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Summary

Absorption of light by visual pigments initiates the phototransduction pathway that results in 

degradation of the intracellular pool of cyclic–GMP (cGMP). This hydrolysis promotes the closing 

of cGMP–gated cation channels and consequent hyperpolarization of rod and cone photoreceptor 

cell membranes. Guanylate Cyclase Activating Proteins (GCAPs) are a family of proteins that 

regulate retinal guanylate cyclase (GC) activity in a Ca2+–dependent manner. At high [Ca2+], 

typical of the dark–adapted state (~500 nM), GCAPs inhibit retinal GCs. At the low [Ca2+] (~50 

nM) that occur after the closing of cGMP-gated channels, GCAPs activate retinal GCs to replenish 

dark–state cGMP levels. Here, we report the crystal structure of unmyristoylated human GCAP3 

with Ca2+ bound. GCAP3 is an EF–hand Ca2+–binding protein with Ca2+ bound to EF2, 3 and 4, 

while Ca2+ binding to EF–hand 1 is disabled. GCAP3 contains two domains with the EF–hand 

motifs arranged in a tandem array similar to GCAP2 and members of the recoverin subfamily of 

Ca2+–binding proteins. Residues not involved in Ca2+ binding, but conserved in all GCAPs, 

cluster around EF1 in the N–terminal domain and may represent the interface with GCs. Five 

point mutations in the closely related GCAP1 have been linked to the etiology of cone 

dystrophies. These residues are conserved in GCAP3 and the structure suggests important roles for 

these amino acids. We present a homology model of GCAP1 based on GCAP3 that offers insight 

into the molecular mechanism underlying the autosomal dominant cone dystrophies produced by 

GCAP1 mutations.

Introduction

Absorption of light by the retina initiates the phototransduction pathway, a cascade of events 

that culminates in an electrical signal being sent to the brain. Phototransduction is a complex 
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pathway tightly regulated at several levels (for a review see 1). Briefly, the pathway is 

initiated with visual pigment activation when a photon is absorbed by the 11–cis–retinal 

chromophore covalently linked to rhodopsin. Rhodopsin and cone pigments activation 

initiates a cascade of events that leads to the activation of a phosphodiesterase that degrades 

cGMP. The drop in cGMP concentration results in the closure of cGMP–gated cation 

channels and a drop in intracellular [Ca2+]. This change in [Ca2+] is sensed by Ca2+–binding 

proteins that trigger the mechanisms of the “recovery phase” in which the photoreceptor 

recovers its initial “dark” potential. One of these mechanisms is the Ca2+–dependent 

activation of the guanylate cyclase (GC) which replenishes the pool of cGMP to its “dark–

state” level.

Changes in the concentration of cGMP link light detection to synaptic signaling. Therefore, 

its turnover needs to be tightly regulated 2. The appropriate level of cGMP in photoreceptors 

is controlled by two opposing activities: a phosphodiesterase (PDE), which hydrolyzes 

cGMP, and GC, which synthesizes cGMP. PDE is activated through visual pigment–G 

protein mediated signaling, while GCs (GC–E and GC–F) are activated in low [Ca2+] 

conditions that follow the closure of the cation channels, to promote the recovery of the 

photoreceptor's dark potential 3. Ca2+ does not regulate the activity of GCs directly. A 

specific family of Ca2+–binding proteins termed Guanylate Cyclase Activating Proteins 

(GCAPs) mediate the regulation 3; 4. These are N–terminally acylated proteins containing 

EF–hand motifs for Ca2+ binding.

Three homologous isoforms of GCAP have been described in humans (GCAP1, 2 and 3). 

All three GCAPs regulate GCs in a Ca2+–dependent manner 5; 6; 7; 8; 9; 10. The proper 

regulation of GC activity by GCAPs is necessary not only for efficient phototransduction but 

also for photoreceptor viability 11. A number of retinal dystrophies are associated with 

mutations in GC1 or GCAP1. Loss of GC1 function due to mis–sense mutations is the cause 

of Leber's Congenital Amaurosis which leads to retinal degeneration with severe visual 

impairment 12. Other mutations in GC1 have been associated with a variety of cone–rod 

dystrophies 13; 14. They are characterized by the initial loss of cone function with loss of 

central vision, visual acuity, and color discrimination, followed by rod degeneration. To 

date, no human disease associated with GC2 has been reported.

