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Abstract

The inositol pyrophosphates (PP-InsPs) are a specialized group of “energetic” signaling molecules 

found in yeasts, plants and animals. PP-InsPs boast the most crowded three dimensional phosphate 

arrays found in Nature; multiple phosphates and diphosphates are crammed around the six-carbon, 

inositol ring. Yet, phosphate esters are also a major energy currency in cells. So the synthesis of 

PP-InsPs, and the maintenance of their levels in the face of a high rate of ongoing turnover, all 

requires significant bioenergetic input. What are the particular properties of PP-InsPs that repay 

this investment of cellular energy? Potential answers to that question are discussed here, against 

the backdrop of a recent hypothesis that signaling by PP-InsPs is evolutionarily ancient. The latter 

idea is extended herein, with the proposal that the primordial origins of PP-InsPs is reflected in the 

apparent lack of isomeric specificity of certain of their actions. Nevertheless, there are other 

aspects of signaling by these polyphosphates that are more selective for a particular PP-InsP 

isomer. Consideration of the nature of both specific and non-specific effects of PP-InsPs can help 

rationalize why such molecules possess so many phosphates.
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Introduction and some Comments on Nomenclature

The phosphate group is a ubiquitous signaling device that establishes specificity in ligand-

protein and protein-protein interactions. The phosphate’s bulk imposes geometric constraints 

upon these interactions. The phosphate’s negative charge at physiological pH further 

enhances specificity through ionic and hydrogen bonds with certain amino acid residues at 

physiological pH. Both proteins and small molecules can offer their phosphorylation and 

dephosphorylation for cell-signaling purposes. But there is one molecule in particular that 

belies its basic simplicity by hosting multiple phosphate recognition patterns that have 

extraordinary functionally versatility. This entity is a six-carbon ring structure that is 

systematically described as cis-1,2,3,5-trans-4,6-cyclohexanehexol. Most of us know it 
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better as myo-inositol, or more frequently just as inositol (Figure 1). The combinatorial 

placement of phosphate groups around the inositol ring creates the family of signaling 

molecules known as the inositol phosphates. The use of inositol as this scaffold for 

phosphorylation is synthetically convenient for cells, as this carbohydrate is only a short 

offshoot from the glycolytic pathway (Sherman et al., 1977). Inositol also has the benefit of 

being chemically very stable - in fact, its resistance to both oxidation and high temperature 

has even helped it survive (in at least one of its nine possible stereoisomeric forms 

(Agranoff, 1985)), while being carried to Earth in meteorites (Cooper et al., 2001). Indeed, 

Agranoff (Agranoff, 2009) has suggested inositol could have been a constituent of prebiotic 

Earth.

In the literature, myo-inositol is abbreviated to either “Ins” or just “I”; the latter is better 

adapted to the spoken language so, for example, one will most often hear and see “IP8” 

employed in preference to “InsP8”. Either way, this represents the most densely 

concentrated array of phosphate groups found in Nature; “P8” indicates that eight 

phosphates are attached to the inositol ring. Irrespective of how you say or write it, Ins only 

has six hydroxyl groups, so in order to esterify eight phosphates onto this ring, there must be 

either one triphosphate or two diphosphates. Both kinds of derivatizations are possible, at 

least in vitro (Draskovic et al., 2008). It appears that the InsP8 found in metazoan cells is the 

form that has two diphosphates (Figure 1 and (Lin et al., 2009; Wang et al., 2012)). Hence 

this and other inositol phosphates with diphosphate groups are collectively most usually 

described as “inositol pyrophosphates”. Nevertheless, “InsP8” is a technically ambiguous 

term. Better would be “(PP)2-InsP4” (Shears, 2009), which explicitly describes a molecule 

with two diphosphates and four monophosphates, thereby distinguishing it from a different 

form of “InsP8” that contains one triphosphate and five monophosphates: PPP-InsP5 

(Draskovic et al., 2008). However, there is increasing pressure upon today’s scientists to 

publish papers that access the widest possible “non-specialized audience” (Saiardi, 2012a) 

(read: papers that are more frequently cited). Thus, InsP8 (or IP8) are generally considered 

(particularly by some journal editors) to be a lesser evil because either are viewed as more 

user-friendly abbreviations. Presumably for similar reasons, InsP7 (or IP7) are both widely 

preferred in place of PP-InsP5, even though, once again, 7-phosphates can also be added to 

Ins in a rather different arrangement: (PP)2-InsP3 (see, for example, (Draskovic et al., 2008; 

Wilson et al., 2013)). This apparent conflict between Impact Factors and technical accuracy 

(or, depending upon your viewpoint, “foolish consistency” (Agranoff et al., 1985)), has 

merited a different outcome in the description of the physiologically-relevant diphosphate of 

Ins(1,3,4,5,6)P5. Although that particular product has six phosphates, it is invariably written 

as either PP-InsP4 or PP-IP4 (Wilson et al., 2013). In this case, there has been no problem 

accepting how inadvisable an abbreviation InsP6 would be, since of course that is how 

inositol hexakisphosphate is described (Figure 1). To add to this terminological miss-mash, 

“inositol pyrophosphates” are often abbreviated as “PP-InsPs” (or “PP-IPs”). Why “PP-

InsP5” is generally avoided while “PP-InsPs” is widely used, is a point that will not be 

debated here. Rather, to improve the citability of this review, “InsP8”, “InsP7”, and “PP-

