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Abstract

Patients with resected stage II–III cutaneous melanomas remain at high risk for metastasis and 

death. Biomarker development has been limited by the challenge of isolating high-quality RNA 

for transcriptome-wide profiling from formalin-fixed and paraffin-embedded (FFPE) primary 

tumor specimens. Using NanoString technology, RNA from 40 stage II–III FFPE primary 

melanomas was analyzed and a 53-immune-gene panel predictive of non-progression (area under 

the curve (AUC)=0.920) was defined. The signature predicted disease-specific survival (DSS 

P<0.001) and recurrence-free survival (RFS P<0.001). CD2, the most differentially expressed 

gene in the training set, also predicted non-progression (P<0.001). Using publicly available 

microarray data from 46 primary human melanomas (GSE15605), a coexpression module 

enriched for the 53-gene panel was then identified using unbiased methods. A Bayesian network 

of signaling pathways based on this data identified driver genes. Finally, the proposed 53-gene 

panel was confirmed in an independent test population of 48 patients (AUC=0.787). The gene 

signature was an independent predictor of non-progression (P<0.001), RFS (P<0.001), and DSS 

(P=0.024) in the test population. The identified driver genes are potential therapeutic targets, and 

the 53-gene panel should be tested for clinical application using a larger data set annotated on the 

basis of prospectively gathered data.

INTRODUCTION

Metastatic melanoma is a devastating illness, taking the lives of over 48,000 people 

worldwide per year (Manolio et al., 2013). Patients who have had a stage II or stage III 

melanoma excised remain at high risk for progression and death because micro-metastases 

may have spread to other body sites before resection. Stage II and III patients face an 

approximate 50% risk of death, as compared with <10% risk for stage I disease and >90% 

risk for stage IV disease (Balch et al., 2009).

Critical prognostic features describing a primary melanoma lesion include depth, ulceration, 

and mitotic rate, all included in the American Joint Committee on Cancer staging system. 

Stage II disease is defined as melanomas of at least 1.01mm in depth with ulceration or at 

least 2.01mm in depth without ulceration. The 2009 American Joint Committee on Cancer 
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guidelines also identified mitotic rate as an independent predictor of survival that is more 

significant than depth in melanomas under 1mm. Patients are classified as stage III, 

regardless of tumor depth, if they have any local lymph node metastasis, cutaneous 

metastasis, and/or “satellite lesions” defined as microscopic foci of tumor separated from the 

dominant mass indicating subclinical cutaneous metastasis (Balch et al., 2001, 2009).

For patients diagnosed with stage II melanoma, the best test available to further estimate risk 

is a sentinel lymph node biopsy. Patients with subclinical nodal metastasis may be upstaged 

to stage III if the node is positive (Morton et al., 2006; Wong et al., 2012). Stage III disease, 

however, is highly heterogeneous. Five-year survival ranges from 87% for stage III patients 

with one nodal micro-metastasis and a primary lesion less than 2mm down to 36% for stage 

III patients with four or more involved nodes (Balch et al., 2010). Patients with stage IIC 

disease (negative sentinel node but primary lesion 4mm or greater or 2mm with ulceration) 

have a 5-year survival of only 48% (Balch et al., 2009). Thus, a deep primary melanoma 

confers a worse prognosis than a microscopic focus of melanoma in the sentinel node, likely 

due to hematogenous spread (Balch et al., 2009). There is a clear need for prognostic tools 

for patients with resected stage II–III melanoma, both for surveillance and for stratification 

for clinical trials of newer adjuvant therapies such as anti-CTLA4 and anti-PD1.

Evidence shows that the phenomenon of immune surveillance has a key role in human solid 

tumors (Bindea et al., 2011; Fridman et al., 2011; Ott et al., 2013). Thus, the immunoscore, 

a grading system whereby tumor-infiltrating lymphocytes (TILs) are enumerated and 

classified through staining for CD3 and CD8, is a proposed biomarker for cancer 

progression (Ascierto et al., 2013). In primary melanoma, it has historically been known that 

the presence of TILs confers a more favorable prognosis (Clemente et al., 1996; Azimi et 

al., 2012). Two factors limit widespread clinical application of TIL quantification. First, TIL 

quantification is subject to observer variability (Busam et al., 2001). Second, the majority of 

patients have “non-brisk” TILs, an intermediate category that offers little prognostic 

information (Azimi et al., 2012). A barrier to the development of molecular markers beyond 

TILs has been the clinical standards requiring formalin-fixed and paraffin-embedded (FFPE) 

specimens for diagnosis of primary melanoma, which complicates isolation of RNA for 

transcriptome-wide profiling (Bogunovic et al., 2009). Whole-genome arrays performed in 

frozen tissues and, more recently, in FFPE tissues, have characterized melanomas across 

multiple stages as high or low risk, and differentially expressed genes include immune genes 

(Winnepenninckx et al., 2006; Harbst et al., 2012; Mann et al., 2013).

