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New insights into IL-12-mediated tumor suppression

S Tugues*,1, SH Burkhard1, I Ohs1, M Vrohlings1, K Nussbaum1, J vom Berg1, P Kulig1 and B Becher*,1

During the past two decades, interleukin-12 (IL-12) has emerged as one of the most potent cytokines in mediating antitumor
activity in a variety of preclinical models. Through pleiotropic effects on different immune cells that form the tumor
microenvironment, IL-12 establishes a link between innate and adaptive immunity that involves different immune effector cells
and cytokines depending on the type of tumor or the affected tissue. The robust antitumor response exerted by IL-12, however,
has not yet been successfully translated into the clinics. The majority of clinical trials involving treatment with IL-12 failed to
show sustained antitumor responses and were associated to toxic side effects. Here we discuss the therapeutic effects of IL-12
from preclinical to clinical studies, and will highlight promising strategies to take advantage of the antitumor activity of IL-12
while limiting adverse effects.
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Facts

� Interleukin-12 (IL-12) regulates inflammation by linking
innate and adaptive immune responses. Most of the
IL-12-induced effects are mediated by the secretion of
interferon -g.

� IL-12 is a potent inducer of antitumor immunity in preclinical
models.

� The mechanisms by which IL-12 induces antitumor
immune responses involve distinct effector cell types and
cytokines depending on the tumor type and/or tumor
location.

� The delivery of IL-12 for therapeutic purposes focuses on
novel methods to deliver this cytokine directly to the tumor
site.

� The robust antitumor response exerted by IL-12 in
preclinical models has not yet been successfully translated
into the clinics.

Open Questions

� A better understanding of the multiple mechanisms by
which IL-12 mediates tumor protection in different types of
tumors or affected tissues.

� Optimization of therapeutic schedules to locally deliver
IL-12. Does it require a detailed knowledge of the
molecular pathology of each individual tumor at a
particular time?

� Revisiting the use of IL-12 as an adjuvant in combinatorial
treatments. Do we need to inhibit particular immuno-
suppressive mechanisms to improve clinical benefits?

� How can we achieve durable, local, non-toxic antitumor
responses with IL-12 in cancer patients? What is the best
strategy to deliver this cytokine into the tumor microenvir-
onment in a controlled manner?

The Biology of IL-12

Cytokines are among the chief players in controlling immune
responses, and cytokine-based approaches for cancer
therapy have been pursued in a number of ways. In that
respect, the immunomodulatory cytokine IL-12, a key member
of the IL-12 family of cytokines, emerged as a potent inducer
of antitumor immunity. IL-12 was originally identified in 1989
as a natural killer (NK) cell-stimulatory factor with multiple
biologic effects on peripheral blood lymphocytes.1 It is mainly
produced by antigen-presenting cells (APCs) such as
dendritic cells (DCs), monocytes, macrophages and B cells
upon Toll-like receptor engagement.2 Thus, IL-12 is secreted
as an early pro-inflammatory cytokine in response to infec-
tions.3 Additional amplifying signals such as interferon-g
(IFN-g),4 IL-155 or cluster of differentiation (CD)40L–CD40
cell–cell interactions6 are necessary for the optimal produc-
tion of biologically active IL-12. Conversely, IL-12 is negatively
regulated through cytokines such as IL-10 and transforming
growth factor-b1 (TGF-b1).7,8 IL-12 is a heterodimer with a
molecular weight of 70 kDa consisting of a heavy (p40) and a
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light (p35) chain subunit, which are covalently linked by
disulfide bonds.9–11 While p40 is produced in abundance by
phagocytic cells, p35 is ubiquitously and constitutively
expressed only at low levels and is thought to require p40
co-expression for secretion of the biologically active
cytokine.12

The sensing of IL-12 is mediated through the heterodimeric
IL-12 receptor (IL-12R) composed of IL-12Rb1 and
IL-12Rb2.13 Co-expression of both receptor subunits is
required for the generation of high-affinity binding sites for
IL-12. The IL-12R complex is found on NK cells, NK T and
activated T cells14 but has also been detected on cell types of
myeloid origin15 and tonsillar B cells.16 Naive T cells express
IL-12Rb1 but not IL-12Rb2, which is critical for the signal
transduction downstream of the receptor complex.17 Upon
activation of T cells via the T-cell receptor, both IL-12 receptor
chains are induced, which is additionally enhanced by IL-12
itself, IFN-g, tumor necrosis factor-a (TNF-a) and anti-CD28
costimulation.18,19 Successful triggering of the receptor
activates the Janus kinase–STAT (signal transducer and
activator of transcription) signaling pathway, predominantly
leading to STAT4 phosphorylation, which mediates subse-
quent cellular responses.20,21

