(HR = 10.91; 95%CI: 1.80–66.12; P = 0.0094), (Figure 4).

Given the distinct difference in the association of cfmiRNAs with 
OS of EA between HP-positive and HP-negative patients, we further 
explored whether interactions existed between cfmiRNAs and HP 
infection status. To estimate P-values for interaction, a multiplicative 
interaction term was included in the Cox regression models, account-
ing for multiple covariates. A total of 10 cfmiRNAs were found to be 
significantly associated with OS of EA through interactions with HP 
infection status (Table II).

Discussion

Our study suggests that epigenome-wide miRNA profiling is able to 
identify specific cfmiRNA pattern that could distinguish EA patients 
from healthy controls. We also demonstrate that aberrant cfmiRNA 
profiles are potential biomarkers of EA prognosis. More interestingly, 
we have found that HP infection status may modify the associations 
of cfmiRNA with EA prognosis, suggesting that miRNA-HP interac-
tions may play an important role in the prognosis of EA.

Fig. 3.  Hierarchical cluster analysis demonstrates that a panel of 18 cfmiRNAs could clearly distinguish EA cases from controls (P = 3.0E–12, Hotelling T test).
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In recent years, several high-throughput methodologies have devel-
oped to determine miRNA profiles including miRNome array and 
next-generation sequencing methodologies. Such highly quantitative 
miRNA analyses are clearly vital to improve our understanding about 
the role of miRNA dysregulation in complex diseases. Nevertheless, 

lessons learnt from large-scale genetic association studies suggest 
that extremely large sample size may be crucial in detecting the small 
effects expected in the highly complex disorders that contribute most 
to the global burden of disease (16). While systematic assessment 
of miRNAs has the potential to revolutionize our knowledge about 
the pathogenesis of complex disorders, the difficulty of conducting 
such large-scale research remains prohibitive to many researchers. 
Validated pooling techniques have been widely employed in stud-
ies of DNA sequence variation (26), gene expression (27) and DNA 
methylation (16), and have allowed researchers to identify candidate 
biomarkers using relatively small sample sizes. To date, however, 
very few studies have systematically explored the application of RNA 
pooling for the analysis of miRNAs. Rather than generating individual 
results and averaging them within a group, such approaches combine 
miRNA of different individuals to generate estimates of their average 
results. These estimates can then be used to compare case and control 
groups. In studies of DNA sequence variation, screens of DNA pools 
across thousands of loci have been used to identify regions of the 
genome for further study via individual genotyping (16). Conversely, 
some screens have reported no group differences, indicating that the 
time and expense of further investigation at the individual-sample 
level may be unjustified (28). In the present study, we applied the 
miRNome array to the analysis of pooled RNAs, for estimating aver-
age cfmiRNA levels within a group. This method can be used to detect 
group differences and estimate group miRNA averages. As it reduces 
the amount of RNA starting material required, such an approach may 
be especially useful to researcher with limited RNA stocks. In larger 
scale studies involving multiple candidate regions, this method will 
also prove valuable in highlighting those markers which warrant fur-
ther study at the individual-sample level.

Our data suggest that specific cfmiRNAs are associated with 
OS of EA only in HP-negative patients. The striking difference in 
the association of cfmiRNA with EA outcomes between HP+ and 

Table II.  Associations of cfmiRNAs with OS of EA

cfmiRNAs All EA patients (n = 82) HP positive EA (n = 24) HP negative EA (n = 58) All EA patients (n = 82)