InsPs” are the abbreviations I, too, have chosen to deploy.
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Any novice approaching this field must also learn there are two naturally-occurring isomers 

of InsP7 in most eukaryotic cells. These are distinguished by the diphosphate group being 

placed at either the 1- or 5-carbon ((Albert et al., 1997; Draskovic et al., 2008; Lin et al., 

2009; Wang et al., 2012); see Figure 1). InsP8 has both of these diphosphate groups ((Wang 

et al., 2012); see Figure 1). Two groups of enzymes synthesize inositol pyrophosphates. The 

5-kinase activities of IP6K1/2/3 (E.C.2.7.4.21) (Draskovic et al., 2008; Lin et al., 2009; 

Saiardi et al., 1999) convert InsP6 and 1-InsP7 to 5-InsP7 and InsP8 respectively (Figure 1). 

Second, the 1-kinase activities of PPIP5K1/2 (E.C.2.7.4.24) (Choi et al., 2007; Fridy et al., 

2007; Wang et al., 2012) phosphorylate InsP6 and 5-InsP7 to 1-InsP7 and InsP8 respectively 

(Figure 1). All of these reactions are reversed by specialist phosphatases: DIPPs 

(diphosphoinositol polyphosphate phosphohydrolases; E.C. 3.6.1.52) (Caffrey et al., 2000; 

Kilari et al., 2013; Safrany and Shears, 1998).

The levels of total cellular InsP7 usually lie in the 1 to 5 μM range (Barker et al., 2004; 

Fisher et al., 2002; Illies et al., 2007; Ingram et al., 2003), most of which appear to comprise 

the 5-isomer (Albert et al., 1997; Lin et al., 2009). The concentrations of InsP8 in yeast, 

plant and animal cells are typically each about 10–20% of those of InsP7 (Choi et al., 2005; 

Desai et al., 2014; Glennon and Shears, 1993; Ingram et al., 2003). Clearly, these molecules 

are not terribly abundant. However, there are two other factors to bear in mind. First, cellular 

levels of individual PP-InsPs are in roughly the same range as those of Ins(1,4,5)P3, which 

certainly has not impeded its own actions as an important second messenger (Streb et al., 

1983). Second, there may be subcellular compartmentalization of PP-InsPs (see below).

There is one group of eukaryotes that offer a quite stunning exception to the general rule that 

cells maintain quite low levels of PP-InsPs. Ever since these molecule were first 

characterized (Europe-Finner et al., 1991; Laussmann et al., 2000; Menniti et al., 1993; 

Stephens et al., 1993), it has been known that their intracellular concentrations are 

exceptionally high in slime molds such as Dictyostelium discoideum. Their levels of InsP7 

and InsP8
1 are known to increase further when their bacterial food supply becomes 

restricted and they aggregate in preparation for entering a dispersive phase of the life cycle 

(Laussmann et al., 2000; Pisani et al., 2014). By the time that fruiting bodies form, the 

concentrations of InsP7 and InsP8 are around 60 and 450 μM respectively (Pisani et al., 

2014). It is hard to avoid theorizing that slime molds have uniquely exploited the properties 

of the PP-InsPs, perhaps as organic phosphate storage depots. Also, and unusually for 

eukaryotes, the pools of PP-InsPs in slime molds are supplemented with significant 

quantities of pyrophosphate derivatives of InsP5 (Pisani et al., 2014).

There is a significant free energy change when a diester-phosphate of a PP-InsP is 

hydrolyzed, due to electrostatic, solvation and resonance stabilization phenomena (Hand and 

Honek, 2007). Thus, such molecules are often said to be highly “energetic” (Wilson et al., 

2013). Indeed, phosphate esters are a major energy currency in cells. Thus, there is a 

substantial bioenergetic investment in synthesizing PP-InsPs, especially as they undergo 

1Not only the concentrations but also the nature of the PP-InsP isomers in slime molds differs from those in other eukaryotes. 
Dictyostelium and Polysphondylium species contain both 5-InsP6, 6-InsP6 and 5,6-InsP8 (Laussmann et al., 1998) (c.f. the structures 
in Figure 1). Polysphondylium also synthesize 1/3,5-InsP8 (Laussmann et al., 1998). Recent work with Arabidopsis suggests plants 
synthesize yet another InsP8 isomer by a PPIP5K/Vip1 dependent pathway that may not involve an IP6K (Desai et al., 2014).
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such considerable turnover (Menniti et al., 1993). It is presumed that there are specific 

features of the multiple phosphates in PP-InsPs that repay the cell for bankrolling their 

synthesis. The nature of these particular properties of PP-InsPs is a focal point for this 

review.

Can it be explained how PP-InsPs are multifunctional?