Point mutations in GCAP1 are also responsible for dominant cone or cone–rod 

dystrophies 15; 16; 17; 18; 19; 20. These mutations impair the regulatory function of GCAP1 

and result in constitutive activation of GCs leading to retinal degeneration 21; 22. A mutation 

of Tyr99 (Y99C) in GCAP1 leads to a constitutively activated GC that synthesizes cGMP at 

all [Ca2+]. This results in a well characterized dominant cone dystrophy with partial or total 

loss of central field vision 11; 18. Another GCAP1 mutation, I143NT, was recently shown to 

cause autosomal dominant cone degeneration 16. However, the molecular mechanisms for 

the loss of function caused by Y99C, I143NT, and other mutations remain unclear.

GCAP3 is more closely related to GCAP1 (47% identity) than to GCAP2 (35% identity) and 

it regulates GC1 with a [Ca2+] profile similar to that of GCAP1 6; 10. Here, we present the 

crystal structure of unmyristoylated GCAP3 with three Ca2+ ions bound, and analyze it in 

comparison to other Ca2+–binding proteins. A model of GCAP1 derived from GCAP3 
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reveals new insight into how mutations in GCAP1 cause structural perturbations that lead to 

dominant cone dystrophies.

Results and Discussion

GCAP3 Structure Determination and Overall Architecture

Initial crystallization screening for Ca2+–saturated, unmyristoylated GCAP3 was carried out 

by vapor diffusion using commercial, as well as laboratory developed sparse matrices. 

Conditions producing showers of needle–like crystals were identified and their refinement 

yielded small single crystals amenable to data collection. The crystals belonged to the 

tetragonal space group P43 with two protomers per asymmetric unit, and diffracted to 3.0 Å 

at a synchrotron source. We attempted to solve the GCAP3 structure by molecular 

replacement using several Ca2+–binding proteins as search models. In spite of all these 

proteins sharing 42–61% sequence similarities with GCAP3, no molecular replacement 

solution could be unambiguously identified. Crystals of Se–Met substituted protein 

diffracting to 3.3Å resolution were then used in a MAD experiment to obtain experimental 

phases. Data collection and phasing statistics are shown in Supplemental Table 1. The MAD 

phased electron density map was readily interpretable in spite of the relatively modest 

resolution. A model for the two GCAP3 molecules contained in the crystallographic 

asymmetric unit was built and finally refined to 3.0 Å resolution using native data. The 

refinement statistics are summarized in Supplemental Table 1. The two GCAP3 molecules 

in the crystallographic asymmetric unit are essentially identical, superimposing with an 

RMS deviation of 0.072 Å. In both molecules, and in spite of different packing contacts, 19 

amino acids from the N–terminus and 24 from the C– terminus could not be traced, 

presumably due to conformational flexibility. It is worth noting that both protein ends were 

easily proteolyzed in the Ca2+–bound form of the closely related GCAP1 23, suggesting 

inherent conformational flexibility in GCAPs.

GCAP3 belongs to the EF–hand superfamily of Ca2+–binding proteins, of which calmodulin 

is the best–studied member 24; 25. As in calmodulin, GCAP3 arranges its four EF–hand 

motifs into two domains. EF1 (aa 21–43) and EF2 (aa 53–82) form the N–terminal domain, 

which is connected by a linker to a C–terminal domain containing EF3 (aa 90–122) and EF4 

(aa 131–159) (Figure 1). A kinked helix at the C–terminus (aa 162–185, colored green in 

Figure 1) also ties the two domains together in GCAP3. The structures of the C–terminal 

domains of calmodulin and GCAP3 superimpose well, with an RMS deviation of 1.26 Å 

(Figure 1B). However, the relative arrangement of the two domains is quite different. While 

calmodulin adopts a dumbbell shape, GCAP3 has a compact structure with all four EF–hand 

motifs in a tandem array (Figure 1A). This compact arrangement is typical of recoverin and 

other Ca2+–binding proteins in the “recoverin branch” of the EF–hand superfamily.

