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Regulation of hematopoietic and leukemic stem cells
by the immune system

C Riether1,4, CM Schürch1,2,4 and AF Ochsenbein*,1,3

Hematopoietic stem cells (HSCs) are rare, multipotent cells that generate via progenitor and precursor cells of all blood lineages.
Similar to normal hematopoiesis, leukemia is also hierarchically organized and a subpopulation of leukemic cells, the leukemic
stem cells (LSCs), is responsible for disease initiation and maintenance and gives rise to more differentiated malignant cells.
Although genetically abnormal, LSCs share many characteristics with normal HSCs, including quiescence, multipotency and
self-renewal. Normal HSCs reside in a specialized microenvironment in the bone marrow (BM), the so-called HSC niche that
crucially regulates HSC survival and function. Many cell types including osteoblastic, perivascular, endothelial and
mesenchymal cells contribute to the HSC niche. In addition, the BM functions as primary and secondary lymphoid organ and
hosts various mature immune cell types, including T and B cells, dendritic cells and macrophages that contribute to the HSC
niche. Signals derived from the HSC niche are necessary to regulate demand-adapted responses of HSCs and progenitor cells
after BM stress or during infection. LSCs occupy similar niches and depend on signals from the BM microenvironment. However,
in addition to the cell types that constitute the HSC niche during homeostasis, in leukemia the BM is infiltrated by activated
leukemia-specific immune cells. Leukemic cells express different antigens that are able to activate CD4þ and CD8þ T cells. It is
well documented that activated T cells can contribute to the control of leukemic cells and it was hoped that these cells may be
able to target and eliminate the therapy-resistant LSCs. However, the actual interaction of leukemia-specific T cells with LSCs
remains ill-defined. Paradoxically, many immune mechanisms that evolved to activate emergency hematopoiesis during
infection may actually contribute to the expansion and differentiation of LSCs, promoting leukemia progression. In this review,
we summarize mechanisms by which the immune system regulates HSCs and LSCs.
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Facts

� Hematopoiesis and leukemia are both hierarchically
organized processes originating from HSCs and LSCs,
respectively.

� LSCs display many features of normal HSCs, including
quiescence and self-renewal.

� HSCs and LSCs crucially depend on signals from the BM
microenvironment, the so-called niche.

� The BM microenvironment contains innate and adaptive
immune cells that regulate hematopoiesis during homeo-
stasis, stress response and infections.

� In leukemia, activated immune cells paradoxically
contribute to disease progression.

Open Questions

� What is the contribution of BM-infiltrating immune cells to
the HSC and LSC niche?

� What are the molecular mechanisms of the interaction
between immune cells, LSCs and niche cells?

� Do stress-induced alterations in hematopoiesis favor
leukemia development and progression?

� How can the knowledge about BM-resident immune cells
be exploited to improve immunotherapy for leukemia?

The concept that cancer develops in a hierarchical tree from
disease-originating cancer stem cells (CSCs) that self-renew
and give rise to more differentiated, non-cancer-initiating cells
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by asymmetric division was first documented in leukemia two
decades ago.1 The CSC hypothesis is now widely accepted
and was extended and adapted to several solid tumors.2

Since the first description of leukemic stem cells (LSCs), our
knowledge about their biology grew substantially and nowa-
days, LCSs are phenotypically well characterized in chronic
myeloid leukemia (CML) and in some forms of acute myeloid
leukemia (AML).3 From a clinical point of view, LSCs are of
fundamental interest as they are resistant against most of our
current cancer treatments such as irradiation and chemo-
therapy and probably also against more targeted therapies
such as tyrosine kinase inhibitors and immunotherapy.4

Therefore, LSCs are the main reason for treatment failure
and disease relapse. Different mechanisms may contribute to
the resistance of LSCs to current therapies. LSCs express
drug efflux proteins that lead to multidrug resistance.5