IL-12 Sensing by Innate and Adaptive Lymphocytes

IL-12 has a key role in the regulation of inflammation by linking
innate and adaptive immune responses. IL-12 release by
microbe-sensing APCs results in subsequent activation and
proliferation of NK and T cells and promotes their effector
functions by inducing the transcription of cytokines and
cytolytic factors such as perforin and granzyme B.22–24

Moreover, IL-12 polarizes T cells into a type 1 helper
T (Th1) effector cell phenotype.25–27 Th1 polarization is
further pronounced by IL-12 inhibiting the developmental
program of type 2 helper T cells28 and interference with the
differentiation of regulatory T cells (Tregs) and Th17 cells
induced by TGF-b.29 Additionally, IL-12 programs effector
T cells for optimal generation of effector memory T cells and
T follicular helper cells.30,31 Direct effects of IL-12 on APCs
have also been reported. Even though the activation of IL-12R
in these cells did not involve the canonical STAT pathway, it
increased their ability to present poorly immunogenic tumor
peptides.32,33

A central mediator of IL-12-induced responses is IFN-g,
which is secreted upon IL-12 stimulation alone or with
synergizing factors such as IL-2 and IL-18.34,35 IFN-g, in turn,
acts on APCs to initiate or increase IL-12 secretion in a
positive feedback loop.36 Apart from IFN-g release, IL-12
triggers the secretion of a number of other factors, including
TNF-a, granulocyte-macrophage colony-stimulating factor
(GM-CSF) and IL-2.37

Mechanisms of Tumor Protection through IL-12

Whereas the role of IL-12 was primarily studied in the context
of infection and autoimmunity, mice lacking the IL-12 specific
subunit p35 developed significantly increased numbers of
chemically induced papillomas38 and were more susceptible
to N-methyl-N-nitrosourea-induced T-cell lymphomas39

compared to wild-type mice. In addition, IL-12p40 deficiency
resulted in earlier appearance of 3-methylcholanthrene
(MCA)-induced sarcomas, compared to wild-type mice.40

The observation that animals deficient for IL12Rb2 developed
spontaneous tumors at higher frequencies and showed
enhanced growth of transplantable tumors confirmed the
importance of IL-12 signaling in tumor protection.41 In
humans, polymorphisms in the 30-untranslated region of
IL12A lead to decreased IL-12 production, which coincides
with an increased susceptibility to develop glioblastomas.42

Despite the remarkable anticancer activity exerted by IL-12,
other members of the IL-12 family play critical roles in the
regulation of tumor development (see Box 1).

To determine the mechanisms by which IL-12 induces
antitumor immune responses, cancer cells have been
engineered to continuously release this cytokine. The over-
expression of IL-12 in B16 melanoma, thricostatin-A (TSA)
mammary adenocarcinoma and C26 colon carcinoma cells
induced tumor suppression upon subcutaneous (s.c.) inocu-
lation.43–46 Whereas in B16 melanoma this effect was
mediated by a subset of innate lymphoid cells (ILCs), the

Box 1. The IL-12 family of cytokines: role in tumor growth

� The IL-12 family of cytokines includes IL-12, IL-23,
IL-27 and IL-35.141

� By using mice lacking IL-23, IL-23 receptor or anti-IL-
23p19 blocking antibodies, endogenous IL-23 was
shown to promote tumor growth in different tumor
models.142,143

� In colorectal carcinoma, the effects of IL-23 were
mimicked after blocking IL-17A.144 In DMBA/
TPA-induced skin papillomas and MCA-induced
fibrosarcomas, the protumorigenic effects of IL-23
were independent of the main Th17 cytokine.145

� In contrast to the protumoral role of endogenous
IL-23, the administration of this cytokine by
different delivery methods induced potent antitumor
responses.146–148