The crystal structure of GCAP3 shows three EF–hand motifs with Ca2+–bound while, as 

expected for a GCAP family member, Ca2+ binding to EF1 is disabled as observed in the 

NMR structure of GCAP2 26. The loop connecting the two helices in EF1 is one amino acid 

shorter than the canonical EF loop and also contains a Pro residue (Pro30 in GCAP3) that 

restricts the loop conformation. At the amino acid sequence level, EF1 is missing three of 

the Ca2+ coordinating side chains.
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Comparison of GCAP3 to other Ca2+–Binding Proteins (CBPs)

The structures of several members of the “recoverin branch” of EF–hand superfamily have 

been solved. These include the NMR structure of GCAP2 26 and the crystal structures of 

recoverin 27, neurocalcin 28, frequenin 29, calcineurin 30 and the Ca2+–and–Integrin–Binding 

protein (CIB) 31. These proteins display remarkable structural similarity in spite of a 

relatively modest, 42–61% sequence similarity (all sequence alignments were calculated 

using the BLOSUM62 substitution matrix). The conformation of the EF– hand motifs is 

well conserved as illustrated by the similar interhelical angles observed in each of the EF–

hands (Table 1). In addition, both the topology and arrangement of the N and C–terminal 

domains is also conserved as shown by the overall structural superposition shown in Figure 

2A. Superimposing the structures based on the C–terminal domain highlights the main 

structural difference among these proteins: the relative orientation of the N– and C–terminal 

domain (Figure 2B).

A change in the relative orientations of the N and C–terminal domains is also thought to be 

part of the conformational change triggered by Ca2+ binding to these proteins. In the case of 

recoverin, direct evidence is available, as the structure has been solved in both Ca2+ bound 

and Ca2+–free forms 32; 33 (Figure 2C–D). The structure of the EF–hand motifs is not 

significantly different in the two states but the relative orientation of the two domains 

changes dramatically.

Proteins in the “recoverin branch” of CBPs, including GCAPs, are N–terminally modified 

with fatty acid groups (reviewed in ref 3). It has been shown for recoverin that the structural 

transition triggered by Ca2+ binding changes the location and accessibility of the N–terminal 

lipid 33. In the Ca2+–free state, the myristoyl group is sequestered into a hydrophobic cleft 

and hidden from the solvent. Upon Ca2+ binding, the myristoyl moiety is extruded out of the 

binding pocket and exposed. This phenomenon has been termed the “Ca2+–myristoyl 

switch” and it allows recoverin to be recruited to the membrane in the Ca2+–bound state, 

which is crucial for the physiological role of recoverin 33. GCAPs are also N–terminally 

acylated with long–chain fatty acids 34; 35, and many of the amino acid residues that form 

the hydrophobic pocket where the myristoyl group is sequestered in recoverin are conserved 

in GCAPs. However, two Phe residues in a loop at the bottom of the binding pocket that 

interact with the end of the myristoyl moiety (C11–C14) are not conserved in GCAPs. Those 

positions are filled by variable, more hydrophilic amino acids in GCAPs such as Gln56 and 

Gly57 in GCAP3. While GCAPs may still have a change in myristoyl exposure upon Ca2+ 

binding, the lipid does not appear to be strictly required for GCAP activity and regulation. 

While non–myristoylated GCAP1 can regulate GC activity in response to Ca2+ with a 

slightly different Ca2+ sensitivity 36; 37, myristoylation of GCAP2 had no significant effect 

in its ability to regulate GC activity 36; 37; 38.

Most CBPs carry out their biological function by binding to an effector protein in a Ca2+–

dependent manner 25. Typically, the conformational change induced by Ca2+, presents a 

different set of surface residues in each state and affords effector–binding capacity to only 

one of the states. For example, when calmodulin is in the Ca2+–bound conformation it is 

able to bind and activate or inhibit its effectors, while the Ca2+–free form is not capable of 

effector binding. In contrast, GCAPs bind and regulate their GC effector in both the Ca2+–
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bound and Ca2+–free conformations 4. When [Ca2+] is high in the dark– adapted 

photoreceptor, the Ca2+–bound forms of GCAPs inhibit GC. The drop in [Ca2+] that follows 

a light detection event promotes a switch to the Ca2+–free form of GCAP that activates the 

GCs. Thus, GCAPs are thought to bind GCs at all times with the Ca2+ induced 

conformational change in GCAP being transmitted to GC to promote its activation or 

inhibition. An alternative model has also been proposed, in which dimerization of GCAPs is 

central to the GC regulation mechanism 39; 40; 41.