In addition, most cytotoxic drugs and irradiation depend on
cell division in order to induce cell death but LSCs are largely
quiescent. Many stem cell characteristics including quies-
cence are determined by interactions with the niche. Growing
evidence suggests that LSCs depend on similar niche signals
as their normal counterpart, the hematopoietic stem cells
(HSCs).6 Although HSCs are mobile and recirculate in the
blood, most of them are found in the trabecular bone area of
the bone marrow (BM),7,8 where they reside in close proximity
to sinusoids and other blood vessels.9 Endothelial and
perivascular cells produce C-X-C motif chemokine 12
(CXCL12) and stem cell factor that are necessary for HSC
and LSC maintenance.10–12 The role of other cell populations
present in the BM in the regulation of HSC function is less
clear. However, the sympathetic nervous system, adipocytes,
macrophages and cells of the adaptive immune system have
been shown to regulate hematopoietic stem and progenitor
cells (HSPCs).13,14

In a healthy individual, CD4þ and CD8þ T cells represent
approximately 1.5% and 2.5% of the total BM cellularity,
respectively. Up to 30% of all BM-resident CD4þ T cells are
CD4þCD25þFOXP3þ regulatory T cells (Tregs).

15 Interest-
ingly, BM T cells including Tregs are also localized in the
trabecular bone area in proximity to sinusoids. BM CD4þ and
CD8þ T cells have a memory phenotype and secrete
cytokines that are necessary for HSC maintenance, such as
interleukin 3 (IL-3) and granulocyte-macrophage colony-
stimulating factor (GM-CSF).16 Therefore, BM-resident T cells
may contribute to the formation of the perivascular HSC
niche. In response to an infection or BM stress, the cellular
composition of the microenvironment as well as the cytokine
milieu change fundamentally in order to meet the organism’s
requirement for demand-adapted hematopoiesis.17

Similarly, leukemia induces an adaptive and innate immune
response and causes an inflammatory environment in the BM.
Various leukemia antigens have been characterized and
activated leukemia-specific CD4þ and CD8þ T cells have
been documented.3,18 Therefore, the BM microenvironment
and the LSC niche changes dramatically with leukemia-
specific effector T cells infiltrating the BM. These infiltrating
effector T cells may potentially recognize and eliminate LSCs.
However, mechanisms that evolved to protect normal
HSCs from elimination and to regulate demand-adapted
responses during inflammation most likely protect LSCs from

immune-mediated elimination and may even contribute to the
expansion of LSCs and leukemia progression. The under-
standing of these mechanisms may help to develop novel
immunotherapies that allow targeting LSCs specifically.

HSCs and LSCs

HSCs are multipotent and self-renewing tissue-specific stem
cells that initiate and maintain life-long hematopoiesis, the
production of mature blood cells of all lineages.19 HSCs are
rare cells that only comprise approximately 0.001–0.01% of
total BM cells in mice20 and approximately 0.01–0.2% of total
BM mononuclear cells in humans.21 Being at the top of the
hematopoietic hierarchy, HSCs divide infrequently, giving rise
to transient-amplifying multipotent (MPPs) and lineage-
restricted progenitors that proliferate extensively and differ-
entiate toward mature blood cells (Figure 1). Quiescence, also
known as dormancy, warrants the genomic integrity of HSCs,
as frequent chromosomal replications may introduce onco-
genic DNA mutations. Dormancy also protects HSCs from
uncontrolled proliferation, which would result in exhaustion.22

In addition, HSCs can undergo asymmetrical division,
assuring that always one daughter cell remains an HSC. This
mechanism, referred to as self-renewal, keeps the HSC pool
constant. However, HSCs possess a non-exhaustive replica-
tion and proliferation capacity that can be initiated in stress
situations, such as after cytotoxic chemotherapy, irradiation or
during infections.22 Moreover, HSCs express receptors for
cytokines, chemokines and danger-associated molecular
patterns, allowing them to respond to signals from mature
immune cells and to sense pathogens directly during
inflammation or infection to adapt their cycling and differentia-
tion behavior.17