HR 95% CI Pa HR 95% CI Pa HR 95% CI Pa Pb
Interaction

hsa.mir.1253 0.84 0.59–1.13 0.2190 1.16 0.45–2.98 0.7559 0.42 0.23–0.76 0.0042 0.0232
hsa.mir.125a.3p 0.97 0.70–1.34 0.2973 0.95 0.59–1.53 0.8358 1.83 0.81–4.11 0.1450 0.7559
hsa.mir.1273d 1.05 0.80–1.37 0.7413 0.49 0.19–1.28 0.1416 1.75 1.09–2.80 0.0196 0.0025
hsa.mir.187.5p 0.88 0.65–1.18 0.3916 1.37 0.72–2.58 0.3370 0.52 0.30–0.90 0.0187 0.0864
hsa.mir.1912 1.07 0.84–1.37 0.5788 0.46 0.17–1.23 0.1213 1.51 1.14–2.01 0.0046 0.0256
hsa.mir.200b.5p 1.22 0.94–1.59 0.1352 0.78 0.32–1.90 0.5820 1.44 1.10–1.90 0.0087 0.1966
hsa.mir.2276 1.08 0.83–1.42 0.3519 1.12 0.79–1.71 0.5920 0.97 0.61–1.53 0.8818 0.7646
hsa.mir.3147 1.14 0.91–1.45 0.2592 0.70 0.47–1.05 0.0824 1.40 1.10–1.78 0.0062 0.0010
hsa.mir.3149 0.86 0.67–1.12 0.2640 0.57 0.29–1.14 0.1130 1.36 0.83–2.20 0.2192 0.0812
hsa.mir.3200.5p 0.98 0.73–1.34 0.9321 1.04 0.63–1.71 0.8834 1.09 0.59–2.00 0.7839 0.7633
hsa.mir.324.3p 1.09 0.76–1.57 0.6335 0.96 0.45–2.04 0.9166 2.14 1.14–4.04 0.0185 0.6142
hsa.mir.326 1.03 0.78–1.37 0.8164 0.86 0.52–1.42 0.5518 1.83 1.12–3.00 0.0161 0.1263
hsa.mir.3652 1.13 0.88–1.47 0.3419 0.53 0.22–1.28 0.1589 1.52 1.12–2.08 0.0082 0.0185
hsa.mir.3679.5p 0.92 0.72–1.17 0.4879 0.44 0.17–1.16 0.0958 1.90 0.80–1.76 0.3980 0.0097
hsa.mir.3692.5p 1.16 0.90–1.49 0.2658 1.28 0.71–2.29 0.4109 1.43 0.91–2.26 0.1223 0.6193
hsa.mir.3714 0.85 0.65–1.10 0.2116 0.27 0.07–1.09 0.0655 1.18 0.79–1.78 0.4206 0.0021
hsa.mir.3935 0.80 0.50–1.28 0.3496 1.99 0.64–6.19 0.2357 0.43 0.19–0.96 0.0393 0.2159
hsa.mir.4252 1.07 0.81–1.43 0.6212 1.15 0.74–1.77 0.5414 1.15 0.89–2.35 0.1332 0.7551
hsa.mir.4267 1.23 0.81–1.79 0.2888 1.09 0.57–2.11 0.7891 1.99 1.14–3.47 0.0162 0.6863
hsa.mir.4274 1.06 0.78–1.43 0.1345 0.75 0.28–2.03 0.5732 1.62 1.04–2.53 0.0340 0.2452
hsa.mir.4286 1.20 0.90–1.58 0.2170 0.81 0.44–1.50 0.5054 2.31 1.29–4.12 0.0043 0.0563
hsa.mir.4290 0.89 0.65–1.21 0.4441 0.46 0.16–1.34 0.1550 1.23 0.73–2.07 0.4299 0.0284
hsa.mir.4323 1.09 0.84–1.41 0.5268 0.55 0.25–1.24 0.1497 1.60 1.11–2.34 0.0128 0.0203
hsa.mir.4325 1.01 0.85–1.21 0.8831 0.99 0.43–2.25 0.9710 1.26 0.99–1.61 0.0566 0.9303
hsa.mir.551b.5p 0.95 0.72–1.23 0.6730 0.91 0.43–1.93 0.8078 1.28 0.83–1.96 0.2695 0.5441
hsa.mir.591 0.89 0.71–1.10 0.2740 0.43 0.17–1.70 0.4360 1.60 0.97–2.65 0.0650 0.0036
hsa.mir.593.5p 0.82 0.59–1.14 0.2378 0.71 0.29–1.70 0.4360 1.14 0.63–2.07 0.6631 0.2131
hsa.mir.625.5p 1.06 0.88–1.28 0.5157 1.00 0.75–1.34 0.9901 1.29 0.97–1.96 0.0840 0.3656
hsa.mir.640 1.20 0.98–1.47 0.0866 1.00 0.61–1.58 0.9449 1.48 1.11–1.96 0.0069 0.2523

aAdjusted for age, sex, smoking sort, stages, body mass index at diagnosis, performance status and GERD symptoms.
bP-value for interaction between cfmiRNA and HP infection status.