GCAP1, 2 and 3 can all activate GC1 and GC2, often across species boundaries. For 

example, zebrafish GCAPs can regulate bovine GCs 6. In addition, the Guanylate Cyclase 

Inhibitory Protein (GCIP), a GCAP related protein of the frog retina, is able to inhibit bovine 

GC in the Ca2+–bound form 42. We therefore mapped the conserved residues among GCIP 

and GCAP isoforms from different species onto the surface of GCAP3 to search for clusters 

that might mediate GC binding. As shown in Figure 3, the conserved residues cluster along 

an extended surface but only on one face of GCAP3. Many strictly conserved residues in 

GCAPs are part of the EF–hand motif, are involved in Ca2+ binding, and are unlikely to 

mediate protein–protein interactions. Excluding those EF–hand residues (cyan in Figure 3) 

from the analysis reveals that most strictly conserved and highly conserved residues cluster 

around the N–terminal EF–hand 1, suggesting that it might be involved in the GCAP–GC 

interface. This is in agreement with previous biochemical studies showing that (i) mutations 

in the EF–hand 1 of GCAP2 affect its interaction with GC 43, and (ii) the N–terminal 

domain of GCAP1 is crucial for its activity and that a peptide derived from its N–terminus is 

a potent inhibitor of GC activation by GCAP 34; 35.

A homology model of GCAP1 based on GCAP3

Of the three isoforms of GCAP present in humans (GCAP1, 2 and 3), only mutations in 

GCAP1 have been associated with retinal disease 4. Five independent single amino acid 

mutations in GCAP1, Y99C, E155G, I143NT, L151F and P50L are linked to cone 

dystrophies 15; 16; 17; 18; 19; 20. The structure of human GCAP3 presented here represents the 

closest available relative to human GCAP1 (47% identity, 71% similarity). Using the 

program MODELLER44 and our GCAP3 structure, we generated a homology model of 

GCAP1 to aid in the identification of the molecular basis for GCAP1 malfunction in these 

mutations.

In this GCAP1, three of the mutations are clustered around the EF4 Ca2+ binding loop 

(Figure 4A). The residue E155 directly coordinates the Ca2+ ion and its replacement with 

Gly would interfere with Ca2+ binding as suggested previously. The side chains of Leu151 

and Ile143 lie in a hydrophobic pocket that stabilizes the structure of the loop and helices 

that make up EF4. We speculate that the introduction of hydrogen–bonding capable residues 

such as Asn or Thr at position 143 (I143NT) may destabilize the hydrophobic core of EF4. 

The case of the L151F mutation is more difficult to rationalize as it replaces a hydrophobic 

residue for a hydrophobic aromatic. We notice, however, that the L151F substitution might 

promote ring–stacking interactions with Phe140 and Phe156 that may constrain the 

conformation of the EF4 Ca2+–binding loop.
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Residue Tyr99 is in EF3 and its mutation to a Cys does not interfere with the ability of 

mutant GCAP1 to activate GC at low [Ca2+]. Instead, it prevents Ca2+–bound GCAP1 from 

inhibiting GC thus making GC constitutively active under all physiological [Ca2+]. In both 

the GCAP3 structure and our GCAP1 model, Tyr99 hydrogen bonds to a serine in the C–

terminal helix (Ser173, Figure 4B). The hydrogen bond network may also involve Tyr55 

(Figure 4B). The Y99C mutation would disrupt this network and may destabilize the 

specific inter–domain orientation observed in the Ca2+–bound form of GCAP3 thus 

accounting for the inability of Y99C GCAP1 to inhibit GCs at high [Ca2+]. The hydrogen 

bonding interactions described above are not observed in the NMR structure of GCAP2, and 

may explain why the corresponding mutant Y104C in GCAP2 failed to reproduce the 

phenotype observed in Y99C GCAP1.