A number of studies into the biological actions of PP-InsPs have involved genetic 

experiments in which the expression of one or more isoforms of IP6K (Kcs1 in yeast) was 

increased or decreased/eliminated. Such an approach would be expected to modify cellular 

levels of all of the PP-InsPs (Figure 1), and it is not always clear which of those that are 

affected might be responsible for the phenotypic consequences. Nevertheless, it is still 

remarkable how many biological activities are perturbed by these experimentally-imposed 

changes in IP6K expression: maintenance of telomere length (Saiardi et al., 2005; York et 

al., 2005), vesicle trafficking (Saiardi et al., 2000; Saiardi et al., 2002), apoptosis (Morrison 

et al., 2001; Nagata et al., 2005), autophagy (Nagata et al., 2010), repair of DNA repair by 

homologous recombination (Jadav et al., 2013; Luo et al., 2002), transcription of glycolytic 

genes (Szijgyarto et al., 2011), hemostasis (Ghosh et al., 2013), phagocytic and bactericidal 

activities of neutrophils (Prasad et al., 2011), epigenetic modifications to chromatin (Burton 

et al., 2013) and exocytic insulin secretion (Illies et al., 2007). Not only do these many 

reports underscore the diverse actions of the PP-InsP family, they return us to an intriguing 

question: are PP-InsPs incredibly multifunctional, or do these alternative biological 

outcomes mostly lie downstream of a limited number of fundamental, over-arching 

processes?

Protein diphosphorylation offers a tantalizing description of how multifunctionality might 

arise from a single mechanism of PP-InsP action. Stephens et al (Stephens et al., 1993) were 

the first to suggest that PP-InsPs might be utilized as phosphate donors in 

phosphotransferase reactions. The first demonstration that certain proteins were 

phosphorylated by PP-InsPs, at least in vitro, came eleven years later (Saiardi et al., 2004). 

Subsequently it emerged that the β-phosphate of the diphosphate groups on the PP-InsPs are 

added to a pre-existing Ser-phosphate that is initially provided by a casein kinase II 

dependent phosphorylation event (Bhandari et al., 2007). That is, a diphosphate group is 

formed on the target protein. CK2 itself phosphorylates many different proteins (Ruzzene 

and Pinna, 2010), each of which should be considered primed for further diphosphorylation 

by PP-InsPs. Potentially, this mechanism might regulate many different biological activities.

An especially remarkable aspect of phosphate donation by PP-InsPs is that it is non-

enzymatic (Bhandari et al., 2007; Saiardi et al., 2004). This characteristic can rationalize 

why PP-InsPs contain so many phosphates: in this scenario, non-enzymic protein 

diphosphorylation is driven by the significant free energy change that comes not just from 

diester phosphate hydrolysis, but also any accompanying steric and electronic 

rearrangements of the remaining, multiple phosphates (Bhandari et al., 2007; Hand and 

Honek, 2007; Saiardi et al., 2004). Nevertheless, a note of caution is warranted (see 

(Majerus, 2007): no-one has yet directly demonstrated that PP-InsPs can diphosphorylate 

proteins in vivo. This is key to advancing this hypothesis.
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Snyder and colleagues (Chakraborty et al., 2010; Luo et al., 2003; Prasad et al., 2011) have 

separately developed another idea that could help explain why at least the 5-InsP7 produced 

by IP6Ks can regulate many biological processes. This proposal has developed from their 

observation (Luo et al., 2003) that PtdIns(3,4,5)P3-binding, pleckstrin homology (PH) 

domains also bind 5-InsP7. Proteins that contain these particular PH domains are normally 

translocated to the plasma membrane following stimulus-dependent activation of 

phosphoinositide 3-kinase (PI3K). This spatial rearrangement promotes assembly of 

multiprotein complexes and facilitates the activation of kinase cascades (Cantley, 2002). 

There are many cellular consequences to these signaling events, including control over 

protein synthesis, actin polymerization, metabolic homeostasis, cell survival, and cell cycle 

entry (Cantley, 2002). It is proposed that at least some of these cellular activities may be 

negatively regulated in those situations in which 5-InsP7, by competing with 

PtdIns(3,4,5)P3, inhibits signaling protein recruitment at the plasma membrane. That is, this 

mechanism of action offers multiple biological actions for 5-InsP7.

Snyder and colleagues reported that 5-InsP7 is a 10 to 20-fold stronger PH-domain ligand 

than is InsP6 (Chakraborty et al., 2010; Luo et al., 2003). That is, the 5-kinase activity of 

IP6K yields a molecule with an increased ability to prevent PtdIns(3,4,5)P3 from associating 

with PH domains (Chakraborty et al., 2010; Luo et al., 2003; Prasad et al., 2011). Our own 

data on this subject (Gokhale et al., 2013) agree that 5-InsP7 is more effective than InsP6, 

although in our hands the degree of discrimination was not more than 2-fold; we think that 

would not be sufficiently significant to represent the basis of a signaling phenomenon in 

itself. The origin of these quantitatively different data sets may in part reflect differences in 

PP-InsP purity. This can be impacted by the nature of the approach taken for the technically-

challenging preparation of PP-InsPs (Capolicchio et al., 2013). Fortunately for future 

studies, some recent developments in the field of synthetic chemistry have finally made 

available high-quality preparations of PP-InsPs (Capolicchio et al., 2013; Capolicchio et al., 

2014; Wu et al., 2013).2 Use of such standardized preparations of PP-InsPs should prove 

useful to all who work in this area.

In any case, we (Gokhale et al., 2013) propose that the significance of Snyder’s important 

work lies not in the differences of affinities of InsP6 and 5-InsP7 for PtdIns(3,4,5)P3-binding 

PH domains, but rather, the fact that they both bind. That is, we argue that InsP6 and 5-InsP7 

both l inhibit PH domain recruitment to the plasma membrane. We (Gokhale et al., 2013) 

view this as a necessary process for preventing any non-sustained, stochastic increases in 

PtdIns(3,4,5)P3 from inappropriately recruiting and activating signaling proteins. The 

aberrant PtdIns(3,4,5)P3-signaling that underlies much of cancer biology is a good 

illustration of why careful regulation of PH-domain recruitment is so important.

