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Abstract

Neocortical mechanisms of learning sensorimotor control involve a complex series of interactions 

at multiple levels, from synaptic mechanisms to cellular dynamics to network connectomics. We 

developed a model of sensory and motor neocortex consisting of 704 spiking model neurons. 

Sensory and motor populations included excitatory cells and two types of interneurons. Neurons 

were interconnected with AMPA/NMDA and GABAA synapses. We trained our model using 

spike-timing-dependent reinforcement learning to control a two-joint virtual arm to reach to a 

fixed target. For each of 125 trained networks, we used 200 training sessions, each involving 15 s 

reaches to the target from 16 starting positions. Learning altered network dynamics, with 

enhancements to neuronal synchrony and behaviorally relevant information flow between neurons. 
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After learning, networks demonstrated retention of behaviorally relevant memories by using 

proprioceptive information to perform reach-to-target from multiple starting positions. Networks 

dynamically controlled which joint rotations to use to reach a target, depending on current arm 

position. Learning-dependent network reorganization was evident in both sensory and motor 

populations: learned synaptic weights showed target-specific patterning optimized for particular 

reach movements. Our model embodies an integrative hypothesis of sensorimotor cortical learning 

that could be used to interpret future electrophysiological data recorded in vivo from sensorimotor 

learning experiments. We used our model to make the following predictions: learning enhances 

synchrony in neuronal populations and behaviorally relevant information flow across neuronal 

populations, enhanced sensory processing aids task-relevant motor performance and the relative 

ease of a particular movement in vivo depends on the amount of sensory information required to 

complete the movement.

1 Introduction

Adaptive movements in response to stimuli sensed from the world are a vital biological 

function. Although arm reaching toward a target is a basic movement, the neocortical 

mechanisms allowing sensory information to be used in the generation of reaches are 

enormously complex and difficult to track (Shadmehr & Wise, 2005). Learning brings 

neuronal and physical dynamics together. In studies of birdsong, it has been demonstrated 

that reinforcement learning (RL) operates on random babbling (Sober & Brainard, 2009). In 

that setting, initially random movements initiated by motor neocortex may be rewarded or 

punished via an error signal affecting neuromodulatory control of plasticity via dopamine 

(Kubikova & Kostál, 2010). In primates, frontal cortex, including primary motor area M1, is 

innervated by dopaminergic projections from the ventral tegmental area (Luft & Schwarz, 

2009; Molina-Luna et al., 2009; Hosp, Pekanovic, Rioult-Pedotti, & Luft, 2011), and recent 

neurophysiological evidence points to reward modulation of M1 activity (Marsh, 

Terigoppula, & Francis, 2011). It has been suggested that similar babble and RL 

mechanisms may play a role in limb target learning.

Many brain areas are involved in motor learning, likely including spinal cord, red nucleus, 

and thalamus, as well as the more well-characterized basal ganglia, cerebellum, and 

neocortex (Sanes, 2003). In addition to individual brain areas, connections between areas are 

likely vital (Graybiel, Aosaki, Flaherty, & Kimura, 1994; Hikosaka, Nakamura, Sakai, & 

Nakahara, 2002). Learning in these different areas will likely play different roles for 

different types of tasks and at different times in development. Neonates can perform directed 

reaching movements at birth and learn to reach a target within 15 weeks using 

proprioceptive and visual feedback (Berthier, Clifton, McCall, & Robin, 1999; von Hofsten, 

1979). This process has been suggested to be primarily cortical (Berthier, 2011). 

Sensorimotor integration of reaching is learned through analysis of mismatches of 

perception and desired actions (Corbetta & Snapp-Childs, 2009). Similarly, adult learning of 

complex tasks, such as serving in tennis, uses the neocortical substrate at different stages of 

the learning process (Sanes, 2003).
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Computational modeling of biologically realistic neuronal networks can aid in validating 

theories of motor learning and predicting how it occurs in vivo (Houk & Wise, 1995). 

Recently, learning models of spiking neurons using a goal-driven or reinforcement learning 

signal have been developed (Farries & Fairhall, 2007; Florian, 2007; Izhikevich, 2007; 

Potjans, Morrison, & Diesmann, 2009; Seung, 2003), many using spike-timing-dependent 

plasticity (Roberts & Bell, 2002; Rowan & Neymotin, 2013; Song, Miller, & Abbott, 2000; 

Neymotin, Kerr, Francis, & Lytton, 2011). Here, we present a simplified sensorimotor 

cortex network with an input sensory area (S1) that processes inputs from muscles, and an 

output area, representing primary motor cortex (M1), that projects to muscles of a virtual 

arm.

This letter extends our previous efforts to create a spiking neuronal model of cortical 

reinforcement learning of arm reaching (Chadderdon, Neymotin, Kerr, & Lytton, 2012). In 

Chadderdon et al., we demonstrated the feasibility of the dopamine system–inspired value-

driven learning algorithm used in this letter in allowing a swiveling forearm segment 

controller to learn a mapping from proprioceptive state to flexion and extension motor 

commands needed to direct the virtual hand to the target: a task requiring only 1-degree-of-

freedom motion. Here, we extend the scope of the task to 2-degrees of freedom, permitting 

the hand to explore a more complete virtual 2D work space. This is a more demanding and 

complex task because shoulder and elbow angle changes have the potential to interfere with 

each other in adjusting the hand-to-target error, and the proprioceptive-to-motor command 

mapping to be learned requires conjunction of the information of the two different joints. 

We also increased the number of synaptic connections that have active plasticity, which 

adds further challenges, as well as flexibility, for the learning method. In addition, we 

enhanced the robustness of the training and testing paradigm: we first trained the system, 

then turned off further learning, and only then quantified reach-to-target performance. 

Turning off further learning ensured that what was previously learned and the ongoing 

effects of the learning algorithm were isolated. Even with the added complexity of a 2D 

reaching task and the new testing paradigm, the model was able to learn the new reaching 

task. Analysis comparing naive and trained network dynamics showed a distinct increase of 

synchrony and task-relevant information flow, as measured by coefficient of variation and 

normalized transfer entropy, respectively. These results have predictive power and may 

allow better future understanding of electrophysiological data recorded in vivo from 

sensorimotor learning experiments.

2 Methods

2.1 System Overview

The entire closed-loop learning system architecture is shown in Figure 1. A brain and its 

interaction with an artificial environment were modeled, with the environment containing a 

virtual arm, which was a part of the simulated agent’s body, and a target object that the 

agent was supposed to reach for. The virtual arm possessed two segments (upper arm and 

forearm), which could be swiveled through two joints (shoulder and elbow) so that the arm 

and hand were able to move in a planar space. Each of the arm joints possessed a pair of 
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flexor and extensor muscles for increasing or decreasing the angles, respectively, and that 

output a “stretch receptor” signal to the degree that the muscle was contracted.