The P50L mutation does not change the Ca2+ sensitivity of GCAP1 or its ability to regulate 

GC making recombinant GCAP1 (P50L) indistinguishable from the wild type 45; 46. Instead, 

the mutation appears to alter the folding stability as it makes the mutant more susceptible to 

proteolysis 45; 46. In our GCAP1 model, Pro50 is part of the N–cap of the EF2 helix (Figure 

4A). The substitution for Leu with its high helix propensity may favor the formation of a 

longer helix that would destabilize the packing between EF1 and EF2 increasing its protease 

sensitivity 45.

In summary, we have determined the three–dimensional structure of Ca2+–bound, 

unmyristoylated GCAP3 and identified a potential interaction interface with GC. By 

comparison with other Ca2+–binding proteins, we favor a model in which Ca2+–binding to 

GCAPs induces a change in the relative orientation of the N– and C–terminal domains and 

this conformational change is propagated to the GC to regulate its activity. These data are 

consistent with previous biophysical/biochemical studies of GCAP1 analyzed by chemical 

modification as well as fluorescence and EPR spectroscopies 47; 48. Finally, the analysis of a 

homology model of GCAP1 based on the crystal structure of GCAP3 suggests a molecular 

mechanism for a series of GCAP1 mutations that cause cone dystrophies and lead to severe 

loss of vision.

Materials and Methods

Cloning Expression and Purification

The human GCAP3 was subcloned from a pFastBac vector 10 into pMS122 (a modified 

pET41b vector with a His–tag cleavable by the tobacco etch virus (TEV) protease) using 

NdeI and SacI restriction sites. The resulting expression plasmid (pMS255) was used to 

transform Rosetta(DE3) cells (Novagen) grown in 6L LB media supplemented with 50 µg 

kanamycin. When the culture reached an optical density of 0.6, the cells were cooled to 

room temperature and protein expression was induced with 0.5 mM IPTG. After an 

overnight incubation at room temperature, cells were spun down (7,000 RPM 15 min). The 

pellets were resuspended in lysis buffer (50 mM NaH2PO4, pH 8.0, containing 300 mM 

NaCl, 5 mM ß–mercaptoethanol (BME) and 10 mM imidazole), frozen at –80 °C and then 

thawed and sonicated. Cell debris was removed by centrifugation at 19,000 rpm for 15 min 

and the supernatant was applied to a 20 mL Ni–NTA column equilibrated in lysis buffer. 

The Ni–NTA column was washed with 3 column volumes of wash buffer (50 mM 
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NaH2PO4, pH 8.0, containing 300 mM NaCl, 5 mM BME, 25 mM imidazole) and the 

protein eluted with 4 column volumes of elution buffer (50 mM NaH2PO4, pH 8.0, 

containing 300 mM NaCl, 5 mM BME, 250 mM imidazole). The GCAP3 containing 

fractions were pooled and supplemented with 10 mM DTT and incubated with His–tagged 

TEV protease 49 at 4 °C for 48–74 hr. The preparation was then dialyzed into lysis buffer 

and reapplied to the Ni–NTA column to remove the cleaved tag, TEV protease, and any 

uncleaved hGCAP3. The flow through fraction containing purified GCAP3 was applied to a 

HiLoad 26/60 Superdex 200 size exclusion column (Amersham Pharmacia Biotech), 

equilibrated in 20 mM Tris–Cl, pH 8.0, 5 mM BME, and 150 mM NaCl. Fractions 

containing GCAP3 were dialyzed into 20 mM Tris–Cl, pH 8.0, containing 5 mM BME and 

concentrated to 5–10 mg/mL.

For the preparation of SeMet substituted GCAP3, cells transformed with the pMS255 

plasmid were grown in 2 L of minimal media consisting of M9 salts, 2mM MgSO4, 0.1mM 

CaCl2, 0.4% glucose, and 50 μg/ml kanamycin to OD600 ~0.6. Cultures were then 

supplemented with 100 μg/ml D–lys, D–Phe, D–Thr, 50μg/ml D–Ile, D–Val, and 60 μg/ml 

SeMet and grown for an additional 20 minutes before addition of 0.5mM IPTG to induce 

protein expression. After an overnight incubation at room temperature, the cells were 

harvested and SeMet substituted GCAP3 purified as described above.