2These accomplishments prompt me also to acknowledge the important contributions made by other colleagues who battled with the 
chemical synthesis of PP-InsP synthesis in years past (Albert et al., 1997; Falck et al., 1995; Reddy et al., 1997; Zhang et al., 2009). 
The significance of this work should not be overlooked, particularly as these were pioneering syntheses at a time when the field 
garnered little attention. Nevertheless, I hope it will be considered fair to suggest that the more recently produced materials should 
prove to be more widely used research tools because their purity and durability are improved (see (Capolicchio et al., 2013; 
Capolicchio et al., 2014) for more discussion).
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Furthermore, we (Gokhale et al., 2011) have found that PPIP5K1 itself contains a cryptic 

PtdIns(3,4,5)P3-binding module. Thus, sustained stimulus-dependent increases in 

PtdIns(3,4,5)P3 cause PPIP5K1 to translocate to the plasma membrane (Gokhale et al., 

2011; Gokhale et al., 2013). This, we propose, can promote a subplasmalemmal depletion of 

InsP6 and 5-InsP7, and their conversion to products (1-InsP7 and InsP8) that exhibit much 

weaker interactions with PtdIns(3,4,5)P3-binding domains (Figure 2 and (Gokhale et al., 

2013)). For example, the PH domains of AKT, SIN1 and GRP1 all bind 5-InsP7 and InsP6 

with higher affinities (up to 30-fold) than do 1-InsP7 and InsP8 (Gokhale et al., 2013)). How 

the 1-diphosphate imparts this striking specificity of action has not yet been determined. 

Nevertheless, these data indicate that optimum signaling by PtdIns(3,4,5)P3 in vivo may 

depend upon coincidence detection: the PtdIns(3,4,5)P3-mediated translocation of a PH-

domain protein to the plasma membrane, plus PPIP5K1-catalyzed removal of inhibitors of 

that translocation (Figure 2). This is all consistent with Snyder’s (Luo et al., 2003) original 

demonstration that 5-InsP7 can be a multifunctional regulator (but by acting with InsP6 as an 

ally).

The relationship between PP-InsP turnover and cellular bioenergetics

Uniquely among inositol phosphate kinases, the IP6Ks have a low affinity for ATP (Km = 1 

mM (Saiardi et al., 1999; Voglmaier et al., 1996)). As a consequence, physiologically-

relevant alterations in [ATP] (1–5 mM; (Soboll et al., 1978)) may impact kinase activity and 

hence modify the cellular levels of 5-InsP7 (Nagel et al., 2010). That is, the prevailing levels 

of 5-InsP7 may reflect the degree of the cell’s bioenergetic well-being. In pancreatic β-cells 

this may be a significant event in organismal metabolic homeostasis: increased transport of 

serum glucose into β-cells stimulates the rate of glycolytic ATP production, elevating levels 

of 5-InsP7, which promotes exocytic insulin secretion (Barker and Berggren, 2013; Illies et 

al., 2007; Nagel et al., 2010). It is tempting to rationalize the significance of the multiple 

phosphates of 5-InsP7 as their being fundamental to the polyphosphate’s “energetic” 

properties that closely ties its synthesis to cellular ATP availability, aided by the 

enzymology of IP6Ks (i.e., their low ATP affinity).

When bioenergetic health is compromised, forcing 5-InsP7 levels to fall (Nagel et al., 2010), 

could loss of this pyrophosphate trigger compensatory metabolic processes? There is 

evidence for just such an activity in a dramatic 2011 study (Szijgyarto et al., 2011). Herein, 

it was shown that a sustained decrease in 5-InsP7 levels may promote metabolic adjustments 

to restore bioenergetic health: both kcs1 yeast and IP6K1-knockout mouse embryonic 

fibroblasts exhibit elevated ATP levels compared to corresponding wild-type cells. 

Intriguingly, if this phenomenon represents a homeostatic metabolic program in the mutant 

cells, its mechanistic basis is counterintuitive; mitochondrial ATP synthesis is much more 

efficient than that produced by glycolysis, but loss of IP6K activity was associated with up-

regulation of glycolytic gene expression and a profound reduction in mitochondrial function 

(Szijgyarto et al., 2011). Perhaps another significant metabolic event in kcs1 yeast is the 

conservation of ATP through a decrease in the rate of cell growth and reduction in general 

synthetic activity (Irvine and Denton, 2011; Szijgyarto et al., 2011).
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Cells have surveillance mechanisms in place to both detect and initiate responses to 

relatively mild bioenergetic challenges, before ATP levels are compromised. For example, 

an increase in AMP concentration is a much more sensitive indicator of the onset of such 

metabolic stress (Hardie and Hawley, 2001). Under just such conditions, InsP8 levels also 

decrease (Choi et al., 2008). The mechanisms that underlie this phenomenon are unknown. 

The AMP-activated protein kinase would normally be one of the usual suspects to round up, 

but our experiments (Choi et al., 2008) indicate that particular “metabolic master switch” 

(Winder and Hardie, 1999) does not regulate InsP8 turnover. To add to the mystery, 

PPIP5Ks are apparently immune from physiological changes in [ATP]; their low Km for 

ATP (approx 30 μM) is more in line with that for other inositol phosphate kinases (Weaver 

et al., 2013).