An actor system consisting of proprioceptive sensory neurons (P), sensory cells (S), and 

motor cells (M) was used to control this system. The P cell receptive fields were tuned so 

that individual cells fired for a narrow range of particular “muscle stretches” for one of the 

four muscles. These P cells sent fixed random weights to the S cells, so that the S cells were 

capable of representing the conjunct of positions in both joints, though this feature was not 

optimally hardwired for these cells. The S cells then sent plastic weights to the M cells, 

which possessed a separate population of cells for each of the four muscles capable of 

stimulating contraction to the degree the corresponding subpopulations were active. 

Plasticity was present within the S and M unit populations and between them in both 

directions. This actor effectively performed a mapping between limb state, as measured by 

muscle stretch, and a set of commands for driving each muscle. The extensor population 

activity was subtracted from the flexor activity for a particular joint (shoulder, elbow) to 

yield a joint angle rotation command for the virtual arm.

It should be noted that the actor in this system was learning to make a blind reach for a 

single learned target (proprioceptive-to-motor-command mapping). The critic component of 

the system, however, possessed a means of calculating the visual difference between the 

hand’s location and the target (error evaluation) and determining from the last two viewed 

hand coordinates whether the hand was getting closer to or farther away from the target. 

Based on which was the case, the critic sent a global reward or punisher signal to the actor. 

Plastic synapses kept eligibility traces that allow credit or blame assignment. Rewards 

caused a global increase in the tagged weights, and punishers caused a decrease, effectively 

implementing Thorndike’s law of effect in the system (Thorndike, 1911); it allowed 

rewarded behaviors to be “stamped in” and punished behaviors to be “stamped out.”

As a result of this arrangement, although the actor did not possess vision, it was possible in 

theory for it to learn a mapping driving the hand toward a visual located target, provided that 

target was not moved after training. In an ideal learning case by this system, the limb 

configuration corresponding to the target’s location would learn to not move in either 

direction, but an overflexed arm would learn to extend and an overextended arm would learn 

to flex, so that the actor had learned an attractor for the remembered target stimulus. If the 

critic was not turned off before testing, the system effectively possessed vision and could in 

theory learn to adjust its responses even if the target was moved, although this was not 

tested.

An important component to the system in the actor was babbling noise that was injected into 

the M cells. An untrained system thus possessed some tendencies to move weakly in a 

random direction. The critic, then, was able to allow operant conditioning to shape the motor 

commands in the context of limb state.

The model was implemented in the NEURON 7.2 (Carnevale & Hines, 2006) simulator for 

Linux and is available on ModelDB (Peterson, Healy, Nadkarni, Miller, & Shepherd, 1996) 

(https://senselab.med.yale.edu/modeldb). We collected performance for a number of targets, 
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random network wirings, and sets of injected babbling noise and ran both naive versions of 

the model for these and multi-epoch training sessions on a number of different starting 

positions of the arm. In addition to performance measures, we also compared the naive and 

trained models using measures of population firing synchrony and interpopulation 

information flow.

We next elaborate on the details of the model’s architecture. We first explain the 

environment (virtual arm and target) and then the actor portion of the model, including the P 

cells and the S and M cells (which constitute the primary spiking learning neuron portion of 

the model). Then we examine the critic and reinforcement learning algorithm in more detail, 

and, finally, the training and testing trial scheme we used and the measures we used for 

network population synchrony and information flow between network populations.

2.2 Environment: Virtual Arm and Target

The virtual arm consisted of two segments representing the upper arm (length 1) and 

forearm (length 2). There were two joint angles for the two joints (shoulder: θsh; elbow: θel) 

that were allowed to vary from fully extended (θsh: −45°; θel: 0°) to fully flexed (θsh: 135°; 

θel: 135°; large range of angles to more fully test learning). For each joint, an extensor and 

flexor muscle (lengths mext and mflex) always reflected the current joint angle in the 

relationship as follows:

(2.1)

(2.2)

Arm position updates were provided at 50 ms intervals, based on extensor and flexor EM 

(excitatory cells in the motor area) spike counts integrated from a 50 ms window that began 

50 ms prior to update time (50 ms network-to-muscle propagation delay). The angle change 

 for each joint was the difference between the 

corresponding EM spike counts from flexor and extensor populations during the prior 

interval, with each spike difference translating to a 1° rotation. For simplicity, the arm 

model did not contain physical attributes, such as mass and inertia. P drive activity updated 

after an additional 25 ms delay, which represented peripheral and subcortical processing. 

Reinforcement occurred every 50 ms with calculation of hand-to-target error. The target 

remained stationary during the simulation.

2.3 Actor: Unit Types and Interconnectivity

The actor consisted of the proprioceptive sensory (P), higher-order sensory (S), and motor 

(M) populations described in Figure 1. Details of the cell models are described below. Input 

to the S cells was provided by 192 P cells, representing muscle lengths in four groups (two 

flexor- and extensor-associated groups for each joint).
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The rest of the network consisted of both S (sensory) and M (motor) cell populations. The S 

population included 192 excitatory cells (ES cells), 44 fast-spiking interneurons (IS), and 20 

low-threshold spiking interneurons (ILS); similarly, the M network had 192 EM, 44 IM, and 

20 ILM cells. The EM population was divided into four 48-cell subpopulations dedicated to 

extension and flexion about each joint, projecting to the extensor and flexor muscles. The 

number of excitatory and inhibitory cells within an area was selected to keep 75% (192/256) 

of the neurons as excitatory, to approximate the ratios in neocortex.

Cells were connected probabilistically (fixed convergence; variable divergence) with 

connection densities and initial synaptic weights varying depending on pre- and postsynaptic 

cell types (see Table 1). Connection densities were within the range determined 

experimentally, which are approximately 1% to 100% depending on pre- and postsynaptic 

cell type (Thomson, West, Wang, & Bannister, 2002; Thomson & Bannister, 2003; 

Bannister, 2005). Initial synaptic weights were set to relatively low values so as to resemble 

activity in vivo, which typically requires several presynaptic inputs to arrive within a short 

time window in order to activate a postsynaptic neuron.