However, no prognostic immune biomarkers are currently available and despite the critical 

role of the immune system in melanoma progression, we do not have a practical way to 

translate this concept into clinical application. To address this need, we used NanoString 

technology to profile a targeted set of 446 immune-related genes in primary melanoma 

tumors (Fortina and Surrey, 2008). We report that expression levels of a 53-gene panel 

(subset of the 446 genes screened) predict non-progression and prolonged recurrence-free 

survival (RFS) and disease-specific survival (DSS) in two independent patient populations 

with resectable stage II–III melanoma. Our results suggest that larger-scale prospective 

studies should be conducted to define genomic immune biomarkers in primary melanoma 

tumors.
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RESULTS

Characterization of 446-gene panel enriched for immune function in a training set of 40 
stage II–III primary FFPE melanomas

NanoString is the most reliable technology capable of robustly quantitating RNA levels for 

hundreds of genes in FFPE tissues, and we used it to assess transcription levels across a 

broad range of immune- and/or melanoma-related genes. We identified 446 genes of interest 

for profiling in the melanoma samples on the basis of a PubMed search of the literature 

(schema Figure 1a; Supplementary Tables S1 and S2 online). Clinical characteristics of the 

training set are shown in Figure 1b. Pathology databases at Geisinger Medical Center 

(GMC, Danville, PA) and the Icahn School of Medicine at Mount Sinai (MSSM, New York, 

NY) were screened for primary stage II and III melanoma tumors. Patients were scored as 

“progressors” if they presented with unresectable and/or systemic (stage IV) disease at any 

time during follow-up. Patients were scored as “non-progressors” if they remained free of 

melanoma during the entire follow-up period of at least 24 months (median time to censor 

61 months). Progression was selected as an end point rather than survival to avoid bias 

introduced by subsequent treatments known to prolong survival in the metastatic setting, 

whereas recurrence per se was not selected as an end point because patients who have an 

isolated resectable loco-regional recurrence remain at relatively low risk of further 

progression (approximately 50%), making the recurrence less clinically significant in these 

patients (Francken et al., 2008).

On the basis of these criteria, an initial training set of 47 patients was identified. RNA of 

sufficient quality for NanoString analysis was obtained in 40 of these cases (85%, see 

Materials and Methods). Heat map depicts mRNA copy number using unsupervised 

clustering in the 40 patients (Figure 1c). As shown, the distribution of samples is nonrandom 

with higher expression of immune genes in patients who did not progress.

Identification of a 53-gene immune panel predictive of non-progression, RFS, and DSS in 
the training set

Each one of the 446 candidate genes was assessed for its ability to distinguish between 

progressors and non-progressors using two standard classification methods: random forest 

and elastic net. A subset of 53 genes was selected as the final gene panel (Figure 2a). 

Receiver operating characteristic curves were generated using fivefold cross-validation on 

the training set with a mean area under the curve of 0.920 (Figure 2b). Ten thousand training 

data sets were then generated by randomly removing eight bootstrapped samples of the data. 

The removed samples served as the testing data sets. Receiver operating characteristic 

curves were generated and the distribution of AUCs is shown in Figure 2c. Interestingly, all 

53 genes were upregulated in the non-progressors, a bias that significantly deviates from 

what we would expect by chance (P<0.001).

Next, the gene signature was evaluated in the context of known clinically relevant 

predictors. Stage (P=0.027), depth (P=0.033), and age (P=0.014) significantly correlated 

with progression by logistic regression, whereas ulceration and mitotic rate trended toward 

significance (P=0.053 and P=0.062, respectively). TILs, gender, and location of the primary 

Sivendran et al. Page 4

J Invest Dermatol. Author manuscript; available in PMC 2015 January 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



tumor did not significantly correlate with progression. Multivariate logistic regression 

showed that the 53-gene signature score was the best predictor of progression (P<0.001), 

with the gene signature contributing significantly to the accuracy in the context of known 

predictors (P<0.001).