Leukemia is a paradigmatic disease of CSCs. According to
the CSC hypothesis, tumors are composed of a bulk of cancer
cells displaying marked morphological, genetic and functional
heterogeneity. Within this bulk resides a small population of
cells with stem cell characteristics that propagates the
disease.2,23 In leukemia, LSCs are thought to reside at the
top of the leukemic hierarchy, like HSCs in hematopoiesis
(Figure 1). LSCs produce more differentiated, heterogenic
leukemic blasts that feature a high proliferative potential, a
block in terminal differentiation and defective apoptosis or
senescence mechanisms, leading to blast accumulation and
clinical disease. Stem cell features, such as quiescence, the
expression of high levels of ATP-binding cassette pumps and
the localization in distinct niches, render CSCs resistant to all
kinds of therapy.4,6 Thus, cure of cancer implies the
elimination of CSCs and persisting CSCs are a main cause
of disease relapse.

In contrast to differentiated hematopoietic cells that are
removed after fulfilling their functions, self-renewing HSCs
persist for long periods of time, allowing accumulation of
genetic damage and malignant transformation. Therefore, it
has been suggested that HSCs serve as the cancer-initiating
cells (cell-of-origin) for LSCs (Figure 1).24,25 Experimental
evidence supporting this theory came from seminal studies by
John Dick and colleagues who first demonstrated in xeno-
transplants that all clonogenic capacity resided in lin�CD34þ

CD38� AML cells, whereas lin�CD34þCD38þ or linþ AML
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cells failed to induce leukemias.1,26 Furthermore, in CML, the
break point cluster region/Abelson murine leukemia
viral oncogene homolog 1 (BCR/ABL1) oncogene can be
detected in several hematopoietic lineages, indicating that
the cell-of-origin is an HSC with multilineage differentiation
potential.27–29 In addition, DNA (cytosine-5)-methyltransfer-
ase 3A mutations have been found in HSCs, progenitor and
mature cells of AML patients, but without coincident nucleo-
phosmin 1 mutations present only in AML blasts.25 This
indicates that AML evolves from pre-leukemic HSCs. How-
ever, the hypothesis that HSCs represent the cell-of-origin
and undergo oncogenic transformation has been challenged
by studies demonstrating that in some leukemias, more
mature progenitor cell types or even cells expressing lineage
markers can serve as leukemia-initiating cells giving rise to
LSCs (Figure 1).30–32 This raised the question of how—
besides the oncogenic events that are required for leukemia
development—these leukemia-initiating cells re-acquire self-
renewal capability to fully establish their LSC functions.23 In
addition, these findings nurtured the alternative hypothesis of
tumorigenesis, the stochastic model, claiming that every
cancer cell has the ability to self-renew and to recapitulate the
disease phenotype given that it enters a permissive environ-
ment, an event which has a very low probability.2

Thus, although the cell-of-origin may not be identified for all
types of leukemia yet, these cells have to exhibit the essential

stem cell characteristics of self-renewal and indefinite
proliferative potential to give rise to LSCs that initiate and
maintain the disease.

The HSC Niche

Many of the functional characteristics of HSCs and LSCs are
driven by their surrounding microenvironment in the BM, the
so-called HSC niche (Figure 2). The HSC niche has been
initially defined as microenvironment that retains HSCs in their
localization, avoids differentiation and ensures their stem cell
phenotype.33 The functional and anatomical definition as well
as the cellular composition of the HSC niche have been highly
debated during the last decade. First, osteoblastic lineage
cells have been described as critical components of the HSC
niche (Figure 2). Bone-forming osteoblasts (OBs) that are
located at the endosteal surface of the bone cavities and on
trabeculae co-localized with HSCs and regulated the HSC
pool size in vivo.34,35 Furthermore, endosteal osteoclasts
influence HSC maintenance and retention in the BM.36,37

Later, Kiel and co-workers demonstrated that primitive HSCs
defined by SLAM markers (CD150þ , CD48� ) preferentially
localize in close proximity to sinusoidal endothelial cells (ECs)
but not OBs, identifying sinusoidal blood vessels as HSC
niche9 (Figure 2). Clinical observations confirm an important
role for ECs in the formation of the HSC niche, as HSCs