2.4 Actor: Proprioceptive Sensory (P) Cell Model

Proprioceptive sensory (P) cells (see Figure 1) were modeled using a standard, single 

compartment (diameter = 30 μm), parallel-conductance model with input current, to allow 

continuous mapping of muscle lengths to current injections provided to these cells. The rate 

of change of a P neuron’s voltage (V) was represented as , where 

Cm is the capacitive density (1 μF/cm) and idrive was a current set according to muscle 

length. gpas represents the leak conductance (0.001 nS), which was associated with a 

reversal potential of 0 mV. When a P neuron’s voltage passed threshold, the neuron emitted 

a spike and was set to a refractory state for 10 ms. Each P cell was tuned to produce bursting 

approaching 100 Hz (limited by refractory period) over a narrow range of adjacent, 

nonoverlapping muscle lengths, by setting the P cell’s idrive variable to a heightened level. 

The idrive variable of each P cell was updated when the arm moved (every 50 ms interval).

2.5 Actor: Primary Neuron Model (Sensory (S) and Motor (M) Cells)

Individual neurons in the higher-order sensory (S) and motor (M) areas were modeled as 

event-driven, rule-based dynamical units with many of the key features found in real 

neurons, including adaptation, bursting, depolarization blockade, and voltage-sensitive 

NMDA conductance (Lytton & Stewart, 2005, 2006; Lytton & Omurtag, 2007; Lytton, 

Neymotin, & Hines, 2008; Lytton, Omurtag, Neymotin, & Hines, 2008; Neymotin, Lee, 

Park, Fenton, & Lytton, 2011; Kerr et al., 2012, 2013). Event-driven processing provides a 

faster alternative to network integration. A presynaptic spike is an event that arrives after a 

delay at postsynaptic cells; this arrival is then a subsequent event that triggers further 

processing in the postsynaptic cells. Cells were parameterized as excitatory (E), fast-spiking 

inhibitory (I), and low-threshold-spiking inhibitory (IL; see Table 2).

Each neuron had a membrane voltage state variable (Vm) with a baseline value determined 

by a resting membrane potential parameter (VRMP, set at −65 mV for pyramidal neurons and 
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low-threshold-spiking interneurons and at −63 mV for fast-spiking interneurons). This 

membrane voltage was updated by one of three events: synaptic input, threshold spike 

generation, and refractory period. These events are described briefly below; further detail 

can be found in the papers cited and code provided on ModelDB (Peterson et al., 1996; 

https://senselab.med.yale.edu/modeldb).

2.5.1. Synaptic Input—The response of the membrane voltage to synaptic input was 

modeled as an instantaneous rise and exponential decay: 

, where Vn is the membrane voltage of neuron 

n; t0 is the synaptic event time (i.e., t - t0 is the time since the event); ws is the weight of 

synaptic connection s; Ei is the reversal potential of ion channel i, relative to resting 

membrane potential (where i = AMPA, NMDA, or GABAA; EAMPA = 65 mV, ENMDA 90 

mV, and EGABA = −15 mV); and τi is the receptor time constant for ion channel i (where 

τAMPA = 20 ms; τNMDA = 300 ms; and τGABAA = 10 or 20 ms for somatic and dendritic 

GABAA, respectively).

In addition to spikes generated by cells in the model, subthreshold Poisson-distributed spike 

inputs to each synapse of all units except the P and ES units were used to provide ongoing 

activity and babble (see Table 3). These Poisson stimuli also represented inputs from other 

neurons not explicitly simulated. Since the neuron model is a point-neuron model, each 

synapse represents the locus of convergent inputs from multiple neurons.

2.5.2 Action Potentials—A neuron fires an action potential at time t if Vn(t) > Tn(t) and 

Vn(t) < Bn, where Vn, Tn, and Bn are the membrane voltage, threshold voltage (−40 mV for 

pyramidal neurons and fast-spiking interneurons, −47 mV for low-threshold-spiking 

interneurons), and blockade voltage (−10 mV for interneurons and 25 mV for pyramidal 

neurons), respectively, for neuron n. Action potentials-arrive at target neurons at time t2 = t1 

+ τs, where t1 is the time the first neuron fired and τs is the synaptic delay. τs values were 

selected from a uniform distribution ranging between 3 ms and 5 ms for dendritic AMPA, 

NMDA, and GABAA synapses and were selected from a uniform distribution ranging 

between 1.8 ms to 2.2 ms for somatic GABAA synapses. Synaptic weights were fixed 

between a given set of populations except for those involved in learning (described in 

section 2.1).

2.5.3. Refractory Period—After firing, a neuron cannot fire during the absolute 

refractory period, τA (2.5 ms for interneurons and 5 ms for pyramidal neurons). Firing is 

reduced during the relative refractory period by two effects: first, an increase in threshold 

potential, , where R is the fractional increase in threshold 

voltage due to the relative refractory period (0.25 for interneurons and 0.75 for pyramidal 

neurons) and τR is its time constant (1.5 ms for interneurons and 8 ms for pyramidal 

neurons); and second, by hyperpolarization, , where H is the 

amount of hyperpolarization (0.5 mV for interneurons and 1 mV for pyramidal neurons) and 

τH is its time constant (50 ms for interneurons and 400 ms for pyramidal neurons).
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2.6 Critic: Reinforcement Learning Algorithm

The RL algorithm implemented Thorndike’s law of effect using global reward and 

punishment signals (Thorndike, 1911). The network is the actor. The plastic AMPA weights 

in Table 1 were trained to implement the learned sensorimotor mappings. The Critic, a 

global reinforcement signal, was driven by the first derivative of error between position and 

target during two successive time points (reward for decrease; punishment for increase), and 

therefore the reward and punishment signals were delivered at every movement generated 

by the network. As in Izhikevich (2007), we used a spike-timing-dependent rule to trigger 

eligibility traces to solve the credit assignment problem. The eligibility traces were binary, 

turning on for a synapse when a postsynaptic spike followed a presynaptic spike within a 

time window of 100 ms; eligibility ceased after 100 ms. When reward or punishment was 

delivered, eligibility-tagged synapses were potentiated (long-term potentiation LTP) or 

depressed (long-term depression LTD), correspondingly.

Synaptic weights w(t) were updated (for LTP/reward and LTD/punishment) utilizing weight 

scale factors, ws:

where  is maximum weight scale factor, w0 is the initial synaptic weight, and winc is 

the weight scale increment. ws was initialized to 1.0 for all synapses and varied between 0 

and  was set to 6 and 2.5 times the synaptic weight of E → E and E → I 

baseline weights. winc was set to 25% of baseline synaptic weights.

2.7 Training and Testing Paradigm

Networks were trained to reach the arm to a single target (targets shown in Figure 2). 