The 53-gene signature was then tested as a predictor of both RFS and DSS using Cox 

analysis and correlated with both end points (P<0.001) in a univariate model. The 53 genes 

were lastly examined in the context of known clinical predictors. TILs, mitotic rate, depth, 

age, and location on an extremity correlated with DSS. Ulceration and stage III disease 

trended toward significant correlation with diminished DSS (P=0.060 and P=0.072, 

respectively). In multivariable analysis, the gene signature added significantly to the 

predictive power of clinicopathologic features for both RFS and DSS (P<0.001).

Identification of a closely related immune module using unbiased coexpression analysis 
of the GEO database

To further assess the applicability of our findings to melanoma patients, and to define key 

node genes driving the immune signature, a coexpression network, consisting of 16,745 

genes, (Figure 3a) was reconstructed using data from 46 primary melanoma patients (GEO 

accession ID: GSE15605)26. A 758-gene module (highlighted in yellow in Figure 3a) was 

found to be the most enriched for both the 53-gene panel and the 446-gene panel. In all, 42 

genes were found within the 758-gene module, yielding an enrichment fold of 17.50 with a 

P-value <2.2e-16. An enrichment fold was similarly computed for the same module against 

the 446-gene panel where 161 genes were found in the 758-gene module, yielding an 

enrichment fold of 7.98 with P-value <2.2e-16. The enrichment fold increased over twofold 

in the more refined set of genes, which indicates a higher correlation among the selected 53 

genes compared with the original 446 genes. These data show that the 53-gene panel is 

closely related to a coexpression module discovered by unbiased network analysis of the 

GEO database as 42 genes from the panel were found within the 758-gene module. In fact, 

these 42 genes correlated closely with progression in the training set showing that they 

contain a significant fraction of the predictive power of the original 53-gene panel 

(Supplementary Figure S2 online).

Bayesian network shows high connectivity among the 53 genes in the immune panel

To further illustrate the causal regulatory mechanism of immune response, interactions 

within and around the 53-gene panel were investigated. A neighborhood of genes related to 

the 53-gene panel was first selected using the knowledge base network tool VisAnt (see 

Supplementary Methods page 9 online). A Bayesian network was constructed for the VisAnt 

gene list (which includes the original 53-gene panel) using the melanoma gene expression 

data set (GSE15605) shown in Figure 3b. A reference Bayesian network was similarly 

constructed for the 446-gene panel and its neighborhood set (Figure 3c).

Descriptive statistics across each Bayesian network (number of interactions, clustering 

coefficients, density, and so on) are listed below (Figure 3d). The 53-gene panel Bayesian 

network is more densely connected with a 4.815-fold change relative to the 446-gene panel 

Bayesian network. Similarly, the clustering coefficients (both global and local) are over 
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twofold change relative to the 446-gene panel Bayesian network. Therefore, a significant 

improvement in the connectivity was observed in the 53-gene panel of predictive genes, 

possibly indicating a more significant biological mechanism.

Bayesian network identifies driver genes with immunesurveillance function

To identify potentially significant driver genes, genes were ranked by their out-degree. The 

top 25 hub genes in the 53-gene Bayesian network are listed with functional annotation in 

Supplementary Table S3 online. Hub genes are expressed by infiltrating immune cells 

implicated in immune surveillance, including CCR5 (Th1 response), CD8a, CD8b, CD3, 

and IKZF1. Interestingly, the 42-gene subset of our 53 marker genes shows a significantly 

higher number of regulatory interactions in the immune nodule from the GEO network 

relative to the other genes (marker genes are indicated by blue nodes in Figure 3b).

Interaction network and coexpression network pathway enrichment analyses

Next, we tested which functional pathways were enriched in our 53-gene panel. The gene 

list generated by VisAnt, which was later used to construct the Bayesian network, was 

annotated with Pathway and GO molecular function (full table of results for the 446-gene 

panel network and 53-gene panel network are in Supplementary Data set S1 online). The top 

10 most significant enriched pathways or GO terms are shown in Supplementary Table S4 

online for the 446-gene panel network genes and the 53-gene panel network genes, 

respectively. Interestingly, we see that the smaller network surrounding the 53 genes shows 

a higher enrichment of biological processes that characterize lymphocyte function and 

immune surveillance. Moreover, the enrichment fold change (Supplementary Table S4 

online) in the top enriched terms for the 53-gene panel network ranges from 5- to 11-fold, 

whereas the enrichment fold change of the top 10 terms corresponding to the 446-gene panel 

network (Supplementary Table S4 online) ranges from just 2- to 4-fold. Therefore, a higher 

functional enrichment was observed in the network induced by the 53-gene panel.