Figure 1 The leukemic stem cell model. In normal hematopoiesis, rarely dividing hematopoietic stem cells (HSCs) with unlimited self-renewal capacity (indicated by circle
arrow) give rise to transient-amplifying multipotent progenitors (MPPs) that have only limited self-renewal capacity.20 MPPs further differentiate toward oligopotent lineage-
restricted progenitors (LRPs), such as common lymphoid and myeloid progenitors (CLPs, CMPs) and granulocyte-macrophage progenitors (GMPs) that have lost self-renewal
capacity. LRPs proliferate intensely and produce all mature blood cell types required. The formation of a leukemic stem cell (LSC) in myeloid leukemia may result from
mutations in cells in different stages of the hematopoietic hierarchy. (a) In chronic phase CML patients, the presence of BCR/ABL1 in all blood lineages suggests that the LSC
is derived from an HSC or an early MPP with multilineage differentiation potential (HSC cell-of-origin).27–29 BCR/ABL1 is necessary and sufficient for the malignant phenotype,
no further genetic lesions are required for chronic phase CML. (b) In contrast, in blast crisis CML and AML patients, LSCs exhibited immunophenotypes of LRPs, such as
lymphoid-primed MPPs (LMPPs)31 or GMPs.30,31 This supports the concept that other more differentiated cells can give rise to LSCs after re-acquisition of self-renewal
(progenitor cell-of-origin). (c) In addition, the recent demonstration that some AML LSCs even express low amounts of lineage markers32 raised the question whether more
differentiated hematopoietic cells may serve as cell-of-origin for LSCs as well. (d) In a ‘pre-leukemic’ disease phase, genetically unstable, self-renewing LSCs clonally expand,
facilitating the acquisition of further mutations and (e) the development of different leukemic clones. B, B cell; CML, chronic myeloid leukemia; E, erythrocyte;
G, granulocyte; NK, natural killer cell; M, monocyte; MEP, megakaryocyte-erythrocyte progenitor; P, platelet; T, T cell
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depend on an intact vasculature for recovery after myeloabla-
tion or BM transplantation.38,39 More recently, perivascular
nestinþ mesenchymal stem cells (MSCs) have been defined
as central components of the HSC niche that regulate HSCs
via the expression of stem cell factor, CXCL12, angiopoietin-1
and vascular cell adhesion molecule-1 (VCAM-1).12 In
addition, it was demonstrated that b-adrenergic signals from
the sympathetic nervous system mobilize HSCs13 and
regulate circadian HSC egress.40

These data suggested that at least two distinct HSC niches
exist, an endosteal and a vascular niche (Figure 2). According
to this hypothesis, the endosteal niche keeps HSCs quiescent
and regulates their migration to the vascular niche,
where differentiation occurs according to the organism’s
demand.22,41 However, recent studies challenged the
existence of an endosteal niche and a role of OBs in the
maintenance of HSC quiescence. Transforming growth
factor-b (TGF-b) is a niche factor that controls HSC
dormancy.42 Nonmyelinating Schwann cells that are located
around the blood vessels in the BM induce HSC dormancy by
secreting TGF-b, suggesting that HSC quiescence is main-
tained in the vascular niche.43 Recently, these findings have
been further elaborated by conditional deletion of CXCL12 in
different cell types of the HSC niche.10,44 HSC maintenance
and self-renewal in the BM was primarily regulated by
CXCL12 secreted from immature mesenchymal stem and
progenitor cells and to a lesser extent from ECs. In contrast,
CXCL12 secreted from OBs was dispensable for HSC
function. In addition, retention of HSPCs in the BM was

mediated by perivascular sinusoidal stromal cells, including
CXCL12-abundant reticular cells45 and osteolineage progeni-
tors that express leptin receptor and osterix.10,44 Immuno-
fluorescence imaging together with computational modeling
revealed that quiescent HSCs associate with small arterioles
in the endosteal BM. A rare subtype of pericytes (NG2þ

pericytes) ensheated these arterioles and mediated HSC
quiescence.46

In summary, there is strong evidence that HSCs reside
in the perivascular region of the BM and that MSCs,
ECs and pericytes regulate HSC maintenance and differ-
entiation through soluble factors and cell contact-dependent
signals8,10,44 (Figure 2).