Training a network to reach to a single target consisted of 200 training sessions. Each 

training session consisted of allowing the network to perform 15 s of reaching, once from 

each of 16 sequential starting positions. The 16 starting positions were arranged from 

minimum to maximum angles for the two joints. We configured starting angles in this way 

to teach the network to control movement of the arm to the target from the entirety of 

positions in the 2D plane. Targets were chosen to allow thorough testing of reaching (both 

extrema and intermediate positions).

After training, learning was turned off, and each network’s performance was assessed with 

the arm initialized from each of the 16 starting positions used for training. A reach was 

considered successful if the arm end point was moved to a position where the Cartesian error 
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was ≤1. Overall learning performance for a target was calculated as the fraction of 

successful reach movements (Accuracy). A similar accuracy score was used for angular 

performance for each joint: when the angular error was ≤10 degrees, the reach for that given 

joint was a success.

2.8 Data Analysis

Data obtained from 400 naive trials (5 random network wirings, 5 random input seeds, 16 

starting positions) were compared with 2000 trained trials (5 random network wirings, 5 

random input seeds, 5 targets, 16 starting positions).

Synchrony between cells within different populations was measured using a normalized 

population coefficient of variation (CVp Tiesinga & Sejnowski, 2004). CVp makes use of 

the population’s interspike interval, defined for the temporally ordered set of spikes 

generated by neurons in the population as τv = tv+1 - tv, where ti indicates the ith spike time. 

CVp is then defined as , where p stands for population and <> denotes the 

average over all intervals. CVp is normalized to be between 0 and 1 by subtracting 1 and 

dividing by . After the normalization, 0 indicates independent Poisson process 

synchrony, and 1 indicates maximum synchrony. Values that dip below 0 are set to 0 to 

allow calculating means.

We used normalized transfer entropy (nTE) between multiunit activity vectors (MUAs) of 

different populations before and after training as a measure of information flow (Gourevitch 

& Eggermont, 2007; Neymotin, Jacobs et al., 2011). MUA vectors were the time series 

formed by counting the number of spikes generated by a population in every 5 millisecond 

interval. nTE is a normalized version of transfer entropy, defined from probability 

distribution X1 to X2 as H(X2future|X2past) - H(X2future|X2past, X1past). X2future and X2past 

represent the X2 probability distributions of future and past states, respectively, and H is the 

entropy of the given distribution. nTE from X1 to X2 is then defined as 

. nTE removes bias from the estimate of transfer entropy by 

subtracting the average transfer entropy from X1 to X2 using a shuffled version of X1 

denoted  over several shuffles. It then divides the estimate by the entropy 

of H(X2future|X2past) to get a value between 0 and 1. nTE will be 0 when X1 transfers no 

information to X2 and 1 when X1 transfers maximal information to X2. For calculating nTE, 

we shuffled each presynaptic MUA vector 30 times. For more information on calculating 

nTE, see Neymotin, Jacobs et al. (2011).

For each network trained on a particular target, we calculated a per joint bias score, 

calculated as the difference between the sums of incoming excitatory weights to flexion and 

extension motor units. This bias measure was normalized to the range of −1 to 1, with −1 

and 1 corresponding to extension and flexion biases, respectively.
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3 Results

This study involved over 2000 15 s simulations of trained networks, using 5 different 

random wirings, 5 different input streams, 5 different targets, and 16 initial arm positions, as 

well as 400,000 15 s simulations run during training (5 random wirings, 5 input streams, 5 

targets, 16 initial arm positions, 200 reaches from each position). The network learned to 

reach a 2-degree-of-freedom virtual arm from starting positions arrayed in a restricted 

subspace chosen around an oval (large set of θs with restricted r in polar coordinates). This 

choice provided curved solution trajectories, thereby avoiding the complex co-contractions 

of muscles associated with linear movements. Targets were set to test both extrema and 

intermediate positions. Simulations were run on Linux on a 2.27 GHz quad-core Intel 

XEON CPU. A 15 s simulation ran in 15 to 25 seconds, depending on the simulation type.

3.1 Learning Alters Network Dynamics

Prior to training, firing rates of units in the motor (M) area (EM,ILM,IM) were low with 

sparse firing produced by the stochastic inputs into the motor area (see Figure 3A and Table 

4). This stochastic input was the source of motor babble, necessary to provide the variation 

that underlay motor learning. Before training, low variability of arm position kept 

proprioceptive sensory (P) cells at nearly constant low spiking rates (see Figure 3A). Due to 

strong fixed projections from P to higher-order sensory (S) populations, these low rates were 

able to maintain higher-order sensory cells at moderate levels of activity.

During training, plasticity was present at three sites: E→E recurrent connections in both S 

and M areas, bidirectional in E→E connections between S and M areas, and local E→I 

connections within S and M areas. As in our prior simulations, E→I learning was provided 

in order to avoid the runaway gain sometimes seen with excitatory loop learning, even in the 

presence of LTD (Neymotin, Kerr, et al., 2011). Excitatory weight gains between the 

different populations tended to increase three-fold: ES→ES: 3.2×, ES→EM: 3.1×, and 

EM→EM: 3.1×. However, synaptic weights did not saturate, remaining at intermediate 

values due to LTP and LTD co-occurring. By contrast, E→I projections increased only 

about 30%. The result of the overall increased excitation was an increase in firing rates in 

most cell types (see Table 4). However, ES rates were almost unchanged, although the 

inputs from P, which carried positional information, were now being used for control of 

reaching the arm to target (see below).

Synchrony between cells within the ES population was evident at baseline (vertical stripes in 

Figure 3A), with normalized population coefficient of variation (CVp; Tiesinga & 

Sejnowski, 2004) showing nonzero synchrony, beyond independent Poisson process 

coincidence levels (0 on the CVp scale of 0 to 1). Learning produced a significant increase in 

synchrony in several of the populations (see Figure 4A). Increase in synchrony was most 

evident in the M area, with significant increase in some S cell groups as well (see Figures 

3B and 4A). This demonstrated the development of temporal structure manifested as 

synchrony, a correlate of the dynamical structure required to perform the task.

Normalized transfer entropy (nTE) between multiunit activity vectors (MUAs) demonstrated 

increased information flow between populations (see Figures 4B and 5). Although P→ES 
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weights were fixed, there was a significant increase in nTE across these populations (0.0537 

to 0.0625; SEMs ≤1%). This change demonstrated that network reorganization, due to 

changes in other projections onto the S area, allowed alteration of ES activity so as to better 

follow incoming proprioceptive information and improve performance. The large increase in 

nTE in the main feedforward pathway from ES→EM (0.0247 to 0.1752) reflected the 

presence of structure in proprioceptive information, which provided the ES populations the 

ability to select particular EM units to activate for the signaled movement. Increase in local-

connectivity nTE from E→I within each region was consistent with tuning of network 

inhibition to suppress cells that would interfere with performance. This change suggested the 

emergence of lateral inhibitory feedback influences (the equivalent of a geometrical 

inhibitory surround). The projection from EM→P cells closed the loop. Increased nTE after 

learning (0.0008 to 0.0124) demonstrated that EM movement-related activity was then 

predictive of future proprioceptive states. This shift suggested how such a signal could also 

be utilized as efference copy.