Finally, we sought to determine whether the module identified in GEO correlated 

functionally with our proposed 53-gene signature. The functional pathways enriched by the 

yellow module derived from the GEO model (Figure 3c) are listed in Supplementary Data 

set S1 online. The top 10 enrichment terms for the GEO module are listed in Supplementary 

Table S4 online and enriched for immune response. These findings show that a module 

enriched for immune processes known to be implicated in immune surveillance is identified 

both in two independent melanoma patient populations of matched stage and also in primary 

melanoma data from GEO.

Confirmation of the 53-gene immune panel in a second test set of 48 stage II–III primary 
FFPE melanomas for progression, RFS, and DSS

Given the number of genes in the above analysis and the moderate number of samples 

comprising the test set, there is a danger of over-fitting the classifiers (an overdetermined 

system) even with statistical procedures such as cross-validation. Therefore, we assembled 

the independent test set to replicate our classification results from the test set. In all, 57 

patients were identified using identical criteria to the training set, with an additional 
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participating institution (NYU), and RNA was successfully extracted from 48 melanomas 

(84%).

The clinical characteristics of the test population are shown in table, Figure 4a and were 

generally similar to the training set with the exception of mitotic rate (Supplementary Table 

S5 online). Logistic regression showed that ulceration (P=0.013) and depth (P=0.044) 

associated significantly with progression in the test set. Death rates were 43% and 36% in 

the training and test populations, respectively, generally consistent with the expected death 

rates based on American Joint Committee on Cancer staging over the follow-up time 

(median 61 months in the training set and 53 months in the test set).

We next examined the 53-gene panel in the test set as shown in Figure 4b. A similar pattern 

of high immune gene expression was observed in non-progressors as in the training set 

(Figure 1c). Further, the 53-gene signature was able to predict progression in the test set 

with an area under the curve of 0.787 (P<0.001, Figure 4c). Cross-validation demonstrated 

that this signature is statistically robust (Figure 4d). When the 53-gene panel was evaluated 

in the test set in the context of clinicopathologic predictors, multivariate logistic regression 

demonstrated that the gene signature remained predictive of progression (P<0.001). 

Ulceration was the only feature that added significantly to the predictive power of the 

signature (P=0.035).

The 53-gene signature was then examined in terms of RFS and DFS using Cox proportional 

hazards analysis in the test set and correlated significantly with both (P<0.001 and P=0.024, 

respectively). No other clinical feature correlated significantly with DSS in the test set of 48 

patients with median time to censor of 47 months, although ulceration tended toward 

significance (P=0.087). Multivariable analysis showed that the best model to predict DSS 

within the test set included gene signature and ulceration (P=0.019). Ulceration and an 

unfavorable immune signature identified a population at high risk of death with a median 

survival of 49 months as compared with 139 months in patients with one or none of these 

risk factors (Figure 4e, P=0.030). Thus, the immune gene signature enhances the ability of 

established clinicopathologic features to predict progression and survival in a second 

independent test population.

Validation of expression data at the protein level and identification of CD2 as an 
immunohistochemical marker of favorable prognosis

In order to validate mRNA data obtained by NanoString, staining by immunohistochemistry 

(IHC) was performed. Results were concordant with NanoString results as determined by 

linear regression for CD2, the most differentially expressed gene between progressors and 

non-progressors (r=0.799; Figure 5a and c). CD5 and CD4 staining by IHC also correlated 

with the NanoString data (r=0.666 and r=0.543; Figure 5b and d, respectively). Thus, 

immunohistochemistry correlated with the mRNA results from NanoString.

CD2 was the most differentially expressed gene between progressors and non-progressors 

within the training set (P= 0.002). Frequency of CD2-positive cells by IHC correlated 

strongly with melanoma non-progression in the combined populations (P<0.001; Figure 5e). 

Thus, the NanoString analysis allowed for the identification of a novel 
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immunohistochemical stain that may be predictive of outcomes in patients with completely 

resected stage II–III melanoma.