The LSC Niche

Although LSCs harbor genetic abnormalities that result in
increased proliferation and resistance to apoptosis, they still
depend on similar interactions with niche cells as described
for HSCs. Therefore, during leukemogenesis, LSCs ‘hijack’
the niche and the signaling molecules from normal HSCs.
Analogous to normal HSCs, transplanted leukemia cells
preferentially migrate to CXCL12-expressing vascular
niches.47 Moreover, the CXCL12 receptor C-X-C motif
chemokine receptor 4 (CXCR4) regulates the migration of
human AML cells in xenotransplant models.48 Signaling via
CXCR4 leads to the upregulation of pro-survival signals and
quiescence, both contributing to chemotherapy resistance.
Importantly, CXCR4 is highly expressed on different types of

Figure 2 The hematopoietic stem cell niche. Various cell types including osteoclasts (OCs), osteoblasts (OBs), osteolineage progenitor cells (OLPs), endothelial cells
(ECs), mesenchymal stem/stromal cells (MSCs), specialized CXCL12-abundant reticular (CAR) cells and leptin receptor (LEPR)-positive cells contribute to the structure of the
BM microenvironment. In addition, this microenvironment is innervated by sympathetic nerves fibers ensheated by nonmyelinating Schwann cells. Hematopoietic stem cells
(HSCs) are located in the perivascular region of sinusoids and arterioles in close proximity to MSCs and ECs that regulate HSC maintenance and differentiation through
soluble factors such as CXCL12 and angiopoietin-1 or cell contact-dependent signals such vascular cell adhesion molecule-1 (VCAM1). HPC, hematopoietic progenitor cell
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human leukemia, including acute lymphoblastic leukemia and
AML49,50 and high CXCR4 expression on leukemia blasts
correlates with poor outcome.51 Blocking CXCR4 in vitro
using peptides resulted in reduced chemotaxis toward
CXCL12-expressing cells and an inactivation of pro-survival
signals. As a consequence, blocking CXCR4 increased the
susceptibility of AML cells to chemotherapy.52 Similarly,
preclinical studies demonstrate that the CXCL12-CXCR4
inhibitor plerixafor and novel monoclonal antibodies (mAbs)
blocking CXCR4 increase the chemosensitivity of leukemia
cells in vitro and in vivo.53,54 In contrast to AML blasts, CML
cells have a decreased expression of CXCR4 and therefore
an attenuated chemotaxis toward CXCL12. Treatment with
imatinib restores CXCR4 expression and CXCL12-mediated
pro-survival signals. Thereby, imatinib may contribute to
CXCL12/CXCR4 signaling-mediated resistance of the few
remaining LSCs in CML.55

Similar to the role of quiescence induction in HSCs, TGF-b
has been reported to induce quiescent G0 state of the cell
cycle in AML cells. Blocking TGF-b by mAbs increased
proliferation and susceptibility to cytarabine.56 In addition,
TGF-b is a crucial regulator of protein kinase B (AKT/PKB)
activation and controls forkhead-box protein O3a localiza-
tion, thereby maintaining CML LSCs.57 Interestingly,
it was shown that the effect of TGF-b on LSCs varies in
different subtypes of leukemia. For instance, OB-specific
activation of the parathyroid hormone receptor and subse-
quent secretion of TGF-b reduced LSCs in CML but
increased LSC numbers in MLL/AF9-induced AML in mouse
transplantation models.58