3.2 Trained Networks Perform Reaching

Individual networks were each trained to navigate toward a particular location (see Figure 

6). Prior to training, the arm’s end point would move only slightly from its initial starting 

position (see Figure 6, gray traces). After training, with learning off, the network was able to 

move the arm from arbitrary starting positions to the trained target (see Figure 6, black 

traces). Generally the network moved the arm successfully to its target in a near-optimal 

trajectory. The ongoing noise in the system tended to reduce the smoothness of the motion 

and often caused the arm to deviate slightly from the target, once reached. Arm movements 

were successfully made to targets from one extreme to the other (extreme extension to 

extreme flexion in Figure 6A and the reverse in Figure 6B). A single network learned a 

single target but could reach this target from any starting point at either side of the target. In 

Figure 6C, the network moved the arm from maximum flexion toward the intermediately 

positioned target. The arm did not overshoot, demonstrating that the network was able to 

keep track of the end point position to determine which direction to move in. In Figure 6D, 

the same network directed the arm toward the target from an initial position of maximum 

extension. Here, a slight overshoot was seen, but the arm immediately moved back toward 

the target afterward.

Across targets, training significantly improved performance compared to the naive networks 

with substantial variability, ranging from 0.43 to 0.97 success for trained networks and 0.15 

to 0.24 for naive networks (see Figure 4C). Success was calculated for naive and trained 

networks from identical initial conditions (starting position and random inputs), where for 

each of the N = 2400 trials, a score of 1.0 indicated the hand had, during some time in the 

simulation, reached within a Cartesian distance of 1.0 from the target, and a score of 0.0 

indicated this was not achieved. Networks were more readily trained for some targets, with 

maximum flexion being the easiest to reach and maximum extension being the most 

difficult. Training significantly improved performance for all targets (p < 1e-9, two-tailed t-

test; see Figure 4C).
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Trained networks reduced error (approached the target) over time (see Figure 7). The panels 

here correspond to those in Figure 6. In some cases, the initial movement of the trained 

network increased error; because hand location is constrained by rotation at the two joints 

provided, it must in some cases initially move away from the target in order to ultimately 

reach it. In these cases, movement begins to reduce error, after the arm passes through the 

vertical axis at about 5 s (e.g., sharp drop of error in Figure 7A). By contrast, when the target 

was centered, the error did not show this increase (see Figures 7C and 7D). In these cases, 

the arm oscillated more at the target, lacking the externally imposed constraint of the 

extremum as a counterbalance to attempted movement.

Once the arm reached the target, error remained relatively low, with small oscillations 

caused by the ongoing noise or babble. Trained networks showed substantially greater 

reduction in overall error as a function of time. Pearson correlation between error and time 

values was significant (p < 0.05) and negative for the trained networks (average −0.31 ± 

0.01) and showed significant difference (p < 0.05, two-tailed t-test) from the naive networks. 

Performance for individual targets varied, but all trained networks showed a trend toward 

decreasing error over time, as expected from the motion of the arm from its starting position 

toward the target.

We examined trajectories of joint angles over time in individual reach trials (see Figures 8 

and 4D). Trained networks were typically able to stabilize both joint positions within 10 

degrees of target locations. After training and across targets, this occurred 73% and 68% of 

the time for shoulder and elbow angles, respectively, compared to only 19% and 24% for the 

naive networks (each of the N = 2400 scores used for calculating means in Figure 4D was 

set to 1.0 when, at some time during the simulation, the joint angle fell within 10 degrees of 

its target, and set to 0.0 when this did not occur). Depending on target, the accuracy of 

trained network performance ranged from 50% to 100% (see Figure 4D).

Figures 8A and 8B correspond to the reaches depicted in Figures 6C and 6D. These reaches 

were accomplished by a single trained network, with the arm beginning at opposite sides of 

the target. In Figure 8A, the arm begins at maximum flexion. In this case, the majority of the 

reach is accomplished by rotation about the shoulder joint. Figure 8B shows movement to 

the intermediate target from maximum extension. Here, the majority of the movement is 

accomplished by rotation about the elbow joint. The network uses only minimal shoulder 

movements to bring the arm close to the target. These examples demonstrate that a single 

trained network can dynamically reconfigure which joint to use for a reach, depending on 

available proprioceptive information.

We evaluated reach performance as a function of training epoch (see Figure 9) for the three 

targets shown in Figure 6. Overall, training quickly reduced error below that of the naive 

networks. However, there was considerable variability in learning performance, depending 

on the target. The maximum flexion target showed fast learning, with the error dropping 

close to zero after the first training epoch (see Figure 9A). This is consistent with best 

overall performance (see Figure 4C, T5). The error for the maximum extension target tended 

to oscillate with high deviations, also consistent with the lower performance of reach 

movements toward the maximally extended target (see Figure 4C, T4). The intermediate 
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target showed intermediate performance, with lower-amplitude oscillations in error. The 

oscillations in error were partially due to optimization of reach movements from specific 

starting positions, which could have a detrimental impact on reach performance from other 

starting positions. In addition, the babble noise was unmodulated as training progressed, 

which could lead to partial interference in learning.

By running a network for 15 s with both learning and muscle motions turned off and 

analyzing the direction that the EM units would have caused the arm to move in from a grid 

of 256 starting positions, we were able to extract motor command maps for four different 

cases of networks attempting to reach for a particular target (see Figure 10). Figure 10A 

shows an untrained network trying to reach for the most flexed target (T5); the motor 

commands at all of the starting positions are essentially insignificant, which is typical for all 

of the naive networks. After training, the vectors tended to point toward the target (see 

Figures 10B to 10D). Figure 10B shows a trained network reaching for, again, T5. Most of 

the vectors are colored dark grey, representing directional preferences that point toward the 

target. However, the light gray vectors in the bottom right quadrant of Figure 10B show 

movement preferences that actually increase error yet are nonetheless required for arm 

movement, based on rotational constraints at the joints. During training, the network would 

be punished for following these trajectories from these points, yet the overall training 

permits these movement preferences to be learned. Because the target is at extreme flexion, 

the overall tendency of the learning is to reinforce flexion and suppress extension. This 

permits global learning that is contrary to local cues. Similarly, Figure 10C shows a motor 

vector field pattern consistent with reinforced extension (T4).