Crystallization and Structure Determination

Crystals were grown using the hanging drop method at 16 °C (protein/precipitant, 1.5 μL:1.5 

μL). Native crystals were grown in 0.1 M MES 6.5; 5% PEG 6000; 5% MPD. Se–Met 

crystals were grown in 0.1 M HEPES 7.0; 5% PEG 6000; 5% MPD. Crystals grew within 5–

15 days with dimensions up to 30 × 30 × 200 μm. Before data collection, the crystals were 

transferred to solutions of mother liquor supplemented with 5% increments of ethylene 

glycol to a final concentration of 30% and flash frozen in a nitrogen stream at 100 °K. The 

GCAP3 structure was solved using a 3 wavelength MAD data set to 3.3 Å resolution 

collected at beamline 8.2.1 of the Advanced Light Source (Lawrence Berkeley National 

Laboratory) using a Quantum–4 CCD detector (Area Detector Systems Corporation). The 

refinement was carried out with native data to 3.0 Å resolution collected under similar 

conditions. All crystallographic data was processed using the HKL program suite 50. The 

crystals belonged to space group p43 with unit cell dimensions a=b=88.12 Å, c= 71.02 and 

two GCAP3 molecules. Anomalous Patterson maps were calculated with the program 

Solve 51; 52 using data collected at the peak absorption wavelength for Se. The automated 

Patterson search routine of Solve identified 12 of 18 possible Se–Met sites. Phases were 

calculated from these sites using Solve, and further improved by solvent flipping and 

histogram matching as implemented in the program CNS 53. The resulting map allowed the 

modeling of several secondary structure elements and the identification of the non–

crystallographic symmetry operation relating the two GCAP3 molecules in the asymmetric 

unit. The refinement of the model was carried out with native data to 3.0Å resolution using 

CNS. Iterative cycles of refinement and manual model building were performed with the 

program O 54 until no improvement in the crystallographic free R factor was observed. Data 

collection and refinement statistics are summarized in Supplemental Table 1.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Crystal Structure of GCAP3
(A) Ribbon diagram of GCAP3. The segments of polypeptide containing the four EF–hands 

are colored as follows: EF–hand 1 is deep blue (amino acids 21–47), EF–hand 2 is light blue 

(amino acids 48–87), EF–hand 3 is red (amino acids 88–125), EF–hand 4 is orange (amino 

acids 126–161); the C–terminal helix is colored green (amino acids 162–185). (B) 

Superposition of GCAP3 and calmodulin based on EF–hands 3 and 4. The color scheme is 

the same as in A, with the N–terminal domain of calmodulin colored grey. All figures were 

prepared using Pymol 55
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Figure 2. Structural Superposition of Ca2+–Binding Proteins
(A) Overall superposition of the Ca2+–bound forms of GCAP3, GCAP2, recoverin, 

neurocalcin, calcineurin, Ca2+–integrin–binding protein, and frequenin. Secondary structure 

elements are color–ramped from blue (N–terminus) to red (C–terminus). (B) Same proteins 

described in (A) but superimposed on EF–hands 3 and 4, highlighting the change in the 

relative orientation between the N– and C–terminal domains. (C and D) GCAP3 (dark blue) 

superimposed on recoverin (N–terminus: magenta, C–terminus light blue) in its Ca2+–bound 

form (C) and Ca2+–free form (D). The superposition is based on the C–terminal EF–hands 3 

and 4 and highlights the change in relative orientation of the N and C–terminal domains that 

occurs in recovering upon Ca2+ binding. Ca2+ ions are gray (GCAP3) or violet (recoverin)
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Figure 3. Surface residue conservation in GCAPs
Residues conserved among GCAPs and GCIP (see text) were mapped onto the surface of 

GCAP3. Strictly conserved residues that do not participate in Ca2+ coordination (non–EF–

hand) are colored deep blue. Highly conserved residues are colored medium blue. 