These data described above support proposals that both 5-InsP7 and InsP8 might be 

“metabolic messengers”, sensing and directing homeostatic responses to cellular and 

organismal bioenergetic imbalance ((Burton et al., 2009; Shears, 2009; Wilson et al., 2013)). 

This particular role for PP-InsPs rationalizes a significant benefit that the cell could gain 

from the energy-intensive investment in maintaining the levels of these molecules: a raison 

d’être for the synthesis of a molecule with so many phosphates.

Specific effects of PP-InsPs: the possibility of receptors

While studies with IP6Ks have highlighted how 5-InsP7 can be multifunctional (see above), 

some experiments with the PPIP5Ks (Vip1 in Saccharomyces cerevisiae) have indicated that 

another PP-InsP, 1-InsP7, may have rather more specific effects. For example, in a vip1Δ 

strain, the Pho80-Pho85 cyclin/cyclin-dependent kinase is impaired in its response to 

nutrient stress (Lee et al., 2007). Normally, this cyclin kinase becomes inhibited by Pho81 

when S. cerevisiae is deprived of an external source of inorganic phosphate. As a 

consequence, one of the substrate of Pho85, the transcription factor Pho4, becomes 

dephosphorylated. In this form, it stimulates expression of a phosphate transporter and a 

secreted acid phosphatase which work together in organic phosphate hydrolysis and 

assimilation (Springer et al., 2003). However, in vip1Δ cells, the Pho80-Pho85 cyclin/cyclin-

dependent kinase remains active when phosphate is depleted; Pho4 is maintained in an 

inactive state (Lee et al., 2007).

It may be worth cautioning that the deletion of vip1 alters the degree of transcription of over 

900 genes (≥2-fold change in expression (Worley et al., 2013)). Even in a strain harboring a 

kinase-dead allele of vip1, the transcription of more than 250 genes is affected (Worley et 

al., 2013). So there is a possibility that secondary genetic changes lie at the heart of this 

vip1Δ phenotype. That is, it may not be the loss of the vip1 kinase activity per se that is 

responsible for impairing the Pho4 response. For example, recent work (Worley et al., 2013) 

indicates Pho81 expression may be reduced in vip1Δ cells, which could provide an alternate 

reason for why, in this strain, Pho80-Pho85 cyclin/cyclin-dependent kinase activity is 

prevented from being inhibited during phosphate starvation.

O’Shea and colleagues (Lee et al., 2007; Lee et al., 2008) have presented in vitro data that 

offer a different explanation for the vip1Δ phenotype that is based on the catalytic activity of 
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the kinase. They report that 1-InsP7, one of the products of Vip1, is a cofactor that augments 

the inhibitory activity of Pho81. Thus, absence of 1-InsP7 in vip1Δ cells could account for 

the Pho80-Pho85 cyclin/cyclin-dependent kinase remaining active in phosphate-depleted 

cells. It is especially striking that 1-InsP7 acts in a specific manner; this effect, which 

appears to be allosteric in nature (Lee et al., 2008), is not imitated by either InsP6 or 5-InsP7. 

These in vitro experiments therefore offer a candidate, receptor-based action of a single PP-

InsP that is both specific and monofunctional (pending the eventual testing of InsP8).

Whether or not levels of 1-InsP7 might become elevated during phosphate depletion - a 

potential signaling mechanism for controlling Pho85 kinase activity - has become a 

controversial topic. Unfortunately, no chromatographic technique has yet been demonstrated 

to have the sensitivity and resolving power to both monitor the relatively low levels of 1-

InsP7 in eukaryotic cells and separate these from the much higher levels of 5-InsP7 (Albert 

et al., 1997; Kilari et al., 2013; Lin et al., 2009; Padmanabhan et al., 2009). So total InsP7 is 

generally the parameter that is reported. As discussed above, levels of InsP7 fall when 

cellular bioenergetics is compromised (such as that which rapidly occurs following 

phosphate depletion (Boer et al., 2010)). Indeed, one study (Lonetti et al., 2011) has 

described how total InsP7 levels decrease in yeast starved of phosphate for 1 – 2 hours. In 

contrast, O’Shea’s group report that total InsP7 accumulates following 2 hours of phosphate 

deprivation (Lee et al., 2007). The reasons for these differences remain unclear.

We (Kilari et al., 2013) have attempted to investigate if 1-InsP7 might regulate the 

mammalian homologue of the Pho80/Pho81/Pho85 complex (p35/CDK5RAP1 (originally: 

C42)/CDK5 (Ching et al., 2002; Huang et al., 1999)). We (Kilari et al., 2013) found that 

kinase activity was not affected by either 1-InsP7, nor any other PP-InsP. In any case, unlike 

Pho81, recombinant CDK5RAP1 appears fully competent to inhibit cyclin kinase activity 

even in the absence of any ancillary factors (Ching et al., 2000).

An entirely different role for 1-InsP7 has emerged from a systems level approach involving a 

human genome wide RNA-interference (RNAi) screen conducted in Krishnan’s laboratory 

(Pulloor et al., 2014). In the latter study it was demonstrated that the kinase activities of 

either PPIP5K2 or PPIP5K2 up-regulate IFN-β expression during viral invasion (Pulloor et 

al., 2014). IFN-β initiates anti-viral protein synthesis, and can also stimulate the ability of 

natural killer cells and cytotoxic T-cells to destroy the virus-infected cells (Sin et al., 2012). 