Fig. 4.  Survival analysis of the cfmiRNA score. (A) Kaplan–Meier estimates 
of the cfmiRNA score identified by Cox regression model. Patients were 
classified into low risk group (reference) and high risk group by median 
stratification. (B) Cox regression analysis of the cfmiRNA risk score in HP-
negative patients, adjusting for age, sex, stages, performance status, smoking 
sort, body mass index at diagnosis and GERD symptoms.
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HP− EA patients was unlikely to be due to the differences in age, 
gender, smoking status, pathological stages or GERD between HP 
infection statuses (Table II). Moreover, the associations of particu-
lar cfmiRNAs with EA prognosis seemed to be independent of the 
influence of these clinicopathological factors, because after adjusting 
for these covariates, these cfmiRNAs remained significantly associ-
ated with EA prognosis in HP− EA patients. This observation is in 
line with previous reports describing the influence of HP infection 
on miRNA dysregulation. For instance, HP induces aberrant silenc-
ing of let-7 expression, leading to upregulation of Ras oncoprotein 
expression (19). HP-induced inflammatory cytokines (IL-8, TNF-α 
and IL-1β) were able to increase the expression of miR-146a, which 
in turn reduced the expression of IL-8, TNF-α and IL-1β (29). HP 
suppressed the expression of miR-320 and upregulated expression 
of the antiapoptotic protein Mcl-1, leading to decreased apoptosis in 
a cagA-dependent manner (30). Persistent HP infection may affect 
expression of miRNAs via chronic inflammatory cytokines, includ-
ing IL-1β, IL-6 and TNF-α(29,31). While these observations strongly 
suggest the involvement of HP in miRNA regulation, information in 
this regard is mostly from studies in gastric disorders. Very little is 
known about cfmiRNA profiles in EA with special reference to HP 
infection status. The association of cfmiRNA profile with HP infec-
tion status identified in the present study agrees with those reports 
showing the impact of HP on miRNA expression in other tissues. 
Our finding that cfmiRNAs are associated with EA OS only in HP-
negative subgroup suggests that the contribution of aberrant cfmiR-
NAs to EA prognosis may be modified by HP infection status. Further 
studies in larger sample sizes are required to elucidate the molecular 
mechanisms underlying the interaction of miRNAs and HP infection 
in the prognosis of EA.

In the present study, we identify 15 candidate cfmiRNAs that are 
significantly associated with EA prognosis in HP-negative subjects. 
An important question in this regards is whether these cfmiRNAs may 
play any role in the pathogenesis of EA. Although the current study 
did not provide direct evidence demonstrating that these miRNAs are 
involved in EA prognosis, evidence from previous studies in multi-
ple cancer-related pathological processes may indirectly support our 
findings. MiR-3652 and miR-640 are able to bind to oncogenes and 
significantly regulate oncogene expressions (32). Downregulation of 
miR-1273d has been observed in gastric cancer cell lines (33). Further, 
it has been shown that miR-1253 is involved in the regulation of mul-
tiple drug resistance (MDR) in cancers (34). There is evidence that 
miR-200 family expression is downregulated in both EA and Barrett’s 
epithelium (35). It has been reported that circulating miR-200b-5p 
levels can discriminate lung cancer from controls (36); whereas serum 
miR-3147 expression levels can predict metastasis in patients with 
early-stage cervical squamous cell carcinoma (37). Similarly, blood 
miR-4286 concentrations are associated with metastasized seminoma 
(38). Serum miR-324-3p was differentially expressed between breast 
cancer and controls (39). miR-326 was involved in chemotherapy 
resistance of breast cancer through modulating expression of multid-
rug resistance-associated protein 1 (40).

Compared with those studies on circulating microRNAs for can-
cer prognosis, our study is unique for the following reasons: first, we 
screened a large number of serum microRNAs via a miRNome array 
covering a complete list of human miRNA, which enabled us to have 
better chance to identify potential aberrant markers. Furthermore, we 
took the impact of HP infection into account in analyzing the associa-
tion of cfmiRNAs with EA survival. This integrated analysis approach 
provide new insight into the mechanisms underlying EA progression. 
Furthermore, all serum samples were collected at diagnosis before 
treatment and all subjects had complete demographics, clinical and 
follow-up information, allowing us to control for the influence of mul-
tiple confounding factors and minimize bias of results due to incom-
plete information.

In summary, we found that specific cfmiRNAs were associated with 
EA survival outcomes. More importantly, we revealed that the asso-
ciations of cfmiRNA with EA prognosis may be influenced by HP 
infection status. This adds new knowledge for better understanding 

the molecular mechanisms underlying the association between miR-
NAs and EA prognosis. Although our results need to be confirmed in 
larger, prospective studies, we conclude that cfmiRNAs hold a great 
promise to become non-invasive biomarkers for EA prognosis.
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