� Similarly to IL-12, IL-27 has been shown to inhibit
tumor growth and metastasis.149

� The mechanisms that drive IL-27 antitumor effects
include inhibition of angiogenesis150–152 and tumor
cell proliferation,153,154 and the activation of CD8þ

T and NK cells.155,156

� As IL-27 acts only on naive T cells, the concentra-
tions of IL-27-induced pro-inflammatory cytokines
are presumably not high enough to induce the
appearance of adverse side effects.157

� IL-35 was initially described as a Treg-specific cytokine
with potent immunosuppressive properties.158

� Studies conducted with IL-35-overexpressing
cancer cells reported a role for IL-35 in promoting
tumor growth through the suppression of T-cell
responses.159
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rejection of breast cancer TSA-IL-12 cells was dependent on
CD8 cytotoxic T cells, secreting IFN-g.43 However, tumor
rejection in IL-12-transduced C26 colon carcinoma was
partially dependent on GM-CSF-producing CD4 T cells or
NK cells, but independent of IFN-g.46 IL-12-responsive T cells
were also ascribed a major role in rejection of tumors of the
central nervous system.47,48 These results indicate that
differences in tumor cell type and tumor location determine
the quality of the tumor immune response, involving distinct
effector cell types and cytokines.

Although tumor-specific immune responses are pivotal for
cancer control, changes in the vasculature status are also
relevant for tumor development. Hence, overexpression of
IL-12 in B16 melanoma tumors was shown to regulate the
tumor vasculature, either by upregulating of adhesion
molecules that may facilitate leukocyte recruitment44 or by
inhibiting angiogenesis in an IFNg-dependent manner.49,50

The inhibitory effects of IL-12 on the tumor vessels have been
associated with increased levels of the IFNg-inducible
chemokine (C-X-C motif) ligand (CXCL) 9 and CXCL10, and
a decreased production of vascular endothelial growth factor
(VEGF) and metalloproteinase-9.51–54 In general, these
studies highlight the importance of IL-12-induced IFN-g in
the control of tumor growth.

The main effects of IL-12 on the tumor microenvironment
have been summarized in Figure 1.

Therapeutic Effects of IL-12 in Preclinical Models

The therapeutic potential of IL-12 has been extensively
investigated in various preclinical models of cancer. Espe-
cially systemic intravenous (i.v.), intraperitoneal (i.p.), sub-
cutaneous but also intratumoral (i.t.) delivery of recombinant
IL-12 leads to reduced or delayed tumor growth and increased
survival in transplantable, carcinogen-induced and sponta-
neous tumors arising in genetically modified mice.55–57 It is by
now clear that the antitumor effectiveness of IL-12 is dose and
context dependent.40,55,58 Delivery of IL-12 for therapeutic
purposes has thus far been accomplished through direct
infusion of the recombinant protein, by gene therapy using
viral and non-viral vectors, electroporation, by IL-12-contain-
ing microspheres and nanoparticles or by the transfer of IL-12-
overexpressing stromal and immune cell types (Figure 2).

Already in 1993, Brunda et al.59 reported an antitumor
response of recombinant IL-12 in B16 melanoma, M5975
sarcoma and RENCA renal cell carcinoma when administered
intraperitoneally. The antitumor effects of IL-12 were even
observed when treatment was started at later stages after
tumor inoculation and were found to be partially dependent on
CD8 T cells. In a later study, however, both NK and NK T cells
were reported to be the cell types responsible for IL-12-
induced antitumor responses in a variety of transplantable
tumor models including B16 melanoma.40 Interestingly,