Niche cells not only interact with HSPCs via soluble
factors but also via direct cell–cell interactions. For
example, CD44, a transmembrane glycoprotein that exists
in differently spliced isoforms mediates adhesion of LSCs
through cell–cell and cell–extracellular matrix interactions by
binding to hyaluronan that is concentrated at the endosteal
region of the BM niche. In addition to its function as an
adhesion molecule, CD44 also transduces intracellular
signals that are involved in the regulation of cell proliferation
and differentiation. Blocking CD44 in vivo prevented the
migration of human AML and murine CML LSCs to the stem
cell-supportive microenvironment in the BM and led to their
eradication.59,60

Taken together, there is strong evidence that LSCs
at least partially depend on similar signals from the micro-
environment as HSCs do. These requirements may differ in
the distinct subtypes of myeloid leukemia. In addition,
accumulating evidence suggests that molecular changes in
the BM niche actually contribute to leukemia development.
For example, Walkley et al. reported that a dysfunction
of the tumor suppressor retinoblastoma protein or of the
retinoic acid receptor in the BM microenvironment results in
myeloproliferative disease.61,62 Similarly, conditional knock-
down of DICER1, a gene that regulates microRNAs, in
osteoblastic precursors results in leukemia predisposition.50

More recently, Kode and colleagues showed that a single
activating b-catenin mutation in OBs is sufficient to alter the
differentiation of myeloid progenitors, leading to AML with
common chromosomal aberrations and cell-autonomous
progression.63

Immune Cells Contributing to the Niche

Although recent evidence documents that MSCs and ECs are
fundamental regulators of HSC maintenance and quiescence,

many other cell types that are present in the BM contribute to
the microenvironment. These include adipocytes, fibroblasts
and immune cells (Figure 3). Besides its main function as a

hematopoietic organ, the BM serves as a primary and
secondary lymphoid organ, hosting various mature immune
cells including T and B cells, plasma cells, dendritic cells

(DCs), neutrophils and macrophages (reviewed in Mercier
et al.,64 Figure 4). These immune cells provide an ‘immune

niche’ that is involved in the regulation of HSC homeostasis
and emergency hematopoiesis.17,64 Lymphocytes represent
a major fraction of total BM mononuclear cells, are

widely distributed throughout the BM parenchyma and are
occasionally organized as small lymphoid aggregates, typi-
cally consisting of mature CD3þ T cells64 (Figure 3). Clinical

and experimental approaches investigating engraftment after
BM transplantation suggested a fundamental role of CD4þ

T cells in hematopoiesis.65,66 T-cell-depleted allogeneic BM

failed to engraft in a majority of the patients. In addition, HSC
maintenance and successful long-term reconstitution

depends on the expression of major histocompatibility
complex class II, implying a role for CD4þ T cells in
maintaining HSC function.67,68 The mouse BM contains

B1.5% of CD4þ T cells.15 Most of these cells have
an activated memory phenotype and a diverse Vb T cell
receptor repertoire.69,70 Observations in mice lacking the

common gamma chain (gc
� /� ) indicated that hematopoiesis-

promoting cytokines such as IL-3 and GM-CSF secreted by
activated T cells in the BM modulate normal hematopoiesis.71

In addition, adoptive transfer of CD4þ T cells but not
CD8þ T cells restored defective myeloid differentiation in
T-cell-deficient mice, suggesting that especially antigen-

activated CD4þ T cells maintain basal hematopoiesis in
the BM.16

Tregs represent one-third of all CD4þ T cells in the BM.69,70

This proportion is substantially higher than in lymph nodes
and spleen, where the frequency of Tregs is approximately