An illustration of the biological value of this pro-inflammatory pathway comes from the 

observation that the over-expression of either of the two PPIP5K isoforms in HEK cells 

affords them protection against infection by the influenza A virus (Pulloor et al., 2014).

It appears that it is the 1-InsP7 synthesized by the PPIP5Ks that promotes the inflammatory 

response to viral attack. Assays performed in vitro showed that as little as 0.5 μM 1-InsP7 

enhance the degree of phosphorylation and activation of IRF3, a transcription factor for 

IFN-β expression (Pulloor et al., 2014). Although InsP8 also elicites this effect, it is much 

less potent. Moreover, 5-InsP7 is ineffective (Pulloor et al., 2014). These data strongly point 

to a specific, receptor-based mechanism of action. It might now be productive to investigate 

if levels of 1-InsP7 increase following cell infiltration by certain viruses, since such a 

response would speak further to the possibility that 1-InsP7 might act in a signaling capacity.
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It is intriguing that IRF3 phosphophorylation is not supported by a synthetic analogue in 

which the diphosphate of 1-InsP7 was replaced with a phosphonoacetic acid ester (Pulloor et 

al., 2014). This reagent, synthesized by Potter’s group (Riley et al., 2012), cannot 

diphosphorylate proteins due to the chemical stability of its P-C bond. Thus, it is possible 

that phosphate transfer from the natural 1-InsP7 ligand contributes to its regulation of IRF3 

phosphorylation. On the other hand, the diphosphate group of 1-InsP7 also has a higher 

degree of negative charge than does a phosphonoacetate (Wang et al., 2014b). Thus, the 

analogue may have been ineffective in this assay because it could not fully recapitulate 

electrostatic interactions of 1-InsP7 with a target protein. Moreover, it has been 

demonstrated that protein diphosphorylation by PP-InsPs is not specific to a particular 

member of this family; they all do it (Bhandari et al., 2007). That does not fit with the 

isomeric specificity with which 1-InsP7 regulates IRF3 (see above).

The metabolic and immune systems are closely integrated. Thus, nutrient excess can induce 

an inflammatory response by activating some of the same pathways that react to viral attack 

(Bieghs and Trautwein, 2013). For example, IFN-β transcription is stimulated by the 

addition of palmitate to cell cultures, a phenomenon that is exploited as a model for nutrient 

overload (McCall et al., 2010). Could 1-InsP7 participate in that response too? If it did, the 

kinase activities of the PPIP5Ks might then be considered a pharmacological target for the 

treatment of metabolic inflammation, such as that which occurs in obesity and diabetes 

(Bieghs and Trautwein, 2013). It might initially seem overly optimistic to suggest that the 

catalytic site of one member of such a large family of inositol phosphate kinases could be 

specifically druggable. However, PPIP5Ks have been found to host what may yet turn out to 

be a rare target for pharmacological intervention. On the surface of the kinase domain, there 

is a second substrate-binding site that is proposed to help commandeer substrate from the 

bulk phase, prior to its delivery into the catalytic pocket; this two-stage, “catch-and-pass” 

reaction mechanism has no known precedent among other small molecule kinases (Wang et 

al., 2014b). Moreover, compared to the catalytic pocket, this second, “substrate capture” site 

appears more tolerant to ligand modification, even to the extent that bulky hydrophobic 

groups can be added (Wang et al., 2014b).

Compartmentalization of PP-InsP signaling?

Early visualizations of inositol phosphates and other small-molecule second messengers 

depicted them as moving virtually unhindered throughout the cell (e.g. (Allbritton et al., 

1992)). These ideas have now yielded to models of subcellular microdomains in which there 

is restricted diffusion of intracellular signals, allowing them to accumulate and act locally 

(Alekseev et al., 2012; Zaccolo et al., 2006). This case for compartmentalization is 

strengthened by a body of evidence describing reduced rates of diffusion in the narrow, 

submembranous space (Alekseev et al., 2012). Here for example, another so-called 

“diffusible” signal, cAMP, has been reported to exhibit a diffusion coefficient some seven 

orders of magnitude less than that observed in the bulk of the cytoplasm (Alekseev et al., 

2012). Mobility may be restricted by physical barriers (e.g. protein aggregates) and 

electrostatic interactions with membranes (Alekseev et al., 2012).
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For some time, compartmentalization of the turnover of both InsP6 and PP-InsPs has been 

felt likely to be important for mediating at least some of the cell-signaling activities of these 

molecules (Burton et al., 2009; Saiardi et al., 2004). This situation reflects the fact that InsP6 

is the molecule that superficially is most similar to the PP-InsPs, and of course, InsP6 is also 

considerably more abundant. InsP6 can, for example, inhibit protein diphosphorylation by 

PP-InsPs (Saiardi et al., 2004). The thinking has been that to prevent InsP6 competing with 

PP-InsPs for a protein’s ligand-binding site, maybe there are spatially separated pools of 

these two groups of molecules (Saiardi et al., 2004).