Figure 1 Cellular responses to IL-12 stimulation in the tumor tissue. IL-12 acts mainly on lymphoid cells such as NK cells, T cells and ILCs. All of these subsets increase
their IFN-g secretion upon stimulation and thereby induce most of the tumor-suppressing pathways observed upon IL-12 treatment. Furthermore, IL-12 and IFN-g potentiate
cytotoxic responses by NK cells and CD8 T cells (CD8þ ), involving the production of perforin, granzyme and Fas ligand (Fasl). The secreted IFN-g is involved in direct tumor
vascular responses such as ICAM-1 and VCAM-1 upregulation and inhibition of angiogenesis. The adhesion molecule upregulation is thought to facilitate leukocyte
recruitment to the tumor tissue. Moreover, IFN-g stimulates myeloid cells, which induce the secretion of CXCL9 and CXCL10 and suppress the production of VEGF and
MMP-9, yielding in the inhibition of angiogenesis. Moreover, IL-12 stimulates antigen presentation and cross-presentation by APCs and thereby further promotes the cytotoxic
activity of CD8 T cells and cytokine response of CD4 T cells. Helper T cell-derived GM-CSF upon IL-12 stimulation has also been shown to mediate the tumor suppressive
effect. DC, dendritic cell; MØ, macrophage; NP, neutrophil granulocyte
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discrepancies between the relative roles of each cell popula-
tion in suppressing tumor growth could be attributed to the
dose and time of IL-12 administration.40 I.p. administration of
IL-12 also induced effective antitumor immune responses
against malignant glioma60 and 4T1 mammary carcinoma.61

Apart from direct effects on primary tumors, IL-12 was also
able to eradicate lung metastasis when mammary tumors
were surgically removed.61

The potent antitumor activity exerted by IL-12 made it an
ideal candidate for combination with other therapy modalities
directed to increase the immunogenicity of the tumor.
In this respect, the combination of IL-12 with cytokines,
chemotherapeutic agents, multipeptide vaccines and mono-
clonal antibodies potentiated the therapeutic activity of this
cytokine in a variety of tumor models such as melanoma,
bladder carcinoma and mammary carcinoma.62–67 Even
though the rationale for combining IL-12 with other cytokines
was to achieve complementary and more durable immune-
stimulating responses, most of these treatments resulted in
high levels of systemic IFNg production and therefore a
potential degree of toxicity after translating them into the
clinics.65 In combination with chemotherapy, an improved
antitumor activity could only be observed in immunogenic
tumors when IL-12 was administered early after chemo-
therapy, thus highlighting the importance of the timing for

immune intervention in chemotherapy-induced antitumor
responses.68 An example of a successful combinatorial
treatment with IL-12 was reported in human epidermal growth
factor receptor (HER)-2/neu transgenic mice, where the
treatment with IL-12 together with tamoxifen or HER-2/neu
multipeptide vaccines resulted in an effective prevention of
tumor growth.66,67 An enhanced tumor regression was also
achieved upon co-administration of IL-12 and the anti-HER-2
antibody trastuzumab in colon adenocarcinoma.69

Even though systemic delivery of IL-12 showed great
potential as an experimental anticancer agent, the instability
and short half-life of this cytokine after bolus administration led
to focus on novel methods to deliver it directly to the tumor
site. Following this strategy, vom Berg et al.48 implanted
osmotic minipumps to locally deliver IL-12 into the brain of GL-
261 glioma-bearing mice. Notably, the combined treatment of
IL-12 with systemic blockade of the co-inhibitory receptor
cytotoxic T-lymphocyte antigen 4 (CTLA-4) eradicated even
very advanced tumors at late disease stages in a T cell-
dependent manner. On the basis of this evidence, the
rationale of combining IL-12 with the targeting of regulatory
pathways holds a great potential to overcome tumor-
associated immune suppression.

Specific delivery of IL-12 to the tumor site was also
achieved through gene therapy. Thus, delivery of IL-12 by
electroporation or viral-based strategies reduced growth
of established colon carcinoma, melanoma and brain
tumors.70–74 In the case of breast cancer, the success of
IL-12 gene therapy was dependent on the immunogenicity of
the tumor. Whereas IL-12 led to regression of highly
immunogenic TS/A tumors, the growth of 4T1 tumors, which
are considered less immunogenic, was not affected.75 In the
4T1 model, however, the treatment resulted in a marked
reduction of lung metastasis, an effect that was partially
dependent on IFNg-producing NK cells.75,76 Despite most of
these strategies provided a continuous release of IL-12 and
IFNg within the tumor, just a few of them reported that IL-12
was acting locally by showing low serum levels of these
cytokines.71,74 Nevertheless, synergistic antitumor responses
in breast cancer have been achieved by combining local
adenovirus-mediated gene transfer of IL-12 with T-cell
chemoattractants (lymphotactin, CXCL10), costimulatory
molecules (B7.1, glucocorticoid induced TNF receptor ligand,
4-1BB ligands), GM-CSF, radiotherapy or antiangiogenic
therapy.77–83 Furthermore, the combination with chemother-
apeutic or antiangiogenic agents in lung, skin and colorectal
cancer, or with antiangiogenic agents in prostate cancer proved
to be more efficient than viral-mediated IL-12 gene therapy
alone in different types of tumors.84–89 Even though local
delivery of IL-12 by gene therapy resulted in a more sustained
expression of IL-12 in comparison with the levels obtained by
injecting the recombinant protein, the lack of selectivity and the
occurrence of non-specific immune responses associated
with the use of viral vectors remain a major concern when
using this strategy to deliver IL-12.