DISCUSSION

In this work, we tested a candidate panel of 446 genes and defined a proposed biomarker 

consisting of 53 immune genes associated with non-progression, RFS, and DSS in a training 

set of 40 patients with completely resected stage II–III melanoma. Next, we identified, using 

publicly available data and unbiased methods, a module of 758 genes coregulated in 

melanoma tissues including 42 genes out of the proposed 53-gene panel. The fact that these 

758 genes were coregulated, meaning that their expression levels are coordinated across 

multiple primary melanoma tumors, suggests related biologic function. Bayesian analysis of 

this coexpression module identified driver genes with key roles in lymphocyte aggregation 

and activation, including CCR5, CD8, CD3, and IZKF1, showing that this module is related 

to T-cell activity, specifically the Th1 signaling pathways. Finally, the predictive value of 

the proposed 53-gene signature was confirmed in a second independent test set of 48 

patients, and findings were corroborated by IHC at the protein level with identification of 

CD2 as a marker of non-progression. These findings should lay the groundwork for the 

definition of immune biomarkers of clinical utility in primary melanoma tumors on the basis 

of larger prospective studies.

Notably, our work is consistent with the hypothesis that the immune system is protective 

against cancer progression and with the concept of the immunoscore proposed by Galon et 

al. (Galon et al., 2013) whereby careful quantification of immune infiltrates carries 

prognostic value in multiple tumor types. Although traditional tumor staging focuses only on 

the characteristics of the tumor, the immunoscore considers the patient’s immune response 

and thus can provide a more accurate prognosis. Our work is in primary tumors, and our 

findings certainly do not exclude the possibility that tumors evolve to co-opt the immune 

system and therefore immune activity may be nefarious in more advanced melanomas. Also, 

melanoma is not likely caused by a virus or other inflammatory insult, and our findings 

would suggest that inflammation does not abet the progression of most early-stage 

melanomas. It is nonetheless striking that the immune genes are generally upregulated in 

patients who did not progress. There are other contributing features intrinsic to the tumor 

that affect outcomes, as the clinical course is not likely entirely dictated by the immune 

system. Thus, the ability of our 53-gene panel to predict survival was improved in the test 

set by the inclusion of ulceration, generally considered a marker of invasiveness.

Given the current excitement about immunotherapy in the metastatic setting, sorting out 

which patients have a favorable immune profile is likely to be useful for patient stratification 

when agents such as anti-PD1 and anti-CTLA4 are tested in the adjuvant setting. A recent 

report proposed a gene panel predictive of response to a tumor vaccine (Kruit et al., 2013), 

and it will be interesting to learn which pathways are important to predict response to 

immunotherapy and how these might relate to the prognostic immune surveillance signature 

reported here.
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Intriguingly, the functions of the genes at the top of the 53-gene panel (Supplementary Table 

S3 online) focus on T-cell and natural killer functions, as well as leukocyte migration. 

Meanwhile, driver genes identified on the basis of the GEO module have similar functions. 

This observation is formalized through the enrichment analysis performed using DAVID 

(Supplementary Data set S1 online). CD2, a costimulatory molecule and a marker of 

activation, is expressed on T cells and NK cells. The significance of CD2 is highlighted by 

the fact that two CD2 ligands, CD53 and CD48, are also found in the 53-gene panel. Other 

highly differentially expressed genes between progressors and non-progressors include 

KLRK1 and HLAE, ligands for each other and implicated in NK cell–mediated 

immunosurveillance, as well as CD4, CD3, LCK, and ITK, genes associated with TCR 

signaling. CCR5, top hub gene, characterizes the Th1 response and is implicated in 

leukocyte aggregation to sites of inflammation (Loetscher et al., 1998). Key ligand for 

CCR5, CCL5, is also included in the 53-gene panel. Other top driver genes, CD8a and CD3, 

are markers for cytotoxic T-cell infiltration. IKZF1, meanwhile, is a regulator of 

transcription restricted to lymphocytes and may mediate phenotypic changes important for 

antimelanoma immunity. There are many reasons why CD2 RNA levels may be more 

prognostic than CD8 levels, one of them being that CD2 is a marker of activation, whereas 

CD8 expression is downregulated when T cells are activated. CD2 is also expressed by 

innate lymphocytes, cells that may have important roles in immune surveillance. (See 

Supplementary Table S3 online for a referenced list of hub gene functions and 

corresponding NanoString expression data.)