There is evidence that compartmentalization of InsP6 may be brought about by Mg2+-

enhanced binding of the polyphosphate to membranes (Poyner et al., 1993); in the latter 

study it was hypothesized that the role of the metal ion was to form a bridge between the 

polyphosphate and the positively charged phospholipids. InsP6 bound more tightly to 

membranes than did InsP5 isomers suggesting that it was the number of phosphates that is 

more important than the nature of their arrangement around the inositol ring (Poyner et al., 

1993). The participation of Mg2+ in this binding phenomenon may be faciliated by InsP6 

predominantly existing in a penta-Mg2+ salt inside cells (Torres et al., 2005). Perhaps Mg2+ 

also facilitates both InsP6 and the PP-InsPs being compartmentalized by their association 

with membranes. In fact, in preliminary experiments using surface plasmon resonance, we 

(Gokhale and Shears, unpublished) have obtained small but reproducible signals indicating 

InsP6 and PP-InsPs can associate with phospholipid vesicles in a Mg2+-dependent manner.

Further research is required in order to understand the extent to which InsP6 and PP-InsPs 

might be compartmentalized in vivo (see below), and the mechanisms involved. Should 

InsP6 and PP-InsPs exhibit restricted mobility in submembranous regions of the cell, it 

would strengthen the viability of some hypotheses concerning mechanisms of action of these 

polyphosphates. One proposed mechanism of action of PP-InsPs - protein diphosphorylation 

- could be enhanced by localized synthesis of these polyphosphates in close proximity to 

cellular membranes. Another example of compartmentalization is receptor-dependent 

translocation of PPIP5K1 to the plasma membrane, which has been hypothesized to locally 

reduce the levels of InsP6 and 5-InsP7 in the subplasmalemmal zone (Gokhale et al., 2013). 

The lower the rate of InsP6 and 5-InsP7 diffusion from the bulk phase and across this 

narrow, unstirred layer underneath the membrane (Alekseev et al., 2012), the longer it will 

take to replete this zone with those polyphosphates. As discussed above (and in Figure 2), 

such a phenomenon may assist PPIP5K1 in regulating PtdIns(3,4,5)P3-signaling. It is also 

worth mentioning that competition between 5-InsP7 and PtdIns(3,4,5)P3 for PH domains is 

subject to an order-of-addition phenomenon in vitro: 5-InsP7 is a 50-fold more potent 

inhibitor when it is added before as opposed to after PtdIns(3,4,5)P3 is bound to the AKT 

PH domain (Chakraborty et al., 2010). If this is also the case in vivo, then once the PH 

domains are occupied by PtdIns(3,4,5)P3, the proteins would be somewhat protected from 

being displaced from the plasma membrane by the InsP6 and 5-InsP7 that diffuses into the 

subplasmalemmal zone from the bulk phase.

The examination of ideas on compartmentalization of InsP6 and PP-InsPs in vivo will 

probably have to await the development of probes that can spatially resolve each of these 

individual polyphosphates. This is a research direction that is very much in its infancy and 
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fraught with profound technical problems. For example, even though InsP6 is relatively 

abundant, fluorescent probes would have to be designed that can distinguish this 

polyphosphate from InsP5 isomers and even inorganic polyphosphates (Kolozsvari et al., 

2014). A tetranaphthoimidazolium-based fluorescent probe for InsP6 was recently described 

(Lee et al., 2014). However, this reagent did not yield suitable signals with live cells until 

after they were incubated with exogenous InsP6 (Lee et al., 2014). InsP6 that is added to 

cells in this manner appears to be endocytosed into intracellular vesicles (Windhorst et al., 

2013), raising the possibility that was also the fate of the tetranaphthoimidazolium complex 

(rather than it accessing the cytosol). Nevertheless, it is hoped that future work will build 

upon this initial step towards the goal of imaging the spatial dynamics of cellular InsP6 and, 

ultimately, pools of PP-InsP too.

General Conclusions

Phylogenetic analysis (Bennett et al., 2006), as well as other considerations (Saiardi, 2012b), 

have together argued that PP-InsP signaling is evolutionarily more ancient than is 

Ins(1,4,5)P3-mediated Ca2+ mobilization. Indeed, recent solving of the crystal structure of 

an Entamoeba histolytica IP6K - a proposed “living fossil” - has rationalized how an IP3K 

might have evolved from a primarily InsP6-phosphorylating kinase (Wang et al., 2014a). If 

signaling by PP-InsPs really was primeval, maybe some of their initial mechanisms of action 

might have exhibited less ligand specificity and subtlety than we are now used to 

characterizing. Could some versions of these putative non-specific regulatory processes have 

survived to this day? Perhaps one answer to that question is provided by 5-InsP7-mediated 

activation of insulin secretion (Illies et al., 2007): the dose/response relationship indicates 10 

μM is a maximally-effective concentration. At this dosage, the 1-, 3-, 4- and 5-isomers of 

InsP7 were equally effective (Illies et al., 2007). Is this ligand promiscuity3 a confirmatory 

example of the non-specific nature of an evolutionarily ancient PP-InsP signaling response? 

In fact, insulin-like proteins themselves, as well as the process of protein secretion via 

exocytosis, are also long in the tooth, evolutionarily-speaking (Adelson, 1971; Burgoyne 

and Morgan, 2003; Chan and Steiner, 2000). Protein diphosphorylation is also not specific 

to any particular PP-InsP (Bhandari et al., 2007). (It might also be noted that protein 

diphosphorylation depends upon the action of CK2 which is itself one of the most 

evolutionarily conserved protein kinases (Pinna, 2002)).