In order to overcome these limitations, IL-12 gene was
delivered to the tumor site embedded in biodegradable
polymeric microspheres and nanoparticles. This method
results in enhanced cellular uptake, tissue penetrability and
escape from endolysosomal compartments. Tumor regression

Figure 2 Different strategies used for IL-12 administration to tumors. The
injection of recombinant protein, both systemically and locally, was shown to induce
tumor suppression. To more specifically target the tumor tissue, recombinant IL-12
is fused to tumor cell-specific antibodies, so called immunocytokines. Furthermore,
various gene therapy approaches such as electroporation and hydrodynamic
dynamic injection have been used to deliver an IL-12-encoding plasmid to the tumor
site. The IL-12 gene has also been transferred by viral vectors, mainly using
engineered adenoviruses. Microspheres and nanoparticles have been utilized for
both gene therapy and delivery of the recombinant IL-12 molecule. Moreover,
stromal cells, tumor-specific T cells and DCs have been engineered to release IL-12
and transferred into tumors
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was observed in transplantable tumor models upon i.t.
injection of biodegradable polylactic miscrospheres loaded
with IL-12 alone90 or in combination with TNF-a, IL-18 or GM-
CSF.91–93 An effective strategy for treating malignant glioma
was described by Sonabend et al.,94 using modified poly-
ethylenimine complexes as vehicles for IL-12 gene therapy.
Of note, the synergy resulting from combining this treatment
with chemotherapy resulted in 100% survival of treated
mice.94

The transfer of cells engineered to produce IL-12 also
proved to be successful in inducing long-term antitumor
immunity. Early studies in this field reported the capacity of IL-
12-secreting fibroblasts to delay tumor growth and eradicate
established sarcomas.95–97 In the case of CT26 colon
carcinoma, however, the inhibition of tumor growth by
unpulsed IL-12-transduced DCs was significantly better than
the one achieved by using IL-12-transduced fibroblasts or the
IL-12 gene-encoding adenovirus itself.98 These approaches
were followed by the development of therapeutic vaccines
based on IL-12-expressing DCs that were additionally pulsed
with tumor cell lysates or peptides. This method, used for
colon carcinoma and melanoma, induced more potent tumor-
specific T-cell responses than vaccination in the absence of
IL-12.99,100

Alternative ways of cell-mediated delivery of IL-12 have
taken advantage of the tumor-homing capacity of mesench-
ymal stem cells101 or transfer of tumor-infiltrating lympho-
cytes. The latter approach has been used to deliver CD8þ

T cells specific for melanoma antigens102–104 or engineered to
express a chimeric antigen receptor (CAR) against CD19 in
B-cell lymphomas.105 The administered IL-12 was found to
activate myeloid cells by increasing the expression of Fas and
cross-presentation, leading to the stimulation of tumor
antigen-specific CD8 T cells and regression of established
tumors102,106 (Figure 1). More recently, the development of
novel approaches that direct IL-12 activity to the tumor site
focus on immunocytokines, for example, the fusion of the
cytokine to an antibody that binds specifically to the tumor
vasculature,107,108 or to exposed deoxyribonucleic acid (DNA)
in the necrotic core of a tumor.109 The targeting of necrotic
areas within the tumor is of special interest due to the lack of
perfusion of solid tumors and subsequent cell death.109 The
use of antibody-targeted cytokines, however, needs to be
carefully evaluated for each specific tumor context, since a
high avidity and retention to the targeted tissue are essential
for efficient therapeutic effects. In a combinatorial approach, a
dual cytokine–antibody fusion protein that simultaneously
targeted IL-12 and IL-2 to CD30þ lymphoma cells sup-
pressed tumor growth more efficiently than by just targeting
IL-12 or IL-2 alone.110