With the target at an intermediate position (see Figure 10D, T3), the vectors are not as 

clearly oriented and are of reduced magnitude. The reduced magnitude promoted more 

conservative movements, advantageous because positioning the arm over an intermediate 

target required balance: too much extension or flexion results in over- or undershooting the 

target. For the trained networks, average angular error reductions about each joint per 

movement command across targets and starting positions were −0.29° per move for shoulder 

and −0.15° for elbow (SEM ≤0.01°), demonstrating that the network tended to generate 

movements that would reduce error. The larger reduction in shoulder error is due to its 

larger role in positioning the end point of the arm, since the elbow position depends on the 

upper-arm position.

Flexion bias scores, representing difference between extension versus flexion weights at a 

joint from −1 to 1, showed the expected flexion bias at both joints (average ± SEM: 0.22 ± 

0.01 and 0.27 ± 0.01 for shoulder and elbow, respectively) in the case of the maximum 

flexion target. However, the maximum extension target produced networks with flexion bias 

at the elbow (0.03 ± 0.02), with only slight extension bias at the shoulder joint (−0.12 ± 

0.03). This corresponded to the lower hit score for the maximum extension target compared 

to maximum flexion target. The intermediate targets had extension bias at the shoulder (T1: 

−0.14 ± 0.02; T2: −0.01 ± 0.01; T3: −0.12 ± 0.01), with primarily flexion bias at the elbow 

(T1: 0.03 ± 0.02; T2: −0.02 ± 0.01; T3: 0.05 ± 0.01). Balancing bias at the two joints 

appeared to be a strategy to allow movement to occur readily in opposing directions so as to 

allow for target acquisition from different initial points.
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4 Discussion

The results in this letter demonstrate the flexibility of the network architecture and learning 

algorithm developed in Chadderdon et al. (2012). Here we have extended the target tracking 

task to the more challenging problem of controlling two independent joints to perform the 

reach. ES cells contain random mappings from the proprioceptive P cells, which leads to 

individual ES cells forming conjunctive representations of configurations of both joints. The 

global reinforcement mechanism induces plasticity, which shapes the EM cell response to 

the current limb configuration represented in ES. The target is effectively represented 

implicitly (see below) by the visual set point, which the reinforcement algorithm uses to 

determine whether the network is rewarded or punished for the motor commands it issues in 

response to current limb configuration. Such a system effectively forms attractors for the 

target arm configuration by shaping the immediate response to particular points the arm is at 

in the trajectory. Figure 10 graphically shows the type of motor command map that 

implements these attractors. These attractors may function either when learning is turned off 

(as is done during testing in this paper) or left on, though continued learning may add some 

interference to the learned attractor. As a consequence of the attractor structure, only one 

target may be learned by the system at a time.

Additionally, although we did not actively test it under this task, we have previously 

demonstrated that this model is capable of unlearning old attractors and relearning new ones 

based on a shift of the reinforcement schedule (Chadderdon et al., 2012): a feature that adds 

great adaptive flexibility to the simulated agent’s reaction to its environment. Punishment 

“stamps out” no-longer-relevant attractors, and babbling in conjunction with reward is able 

to “stamp in” newer, desired attractors. Although we turn off learning before we test the 

performance of the model in this letter (in order to control for the possibility of new learning 

affecting performance), there is biologically plausibility in always leaving the learning 

algorithm on at some level (Sober & Brainard, 2009). This is easily accomplished, and in the 

future, we intend to adapt the level of babbling motor noise according to the degree to which 

the agent is being rewarded (more reward, less injected noise). When this is done, learning 

should become even more efficacious and leaving learning on less detrimental than is 

evidenced in Figure 9.

Learning produced alterations in network dynamics, including enhanced neuronal synchrony 

and enhanced information flow between neuronal populations. After learning, networks 

retained behaviorally relevant memories and utilized proprioceptive information to perform 

reaches to targets from multiple starting positions. Trained networks were able to 

dynamically control which degree-of-freedom (elbow versus shoulder) to use to reach a 

target, depending on current arm position. Learning-dependent dynamical reorganization 

was evident in sensory and motor populations, where synaptic weight patterning was 

produced through a balance of convergent excitatory weights onto motor populations 

projecting to extensors and flexors.

We make a number of specific, testable predictions from the model:

1. Balanced learning (changes in both E→E and E→I weights) is needed to produce 

selection of correct motor units while suppressing activation of incorrect motor 
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units via selective inhibition. This is testable using selective pharmacological 

blockade or optogenetics.

2. Learning enhances synchrony in neuronal populations and enhances behaviorally 

relevant information flow across neuronal populations. This is testable with 

electrophysiological recording techniques (multiple areas or single units) and nTE. 

However, information flow (measured by nTE) can change across two populations 

due to dynamical factors in the absence of learning, or even direct synaptic 

connections, between these populations (e.g., EM→P in Figure 4). Thus, although 

nTEcan sometimes provide evidence of learning (Lungarella & Sporns, 2006), it 

must be interpreted cautiously.

3. Enhanced sensory processing works in tandem with motor alterations to improve 

task-relevant motor performance. This is testable in vivo by erasing memories from 

sensory areas (Pastalkova et al., 2006; Von Kraus, Sacktor, & Francis, 2010). 

Additionally, motor cortex erasure could be used to demonstrate that relearning is 

accelerated in the presence of the prior sensory learning. These predictions could 

also be tested further in our model.

4. Learning to a motion extremum is faster than learning to intermediate positions 

since motion limitations can be used, eliminating the need for learning balance 

across antagonist muscles (preliminary experiments confirm: P. Y. Chhatbar, 

personal communication). More generally, the relative ease of a particular 

movement in vivo depends on the amount of sensory information required to 

complete the movement. This is testable by kinesiology.

4.1 Environmentally Constrained Structure and Function

Functional connectomics seeks to explain dynamics and neural function as emergent from 

detailed neuronal circuit connectivity (Sporns, Tononi, & Kotter, 2005; Shepherd, 2004; 

Reid, 2012). Circuit changes have been correlated with brain diseases, such as epilepsy 

(Dyhrfjeld-Johnsen et al., 2007; Lytton, 2008) and autism (Qiu, Anderson, Levitt, & 

Shepherd, 2011). Our past modeling work has confirmed the importance of microcircuit 

structure on neural function, demonstrating that alterations in connectivity change both 

dynamics and information transmission in neuronal networks (Neymotin, Jacobs et al.,2011; 

Neymotin, Kerr et al., 2011; Neymotin, Lezarewicz et al., 2011; Neymotin, Lee et al., 2011).