If indeed signaling by PP-InsPs has such a long history, then there must have been 

considerable selection pressure to maintain the considerable investment of cellular energy in 

the synthesis and maintenance of such molecules. It is easy to appreciate that these 

bioenergetic demands could be repaid by the process of protein diphosphorylation by the 

PP-InsPs (Bhandari et al., 2007; Saiardi et al., 2004). The large free energy change that 

drives protein diphosphorylation relies not just upon the hydrolysis of a diphosphate bond 

per se, but also the accompanying steric and electronic rearrangements of the remaining 

multiple phosphates (Hand and Honek, 2007). That is, the requirement for many phosphates 

can be rationalized. However, as mentioned above (and see (Majerus, 2007)), the field still 

3This apparent lack of specificity has little physiological consequence, as the 3- and 4-isomers do not occur naturally, and (as yet) 
there is no evidence the 1-isomer reaches levels that would have an effect upon exocytosis.
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awaits a direct demonstration that this signaling mechanism operates in vivo. That being 

said, perhaps PP-InsPs donate phosphate to other targets that remain to be identified.

There is another property of PP-InsPs that may rationalize the cell investment in such 

highly-phosphorylated molecules; their overall, highly negative character may facilitate 

delocalized electrostatic interactions with positively charged protein domains. That is, non-

specific (“brute-force”) electrostatics, dependent largely upon phosphate number, may 

overcome the requirement that a protein be presented with a particular three dimensional 

phosphate array (Lemmon et al., 2002). Such interactions may in part explain how binding 

of PtdIns(3,4,5)P3 to PH domains is inhibited by both InsP6 and 5-InsP7 (Shears et al., 

2011). Perhaps these non-specific electrostatic interactions occur nearer to the surface of the 

protein rather than inside the ligand-binding pocket, thereby modulating the electrostatically 

polarized nature of the PH domain which is important for it being “steered” towards 

PtdIns(3,4,5)P3 in the plasma membrane (Lumb and Sansom, 2012). Such a relatively weak 

and rather non-specific mechanism might also be viewed as a process that is evolutionarily 

ancient. Perhaps some stereospecific interactions of PP-InsPs with PH domains (Gokhale et 

al., 2013) evolved more recently, following the appearance of a kinase activity that adds the 

1-diphosphate to PP-InsPs.

Building on the original idea that the signaling roles of PP-InsPs are coordinated with the 

overall cellular phosphate balance (Bennett et al., 2006; Saiardi, 2012b), there is now much 

evidence that PP-InsPs are proactive metabolic messengers (Shears, 2009; Wilson et al., 

2013). As discussed above, short-term bioenergetic crises in cells appear to correlate with 

decreases in levels of 5-InsP7 and/or InsP8 (Choi et al., 2008; Lonetti et al., 2011; Nagel et 

al., 2010). A sustained drop in cellular level of 5-InsP7 appears to promote compensatory 

metabolic reprogramming to assist a bioenergetic recovery (Szijgyarto et al., 2011). 

Conversely, an elevation in InsP7 levels may direct cellular responses to elevated serum 

glucose. For example, in pancreatic β-cells, glucose-mediated increases in ATP might 

increase InsP7 levels to promote insulin secretion (Illies et al., 2007; Nagel et al., 2010). 

Furthermore, reasoning presented above argues that it might be profitable to investigate if an 

elevation in 1-InsP7 synthesis might occur in response to pro-inflammatory nutrient excess. 

Such direct, functionally-significant relationships between cellular bioenergetic status and 

“high-energy” PP-InsP synthesis speak directly to a regulatory interface between the cell 

signaling and bioenergetic roles of phosphate esters. Arguably this is, at present, the most 

enticing answer to: “why so many phosphates?”
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Fig. 1. Synthesis of the PP-InsPs
The figure describes the metabolic reactions that account for the synthesis of the PP-InsPs in 

both yeasts and mammalian cells. The positions of the diphosphate groups were determined 

in the following publications: (Albert et al., 1997; Draskovic et al., 2008; Wang et al., 2012). 

PPIP5K (E.C. 2.7.1.158), inositol pentakisphosphate kinase; IP6K (E.C.2.7.4.21), inositol 

hexakisphosphate kinase, PPIP5K (E.C.2.7.4.24), diphosphoinositol pentakisphophate 

kinase. This figure is adapted from (Shears et al., 2013). For the brave-hearted who wish to 

gain insight into the unassailable logic behind the universal numbering system for the six 

carbon atoms of Ins, start here: (Nomenclature Committee of the International Union of 

Biochemistry., 1989).
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Fig. 2. The possible significance of stimulus-dependent, PtdIns(3,4,5) P3-driven 
compartmentalization of PPIP5K1 at the plasma membrane
Electrostatic effects of InsP6 and 5-InsP7 are proposed to attenuate the ability of proteins 

with PH domains to bind to PtdIns(3,4,5)P3 in the plasma membrane (Gokhale et al., 2013). 

However, previous work (Gokhale et al., 2011; Gokhale et al., 2013) has demonstrated 

PI3K-mediated recruitment of PPIP5K1 to the plasma membrane (courtesy of its own 

PtdIns(3,4,5)P3-binding domain). It is hypothesized that this translocation causes a local 

depletion of subplasmalemmal levels of InsP6 and 5-InsP7 through their phosphorylation to 

1-InsP7 and InsP8 respectively, relieving the impediment to PH domain translocation 

(Gokhale et al., 2013). See text for details.
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