In summary, we identify a 53-gene panel predictive of melanoma progression in two 

independent cohorts. We find that 42 of these genes are present in an immune subnetwork 

found in the GEO database, and that driver genes in this network have key roles in 

lymphocyte activation and recruitment. This work is based on data gathered retrospectively 

on the basis of chart reviews from three independent melano-matreatment centers and is 

therefore preliminary. However, results presented here should be of practical utility in the 

design of future large-scale studies to develop genomic biomarkers of clinical relevance for 

adjuvant immunotherapy studies. Clearly, evidence of immune activity with clinical 

implications can be discovered in primary melanoma tumors. Measuring expression of key 

immune genes in FFPE tissue should be a promising way to make this information available 

to researchers, clinicians, and patients.

MATERIALS AND METHODS

Patients and samples

This study was approved by the Institutional Review Boards, and patients provided written 

informed consent when required. The investigation was conducted according to the 

Declaration of Helsinki Principles. The training set included FFPE primary melanoma 

tumors from 40 patients with completely resected stage II–III melanoma identified by 

screening dermatopathology databases between January 2001 and January of 2011 at GMC 

(32 patients) and MSSM (8 patients). Authorized personnel obtained clinical information at 

each institution. Patients with incomplete clinical follow-up in the medical record were 

contacted by mail and telephone under an IRB-approved protocol and included if adequate 
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follow-up was obtained. The test set included additional patients from the GMC (16 

patients), MSSM (7 patients), and New York University Medical Center (New York, NY, 25 

patients). A complete review of all patient records was performed on December 31, 2011 for 

the training set and December 31, 2012 for the test set. Data prepared at all three centers 

were reviewed centrally at MSSM to determine whether patients had recurred, progressed to 

unresectable stage III or stage IV, or had died, and all living patients were censored on this 

date or the most recent preceding date of available follow-up.

Analysis of gene expression

RNA was extracted from primary melanoma specimens using the Ambion RecoverAll Total 

Nucleic Acid Isolation Kit (Life Technologies, Carlsbad, CA, Supplementary Methods page 

3 online). A concentration of RNA of at least 20 ngml−1 and a detectable peak on the tracing 

at 50 bp or above was required for NanoSrting analysis. A total of 446 genes were selected 

on the basis of a PubMed literature review (Figure 1a and Supplementary Tables S1 and S2 

online). The nCounter platform (NanoString Technologies, Seattle, WA) was used to 

quantify relative mRNA copy number (Supplementary Methods page 4 online; Geiss et al., 

2008).

Immunohistochemistry

IHC was performed on 5-μm charged slides using anti-CD2 mAb (MRQ-11, Ventana 

Medical Systems, Tucson, AZ). Sections were deparaffinized and stained using a Ventana 

BenchMark XT immunostainer. Slides were evaluated by two of the study authors (SGB & 

MMM) in a blinded manner in eight random high powered fields using an ocular 

micrometer with a 1mm2 grid (Nikon Eclipse E40, Tokyo, Japan).

Ensemble classification/regression method and receiver operating characteristic curves

Classification was performed using an ensemble feature selection method encapsulating two 

standard classifiers: random forest and elastic net, both embedded in data bootstrapping to 

boost the robustness of the final gene panel. The starting 446 genes from the training 

experiment were ranked and filtered based on prediction power of melanoma progression in 

the training cohort, and a subset of 53 genes was selected as a final gene panel. Receiver 

operating characteristic curves were generated and the area under the curve was calculated 

on both training and test data sets. Detailed methods are included in the Supplementary 

appendix online page 6 and in Supplementary Figure S1 online.

Demographic, survival, and multivariable analysis

The two-tailed student’s t-tests generated P-values for continuous variables including age, 

depth, and mitotic rate. Other noncontinuous characteristics were analyzed using the two-

tailed Fisher’s exact test or, in the case of TILs, a χ2-test. Graphpad Prism version 5.0 

(GraphPad Software, La Jolla, CA) was used (San Diego, CA) and statistical significance 

was defined as P<0.05 without correction for multiple comparisons. For RFS and DSS 

analysis, Kaplan–Meier analysis and log-rank (Mantel–Cox) tests were performed. Standard 

multivariable logistic and Cox proportional hazards analysis were performed using 

XLSTAT (Addinsoft, Brooklyn, NY) software.
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Coexpression and gene network analysis

From the NIH GEO database, 46 samples of gene expression data identified on the basis of 

origin in primary melanoma tissue and expression platform (Supplementary Table S6 

online) were collected (GEO accession ID: GSE15605)26. Coexpression network analysis 

was performed using Weighted Gene Coexpression Network Analysis (WGCNA)27 to 

identify highly correlated gene modules among whole-genome genes in early-stage 

melanoma patients. To construct a network around the 53-gene panel, a biologically relevant 

gene set surrounding the 53-gene panel was obtained using the knowledge base tool using 

VisAnt28,29 (for full details see Supplementary Methods page 9 online).