The embedding of brains, and by extension neuronal networks, in a physical (or simulated) 

world has been hypothesized to be an essential part of learning, as seen as the evolution of 

network dynamics (Almassy, Edelman, & Sporns, 1998; Edelman, 2006; Krichmar & 

Edelman, 2005; Lungarella & Sporns, 2006; Webb, 2000). This theory maintains that the 

environment and brain influence each other as learning selects neuronal dynamics (selective 

hypothesis) (Edelman, 1987). In our work presented here, learning depended on the 

interaction with the rudimentary simulated environment: the virtual arm and target. This 

embodiment can now be used to make predictions for learning-related changes occurring 

during the perception-action-reward-cycle (Mahmoudi & Sanchez, 2011).
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Embedding also provides a step toward using simulation to assess the functional importance 

of various dynamical measures commonly used on in vivo electrophysiological data. Here, 

we found that synchrony and nTE were both enhanced after learning. These measures have 

been suggested as a means for brains to coordinate activity and process information (Engel, 

Konig, Kreiter, Gray, & Singer, 1991; Lungarella & Sporns, 2006; Von der Malsburg & 

Schneider, 1986; Neymotin, Jacobs et al., 2011a; Uhlhaas & Singer, 2006). Our biomimetic 

brain model learned a function that can then be correlated with specific aspects of ensemble 

dynamics. The functional connectome can thus be dissected by looking at two steps: (1) the 

emergence of dynamics from connectivity (the dynamic connectome) and (2) the relation of 

function to aspects of dynamics (the functionome: the set of functions a network can 

perform as constrained by its dynamics and dynamical embedding within the environment).

4.2 Target Selection

Representation of both visual and somatosensory state information, including target 

information, is believed to be located in posterior parietal areas, and this information 

propagates to premotor and motor cortex (Shadmehr & Krakauer, 2008). These 

representations may be modulated by processes that select task-relevant information. Recent 

experiments have shown that premotor cortex activity is predictive of changes of mind that 

result in switching between targets midmovement (Afshar et al., 2011).

Our model selects the target implicitly using the Cartesian visual reference point that the 

reinforcement learning algorithm uses to determine whether the hand is moving closer 

(reward condition) or farther away (punishment condition) from the desired location. A part 

of the brain upstream of the dopamine cells signaling error might perform the error 

calculation and cue the correct valence of reinforcement (internal reinforcement source), or 

the environment itself might provide actual rewards or punishers based on the the agent’s 

choice (external source). In either case, the reinforcement schedule can implicitly select the 

target (Chadderdon et al., 2012). In future versions of the model, however, we may use a 

premotor cortex representation in order to allow mappings to be learned that map the 

conjunction of cued target representation and limb state to directive motor commands. Such 

a representation would presumably be cued by dorsal visual stream information propagating 

through posterior parietal cortex when the agent views a target in a particular location in the 

visual field. This would also allow the model to move beyond the current limitation of being 

able to retain a mapping to a single target at a given time.

Experiments have demonstrated that neuronal networks dynamically select between 

competing streams of information, depending on behavioral relevance (Kelemen & Fenton, 

2010). This information selection is modulated by attention-like processes affecting 

neuronal dynamics and behavioral performance (Fenton et al., 2010). One dynamical 

mechanism implicated in attentional function is modulation of the level of oscillatory 

amplitude in the mu and alpha bands, elicited via top-down projections from higher- to 

lower-order brain areas (Mo, Schroeder, & Ding, 2011; Jones et al., 2010). We previously 

developed models of neocortex showing altered dynamics with attentional modulation 

(Neymotin, Lee et al., 2011). In these models, supragranular layers of neocortex received 

strengthened input as a stand-in for higher-order brain area activation. This had the effect of 
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increasing 8 Hz to 12 Hz oscillation amplitude, while maintaining the peak oscillatory 

frequency location. We hypothesize that target information projecting from premotor- into 

supragranular layers of motor-cortex causes attentional modulation, allowing motor cortex 

to control movements to targets.

4.3 Learning Molecules

A major challenge in neuroscience will be to bridge the gap in understanding how activity at 

disparate scales is linked (De Schutter, 2008; Lytton, 2008; Le Novére, 2007). A 

phenomenon such as learning has important dynamics at different scales of granularity 

ranging from molecular up to network and behavioral levels. In this letter, we used a 

phenomenological learning rule that had a spike-timing dependence. This rule operated at 

the synaptic scale and was further modulated by more global neuromodulatory-like 

reinforcement signals. These global reinforcement signals bridged the gap from synaptic and 

molecular signaling to the behavioral level and were effective in eliciting desired behavioral 

responses from the sensorimotor network via the synaptic learning process.

Dopamine, a key signaling molecule in modulating learning, bridges the gap between 

behavioral, cognitive, and molecular levels (Evans et al., 2012). There is evidence that 

increased (decreased) dopamine concentration leads to synaptic LTP (LTD) via action of 

D1-family receptors (Reynolds & Wickens, 2002; Shen, Flajolet, Greengard, & Surmeier, 

2008). Our model provides a link between global reinforcement, mediated via dopamine 

signals, and sensorimotor learning. In future work, we will explore a more detailed model of 

the dopaminergic reward pathway, with potential implications for modeling disorders such 

as schizophrenia and Parkinson’s disease (Frank, Seeberger, & O’Reilly, 2004; Cools, 2006; 

Frank & O’Reilly, 2006).
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Figure 1. 
Overview of model. A virtual arm with joint angles θsh and θel (θsh: angle of upper arm with 

respect to x-axis; θel: angle of forearm with respect to upper arm) controlled by two pairs of 

flexor and extensor muscles, is trained to reach toward a target. A proprioceptive (P) sensory 

area translates muscle lengths into an arm configuration representation. Plasticity is present 

in excitatory-to-excitatory recurrent connections within the higher-order sensory (S) and the 

motor (M) areas, in feedforward and feedback excitatory to excitatory connections between 

the higher-order sensory and the motor areas, and in feedforward connections from 

excitatory to inhibitory cells within each area. Motor units drive the muscles to change the 

joint angle. The actor is trained by the critic, which evaluates error and provides a global 

reward or punishment signal.
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Figure 2. 
Schematic of arm orientations at all five target locations. Each X symbol represents a target. 

The arm is drawn in an orientation that maintains its end point on each of the five targets. 