Conserved EF–hand residues are colored cyan. (A) Side view with the N–terminal domain 

up and the C–terminus down (a cartoon representation of GCAP3 colored as in Figure 1 is 

shown for); (B) Side view rotated 180° with respect to (A); (C) Top view rotated 90° with 

respect to (A) shows the N–terminal domain of GCAP3; (D) Bottom view, rotated 180° with 

respect to (C) showing the C– terminal domain.
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Figure 4. GCAP1 model based on the crystal structure of GCAP3
(A) Cartoon representation of the GCAP1 model. Residues mutated in forms of GCAP1 

associated with human cone dystrophies, and shown to impair GCAP1 function in vitro are 

colored in green (Tyr99, Ile143, Leu151, Glu155). Residue Pro50 whose mutation to Leu 

appears to reduce GCAP1 stability is shown in pale yellow. (B) Close up of residues around 

residue Tyr99 showing the hydrogen bonding interaction with Ser173 from the kinked C– 

terminal helix (colored pale orange). (C) Close up of the Ca2+–binding loops of EF–hand 3 

and 4 highlighting the Ca2+–coordinating function of Glu155 and the hydrophobic pocket 

that accommodates residues Ile143 and Leu151.
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Table 1

Crystallographic Data and Refinement Statistics

A. Data Collection
a

Wavelength (Å) Resolution (Å) % Complete Rsym
b % I/σ > 3 Redundancy

MAD Phasing 0.9795 (peak) 25 – 3.25 93.8 (97.1) 0.074 (0.323) 72.4 (36.2) 1.9 (1.9)

0.9797 (edge) 25 – 3.25 94.2 (96.9) 0.072 (0.319) 73.1 (37.7) 1.9 (1.9)

0.9643 (remote) 25 – 3.25 94.2 (97.1) 0.073 (0.315) 73.1 (38.5) 1.9 (1.9)

B. Refinement

Data Wavelength (Å) Resolution (Å) % Complete Rsym % I/σ > 3 Redundancy

1.000 25-3.0 (3.11-3.00) 94.4 (96.1) 0.057 (0.351) 80.3 (46.5) 6.8 (6.7)

Model
Rcryst

c Rfree Protein atoms Average B Rmsd bonds (Å) Rmsd Angles (°)

0.256 0.292 2606 69 0.009 1.56

a
Values in parentheses are for the highest resolution shell: 2.59-2.50 Å for the MAD phasing data sets.

b
Rsym=ΣhΣi |(Ii(h)-< I(h)>|/ ΣhΣi Ii(h), where Ii(h) is the I-th measurement of reflection h, and <I(h)> is the weighted mean of all measurements 

of h. Bijvoet measurements were treated as independent reflections for the MAD phasing data sets.

c
Rcryst = Σ|Fobs-Fcalc|/ΣFobs where Fobs = observed structure factor amplitude and Fcalc = structure factor calculated from model. Rfree is 

computed in the same manner as Rcryst, using the test set of reflections.
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Table 2

Interhelical Angles in EF-Hand Motifs of Ca2+-Binding Proteins

EF-hand 1 EF-hand 2 EF-hand 3 EF-hand 4

Recoverin (26-34, 48-56)
103.9°

(62-72, 83-91)
127.1°

(100-108, 118-131)
103.8°

(148-158, 168-176)
102.9°

GCAP2 (22-32, 44-49)
110.1°

(58-68, 79-87)
108.7°

(96-104, 114-127)
92.7°

(147-157, 167-175)
98.8°

GCAP3 (21-29, 38-43)
99.6°

(53-63, 74-82)
103.1°

(90-99, 109-122)
103.8°

(131-141, 151-159)
109.7°

Neurocalcin (25-34, 47-52)
100.2°

(62-72, 83-91)
103.7°

(100-108, 118-130)
100.3°

(146-156, 166-174)
103.8°

Calcineurin (17-26, 39-43)
100.2°

(54-61, 72-80)
109.4°

(90-98, 108-117)
94.1°

(130-139, 149-156)
103.8°

Frequenin (25-34, 47-52)
102.4°

(62-72, 83-91)
102.9°

(100-108, 118-130)
95.6°

(146-156, 166-174)
102.1°

CIB (17-26, 47-51)
101.0°

(62-69, 81-89)
108.5°

(99-107, 117-126)
93.9°

(143-152, 162-167)
104.8°

The interhelical angles for each EF-hand motif were calculated using the program interhlx (K. Yap, University of Toronto, http://
nmr.uhnres.utoronto.ca/ikura/interhlx/). The numbers in parenthesis are the amino acid residue numbers defining the two helices in the EF-hands 
used in the calculation.
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