Pathway and gene ontology enrichment

Gene panels were annotated using the functional database and tool DAVID.30,31 The default 

list of whole genome was the background set, and each network list was tested for 

enrichment of the KEGG pathways, or GO term biological process, or GO term molecular 

function (MF).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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IHC immunohistochemistry

RFS recurrence-free survival
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Figure 1. In all, 446 immune-related genes were profiled using NanoString technology, and a 
subset of 53 genes predicts clinical non-progression in two independent sets of patients
In (a), a diagram describes the schema for selection of the 446 genes. (b) The clinical 

characteristics of patients in the training set. In (c), relative levels of mRNA expression for 

each sample are depicted according to the color scale shown, with each column representing 

a different patient sample and each row representing one of the 446 genes. Unsupervised 

hierarchical clustering was performed on both genes and samples. Patients who progressed 

are labeled in blue and those who did not are labeled in yellow. Blue indicates higher 

expression and yellow indicates lower expression of each gene in the color scale.
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Figure 2. RNA was extracted from 40 FFPE stage II–III primary melanoma specimens, and 53 
genes predictive of melanoma progression were identified using elastic net and random forest 
classifiers
See Supplementary Figure S1 online for gene selection method. In (a), a bar graph depicts 

the number of times each of the 53 genes was selected using a leave-8-out cross-validation 

with bootstrapping. In (b), a mean receiver operating characteristic curve with fivefold 

cross-validation to predict melanoma progression is shown, mean area under the curve 

(AUC)=0.92, P<0.001. In (c), distribution of AUC values using a leave-8-out cross-

validation with bootstrapping test is shown.
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Figure 3. Immune response Bayesian network surrounding the 53-gene panel and the 446-gene 
panel networks
Larger node size indicates larger edge degrees. The 53-gene panel (dark blue) in (a) forms a 

denser network of gene–protein or protein–protein interactions (green) with neighbor genes 

(pink) than the network surrounding the 446-gene panel as shown in b. (c) Coexpression 

network on 46 gene expression profiles in primary melanoma patients. The yellow dots 

compose a 758-gene module within the entire gene genome (pink). Red lines denote 

interactions between nodes, involving nodes within the module. (d) Network attributes of 

the 53-gene panel and 446-gene panel networks. CC, clustering coefficient.
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Figure 4. The 53-gene panel was tested using a second independent set of patients
The clinical characteristics of patients in the test set are shown in (a). In (b), relative levels 

of mRNA expression for each sample are depicted according to the color scale shown, 

receiver operating characteristic curve to predict melanoma progression is shown in (c), area 

under the curve (AUC)=0.787, P<0.001. In (d), distribution of AUC values using a leave-4-

out cross-validation test is shown. In (e), Kaplan–Meier curves of survival based on a 21-

gene signature and ulceration using a log-rank Mantel–Cox test are shown for test set. 

Patients with negative gene signature and an ulcerated tumor had significantly diminished 

survival (P=0.030). TILs, tumor-infiltrating lymphocytes.
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Figure 5. Immunohistochemistry (IHC) using anti-CD2 mAb was performed to assess risk of 
disease progression
(a) Photographs of a tumor expressing low levels of CD2 from a progressor (left), and a 

tumor with high CD2 levels from a patient who remained disease free are shown (right). A 

brisk peritumoral infiltrate is seen on hematoxylin and eosin (H&E) in the tumor that did not 

progress. Clockwise from top left, scale bar indicates 400 μm, 200 μm, 160 μM (inset: 80 

μm), and 200 μm (inset: 80μm). A linear regression model is used to assess correlation in 

Nanostring with IHC for CD5 (b), CD2 (c), and CD4 (d) in the training set. (e) The average 

number of CD2-positive cells counted at 40× magnification in eight random HPFs in the 

training and test sets is shown (P<0.0001).
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