Targets were chosen to allow thorough testing of reaching (both extrema and intermediate 

positions).
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Figure 3. 
Raster plot of network spiking. (A) Naive network. (B) Network after training. Gray (black) 

dots are spikes in inhibitory (excitatory) cells; ES, IS, ILS, EM, IM, ILM. (E, excitatory; I, 

inhibitory fast spiking; IL, inhibitory low-threshold spiking interneurons; S, higher-order 

sensory; M, motor; Psh, proprioceptive sensory shoulder, gray; Pel proprioceptive sensory 

elbow, black).

Neymotin et al. Page 23

Neural Comput. Author manuscript; available in PMC 2015 January 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. 
Analysis across N = 2400 simulations with different randomizations, targets, starting 

positions. (A)Average population synchrony (CVp). (SEMs not visible) Asterisks: 

significant increases; two-sided t-test, p < 0.01. (B) Average nTE. (SEMs not visible). 

Asterisks, significant increases; two-sided t-test, p < 0.01. (C) Successes (average hits ± 

SEM; all differences significant). (D) Angular hit scores (average ± SEM; all differences 

significant; sh, shoulder; el, elbow).
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Figure 5. 
Average nTE before (dotted lines) and after (solid lines) learning. Each circle represents a 

population. Arrows represent direction of nTE. Thickness of lines indicates nTE magnitude 

(corresponding to bar magnitudes in Figure 4B).
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Figure 6. 
Sample model performance on four desired arm trajectories. Naive network trajectories in 

gray; trained in black. Arm is shown at target position (black: upper arm; gray: forearm). (A) 

Maximal flexion at both joints (T5). (B) Maximal extension (T4). (C, D) Intermediate target 

(T3) approached from opposite directions.
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Figure 7. 
Cartesian error versus time performance on four desired trajectories. The panels correspond 

to the trajectories over the 15 s simulations shown in the same Figure 6 panels.
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Figure 8. 
Shoulder and elbow joint angle performance for two desired trajectories to the same target. 

(A, B) The same trajectories as in Figures 6C and 6D, both targeting T3. Shoulder (black) 

and elbow (gray) joint angles are shown over the course of the 15 second reach trial as 

controlled by a trained (solid lines) network and naive (broken lines) network to a particular 

target. Horizontal solid lines indicate the target angles in degrees (shoulder target at zero 

degrees). Thin horizontal gray lines indicate minimum and maximum angles.
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Figure 9. 
Average minimum Cartesian error (across 16 starting positions) as a function of training 

epoch. (A–C) Correspond to the average (over all starting positions) performance on the 

targets used in Figures 6A (T5), 6B (T4), 6C and 6D (T3), respectively. Performance at 

epoch 0 is the performance after the first training session.
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Figure 10. 
Movement command vectors (15 s of simulation from grid of 256 starting positions). 

Movement vectors are drawn from light to dark grey circles. Dark gray vectors (lines) point 

toward target (decreasing Cartesian hand-to-target error), and light gray point away 

(increasing error). Magnitude of each vector is scaled by 2X. (A) Movement commands 

generated by a naive network have no directional selectivity. (B) Maximum flexion and (C) 

maximum extension vectors tend to point toward the target. (D) Motor commands for 

intermediate target show directional selectivity toward the target from opposite direction, 

but have smaller magnitudes.
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Table 1

Connectivity Parameters.

Pre Post p Conv W Pre Post p Conv W

P ES 0.11250 22 15.0000 ES ES 0.05625 11 * 1.3200

ES IS 0.48375 93 * 1.9550 ES ILS 0.57375 110 * 0.9775

ES EM 0.09000 17 * 1.7600 IS ES 0.49500 22 4.5000

IS IS 0.69750 31 4.5000 IS ILS 0.38250 17 4.5000

ILS ES 0.39375 8 1.2450 ILS IS 0.59625 12 2.2500

ILS ILS 0.10125 2 4.5000 EM ES 0.01913 4 * 0.4800

EM EM 0.05625 11 * 1.1880 EM IM 0.48375 93 * 1.9550

EM ILM 0.57375 110 * 0.9775 IM EM 0.49500 22 9.0000

IM IM 0.69750 31 4.5000 IM ILM 0.38250 17 4.5000

ILM EM 0.39375 8 2.4900 ILM IM 0.59625 12 2.2500

ILM ILM 0.10125 2 4.5000

Notes: Area (Pre: presynaptic type; Post: postsynaptic type) interconnection probabilities (p), convergence (Conv), and starting weights (W). An 
asterisk next to W represents a plastic connection modified during learning. p is the probability of a connection being included among all possible 
connections between the two areas. Conv is the number of in puts each cell of type Post receives from type Pre. E cells used AMPA and NMDA 
synapses (NMDA, not displayed, had weights set at 10% of the colocalized AMPA synapse).
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Table 2

Neuron Model Parameters.

Type VRMP(mV) Tn(mV) Bn(mV) τA(ms) R τR(ms) H(mV) τH(ms)

E −65 −40 −25 5 0.75 8.0 1.0 400

I −63 −40 −10 2.5 0.25 1.5 0.5 50

IL −65 −47 −10 2.5 0.25 1.5 0.5 50

Notes: Parameters of the neuron model for each major population type. These parameters are based on previously published models of neocortex, 
which were culled from the experimental and modeling Literature (Kerr et al., 2012, 2013; Neymotin, Jacobs, Fenton, & Lytton, 2011; Neymotin, 
Kerr et al., 2011; Neymotin, Lee et al., 2011).
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Table 3

Noise Parameters.

Cell Synapse W Rate

IS GABAA
some 1.875 100

IS AMPAdend 4.125 200

IS GABAA
dend 1.875 100

ILS GABAA
soma 1.875 100

ILS AMPAdend 3.000 200

ILS GABAA
dend 1.875 100

EM GABAA
soma 1.875 100

EM AMPAdend 3.938 200

EM GABAA
dend 1.875 100

IM GABAA
soma 1.875 100

IM AMPAdend 4.125 200

IM GABAA
dend 1.875 100

ILM GABAA
soma 1.875 100

ILM AMPAdend 3.000 200

ILM GABAA
dend 1.875 100

Notes: Noise stimulation to synapses of the different cell types. Weight (W) values are afferent weights. Rate values are average stimulation 
frequencies in Hz (inputs are Poisson distributed). This stimulation represents afferent inputs from multiple presynaptic cells, which are not 
explicitly simulated.
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Table 4

Firing Rates.

Condition P ES IS ILS EM IM ILM

Naive 0.98 3.36 5.60 3.36 0.17 0.53 0.41

Trained 1.01 3.37 8.42 4.87 1.74 4.32 2.45

Note: Average firing rates (Hz) for the different cell populations before (naive) and after training.
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