IL-12 to Treat Human Cancer

The potent antitumor effects of IL-12 in preclinical models
justified the translation of this approach to a clinical setting.
Unfortunately, systemic i.v. administration of recombinant
IL-12 not only demonstrated poor efficacy but also caused
severe adverse effects. Early studies evaluated the safety of
i.v. or s.c. injected IL-12 in patients with metastatic renal
carcinoma, melanoma, colon carcinoma, recurrent ovarian

cancer, and neck and head carcinoma.111–118 The goal was to
administer IL-12 in a schedule that minimized common
toxicities associated with cytokine therapy such as fever,
fatigue, hematological changes or hyperglycemia. In general,
the best way to administer IL-12 appeared to be in cycles
consisting of either i.v. boluses for five consecutive days or
s.c. injections for two consecutive weeks. Even though these
trials established maximum tolerated doses for IL-12 for the
different schedules, treatment response rates were not very
promising, with only few cases of partial or complete
responses (Table 1).111,113–115,118 Moreover, the systemic
administration of IL-12 displayed schedule-dependent toxi-
city, which appeared to be reduced when a single test dose of
IL-12 was administered i.v. 2 weeks before initiation of the
scheduled daily treatment cycle.111,115 The combination of
IL-12 therapy with active vaccination against tumor-asso-
ciated antigens119 or IFN-a120 did not further improve clinical
responses in malignant melanoma or renal cell carcinoma.
Even in patients with metastatic HER2þ breast cancer, where
the combination of IL-12 with paclitaxel and trastuzumab
resulted in a 52% rate of clinical benefit in a phase I trial, the
combinatorial strategy was not further pursued.121 More
encouraging results, however, were obtained when treating
hematological cancers (Table 1). A phase I dose escalation
trial with s.c. delivery of IL-12 twice a week for up to 24 weeks
resulted in an overall response rate of 56% in cutaneous T-cell
lymphoma patients.122 When the s.c. treatment was applied to
patients with mycosis fungoide who had failed previous
treatments, 43% of partial response to the treatment was
observed.123 Promising results were also obtained for
refractory non-Hodgkin’s B-cell lymphoma. Here, s.c. treat-
ment with IL-12 led to partial or complete response in 21% of
the patients, and almost 50% showed stable disease.124 This
clinical response was further improved when the therapy was
combined with the anti-CD20 antibody rituximab, achieving
partial response in 25% and 42% of the patients, respec-
tively.125 Even though the treatment with IL-12 in most of
these patients was well tolerated, a repeated administration
evoked increased levels of IL-10, which presumably neutra-
lized the antitumor effects of IL-12.125,126

I.t. delivery of IL-12 to cancer patients was pursued by gene
therapy approaches (Table 1). In patients with malignant
melanoma, i.t. delivery of a plasmid encoding IL-12 led to
some beneficial clinical effect at the tumor site and even in
non-treated lesions.127–129 The treatment seemed however
less efficient when IL-12 was delivered encoded by a vector
derived from a highly attenuated strain of the canarypox
virus.130 Viral delivery of IL-12 was also used in patients with
advanced digestive cancer, but only led to mild antitumor
effects.131 Even though the treatment was well tolerated,
adverse reactions were associated to vector injection.131

Hence, a conscious manipulation of the balance between
antivirus and antitumor responses is of special importance
when using oncolytic viruses for IL-12-based immunother-
apy.132 In order to minimize toxicity, Rudman et al.133

delivered IL-12 to the tumor site by fusing it to the humanized
antibody targeting the ED-B variant of fibronectin (AS1409).
Despite the authors not confirming the targeting of this
immunocytokine to the tumor, the treatment led to stable
disease associated to moderate toxicity in 46% of patients
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with malignant melanoma.133 Low levels of toxicity were also
achieved when delivering an IL-12 plasmid formulated with a
synthetic lipopolymer (EGEN-001) to patients with ovarian
cancer.134 The evaluation of EGEN-001 in a subsequent
Phase II trial, however, only showed limited activity as well as
increased toxicity in patients resistant to platinum.135

Taken together, systemic administration of IL-12 was tested
extensively and failed, barring all future attempts in this
direction. Local application, however, had a promising safety
profile at similar or better antitumor efficacy (see all studies
above) and warrants further investigation. Current efforts are
evaluating some of the most successful approaches to deliver

Table 1 Summary of clinical trials with IL-12 alone or in combination therapies

Tumor type Number of patients Treatment Clinical response Reference

Renal cancer
Melanoma
Colon cancer

Renal cancer (20)
Melanoma (12)
Colon cancer (5)

i.v. injection
rIL-12

1 PR (renal)
1 transient
CR (melanoma)

Atkins et al.111

Metastatic melanoma 10 s.c. injection
rIL-12

4 tumor shrinkage not
reaching PR or CR

Bajetta et al.112

Recurrent or refractory ovarian
cancer

26 i.v. injection
rIL-12

1 PR
13 SD

Hurteau et al.113

Plateau phase Multiple Myeloma 48 i.v. injection
rIL-12

4 CR Lacy et al.114

Renal cancer
Melanoma
Colon cancer

12 i.v. injection
rIL-12

- Leonard et al.115

Advanced renal cell carcinoma 51 s.c. injection
rIL-12

1 CR
34 SD
14 PD

Motzer et al.116

Metastatic renal cancer
Malignant melanoma

28 i.v. injection
rIL-12

1 PR (renal)
2 SD (renal)

Gollob et al.118

Malignant melanoma 16 Melan-A and influenza matrix peptides
with s.c.
rIL-12

1 PR
5 SD
7 PD

Cebon et al.119

Renal cell carcinoma
Malignant melanoma

Renal cell carcinoma (19)
Malignant melanoma (7)

s.c. injection
rIL-12 and IFN-alpha-2b

2 PR (renal)
1 PR (melanoma)

Alatrash et al.120

Metastatic Her2þ -breast
carcinoma

21 i.v. and s.c. injection
rIL-12
Trastuzumab
Paclitaxel

1 CR
3 PR
6 SD

Bekaii-Saab et al.121

Cutaneous T-cell lymphoma 9 s.c. or intralesional injection
rIL-12

2 CR
3 PR

Rook et al.122

Mycosis fungoides
(IA, IB, IIA)

23 s.c. injection
rIL-12

10 PR
5 SD

Duvic et al.123

Relapsed and refractory non-
Hodgkin’s lymphoma

29 s.c. injection
rIL-12

6 PR or CR
15 SD

Younes et al.124

Relapsed and refractory non-
Hodgkin’s lymphoma

43 s.c. injection
rIL-12
Rituximab

11 CR
18 PR

Ansell et al.125

Metastatic melanoma 24 plasmid IL-12 electroporation 2 CR (distant lesions)
8 PD or PR

Daud et al.127

Metastatic melanoma 9 i.t. injection
plasmid IL-12

1 CR
2 SD

Heinzerling et al.128

Metastatic melanoma 12 i.t. injection
plasmid IL-12

5 PR (treated lesions) Mahvi et al.129

Malignant melanoma 9 i.t. injection
plasmid IL-12 in canarypox viral vector

1 CR (treated and
non-treated lesions)

Triozzi et al.130

Advanced digestive tumor 21 i.t. injection
plasmid IL-12 in adenoviral viral vector

1 PR
6 SD

Sangro et al.131

Malignant melanoma 11 IL-12 linked to antibody ED-B variant of
fibronectin

1 PR
6 SD

Rudman et al.133

Recurrent ovarian cancer 20–22 IL-12 plasmid with PEG-PEI-cholesterol
lipopolymer

7 SD
9 PD

Alvarez et al.135

Abbreviations: CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease
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IL-12 intratumorally in different types of solid tumors. For
instance, in situ electroporation of a plasmid coding for IL-12 is
being tested into cancerous lesions of the skin such as
malignant melanomas, cutaneous T-cell lymphomas and
Merkel cell carcinoma (NCT01502293, NCT01440816,
NCT01579318). Furthermore, IL-12-based immunocytokines
are still in clinical development. First, the immunocytokine
NHS-IL-12, consisting of two molecules of IL-12 fused to an
anti-DNA human IgG1 antibody that presumably targets
necrotic areas of the tumor,109 is being evaluated in a phase
I trial for metastatic solid tumors (NCT01417546). Second,
AS1409 is currently in clinical trials for renal cell carcinoma
and malignant melanoma (NCT00625768). The biopolymer
encoding for IL-12, EGEN-001, which only showed limited
success when administered as monotherapy, is going to be
tested in combination with chemotherapy in the context of
ovarian cancer (NCT01489371) and colorectal carcinoma
(NCT01300858). Finally, a novel two-component inducible
gene expression system in which adenoviral IL-12 expression
is controlled by an orally bioavailable small-molecule activator
ligand is being currently tested. This approach is in clinical
phase I trials for advanced melanoma (NCT01397708) and
glioma (NCT02026271), as well as in phase II evaluation in
metastatic breast cancer alone or in combination with
chemotherapy (NCT01703754).

Even though some of the above-mentioned strategies to
deliver IL-12 in cancer patients have shown promising
preliminary results, until now IL-12-based immunotherapy
has not achieved Food and Drug Administration (FDA)
approval. In clear contrast, two other cytokines such as IL-2
and IFN-a were approved by the FDA as single agents for
metastatic melanoma and renal cell carcinoma, and for the
adjuvant treatment of high-risk melanoma, respectively.136

The success of high-dose IL-2, for instance, was associated to
durable overall clinical responses, but the administration of
the cytokine has to be carefully managed to avoid toxicities
such as capillary leak syndrome.137 In the case of IFN-a, its
use as an adjuvant therapy for stage III and IV melanoma still
remains controversial. Even though two clinical trials
launched in 1995 demonstrated longer relapse-free survival
and overall survival rates when using this adjuvant in a high
dose, the results obtained in subsequent trials were not so
clear and failed to clarify the mechanism of action of this drug
in the treatment of melanoma.138 Given the fact that tumor-
targeted IL-12 acts primarily within the tumor microenviron-
ment, as opposed to the activating systemic immune
responses induced by IFN-a or IL-2, we believe that IL-12-
based therapies will emerge primarily as combination
therapies. We speculate that IL-12 alters the tumor micro-
environment to enhance immunogenicity, which can then be
further exploited through the use of check-point blockade or
other strategies to enhance antitumor responses.

Concluding Remarks

The potential of cytokines for cancer immunotherapy has
been extensively investigated. In the case of IL-12, its potent
antitumor properties were already observed more than 20
years ago upon systemic administration of the cytokine in
various transplantable cancer models.59 Since then, several

studies aimed to evaluate the use of IL-12 for therapeutical
purposes by specifically delivering this cytokine within the
tumor site. Even though several of these approaches resulted
in impressive antitumor responses, the translation into the
clinics was sobering. The reasons for that are still being
discussed in the oncology field. On the one hand, the
schedule optimization for therapeutic IL-12 delivery in clinical
trials has proved to be challenging. Even though the most
successful way to administer IL-12 appeared to be in cycles of
twice weekly injections, repeated administration of the
cytokine could contribute to increase the immunosuppressive
properties of the tumor by the induction of IL-10.139,140 On the
other hand, the use of IL-12 as an adjuvant in combinatorial
treatments requires a detailed knowledge of the molecular
pathology of each individual tumor in order to achieve clinical
benefits. In this respect, the combination of IL-12 with
therapies that block the type of immunosuppressive activity
characteristic of the different tumor models could be of
potential use. Finally, durable, non-toxic anti-cancer
responses with IL-12 will likely only be achieved with a
controlled and tumor-targeted delivery of the cytokine. Several
of these approaches (EGEN-001, the immunocytokine
NHS-IL-12, the control of IL-12 expression by an orally
activator ligand or the CAR-modified IL-12-expressing T cells)
are already advancing in clinical trials. Clearly, as we only now
start to understand the multiple mechanisms by which IL-12
mediates tumor protection in more detail, it is time to revisit the
use of IL-12 in clinical studies. Blind systemic administration of
IL-12 will not be pursued in the future, but tumor-targeted
IL-12 delivery combined with radiation-, chemo- and immuno-
therapy, respectively, holds great promise for the future of
cancer immunotherapy.
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