5–10%. Depletion experiments and co-transfer of BM with or
without Tregs indicated that Tregs suppress colony formation
and myeloid differentiation of HSPCs.72 High-resolution

in vivo imaging demonstrated that Tregs colocalize with
HSPCs in the endosteum. Furthermore, Tregs provide an
immune-privileged niche in the BM, protecting HSPCs from

immune destruction.73

In addition to cells of the adaptive immune system,
mononuclear phagocytes contribute to the regulation of HSCs

in the BM. Depletion of mononuclear phagocytes using
clodronate liposomes increased the number of circulating
HSCs.74–76 CD169þ macrophages in the BM secrete

soluble factors that stimulate nestinþ MSCs to express
HSC retention factors, such as CXCL12, angiopoietin-1 and
VCAM-1. In addition, the same macrophages are involved

in steady-state and stress-induced erythropoiesis.77

Moreover, a rare population of monocytes and macro-

phages expressing high levels of a-smooth muscle
actin and cyclooxygenase 2 induce prostaglandin E2

production and upregulation of CXCL12 on nestinþ MSCs.78
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Furthermore, macrophages have been identified as central
regulators of HSC egress from the BM after phagocytosis of
aged neutrophils79 (Figure 4).

The BM Microenvironment During Immune Activation

The BM not only assures the continuous supply of different
blood lineages during homeostasis, it also responds to the
organism’s increased demands during stress situations, such
as infections or chemotherapy. Many of the mechanisms that
regulate HSPCs during demand-adapted hematopoiesis may
also regulate LSCs and leukemic progenitor cell function
(Table 1, Figure 5).

During an infection, antigenic stimulation drives clonal
expansion of naı̈ve and memory lymphocytes to meet the
increased demand for T and B cells.80 In contrast, granulo-
cytes are short-lived and do not have the capacity to undergo
clonal expansion. Consequently, they must be continuously
produced and recruited from the BM. Therefore, the BM must
be capable of recognizing the increased demand for myeloid
cells during an infection and immediately react with enhanced
production, differentiation and mobilization of granulocytes
and monocytes. The importance of this so-called ‘emergency
myelopoiesis’ is best documented in bacterial infections.
HSPCs sense the increased demand for myeloid cells by
systemic and local danger and inflammatory signals. These
include the recognition of conserved microbial products via
Toll-like receptor (TLR) activation and of soluble factors such
as type I and type II interferons (IFNs).81,82 TLR signaling has
been shown to induce cell cycling and myeloid differentiation
in a MyD88-dependent manner in murine HSCs and in human
CD34þ progenitor cells.82,83 Although some TLRs interact

with endogenous ligands, no effect of TLR signaling on LSCs
has been reported so far.

HSPCs express cytokine receptors and respond to inflam-
matory signals produced by mature immune cells, such as
IFNs.17,84,85 IFNs are crucially involved in host protection
against various infections and emerged as a major pathway of
HSC regulation.86 Type I IFNs (IFNa and b) are synthesized
by various cell types, especially plasmacytoid DCs, in
response to viral infection and prevent viral replication and
thereby viral spread.87 IFNa stimulates dormant HSCs to
enter the cell cycle in a signal transducer and activator of
transcription 1 (STAT-1)-dependent way.88 In addition, IFN
regulatory factor 2, a transcriptional repressor of IFNa
signaling, preserves quiescence and multilineage reconstitution
capacity of HSCs.89 Thus, acute IFNa production stimulates
HSCs to proliferate during viral infection. In contrast, chronic
and excessive signaling through this pathway leads to HSC
exhaustion.88–90 A clinically relevant effect of IFNa on
CML cells has been well documented. Before the era of the
BCR/ABL1-targeting tyrosine kinase inhibitors, IFNa was a
standard treatment in CML.91 Clinical and experimental
data suggest that IFNa can actually target CML LSCs. The
mechanism of action of IFNa in CML is complex, including
direct modulation of gene expression in LSCs, induction of
apoptosis, anti-proliferative signals and immunomodulatory
effects.91 In addition, it has been proposed that IFNa, similar
to its effect on HSCs, may induce proliferation of LSCs and
render them more susceptible to chemotherapy.92

IFNg, a type II IFN, is secreted by activated innate
and adaptive immune cells, mainly by macrophages and
activated T cells. Similar to type I IFNs, IFNg has activating
and suppressive effects on hematopoiesis, probably depending

Figure 3 Differentiated immune cells in the bone marrow (BM). Representative example of a healthy human BM stained for hematoxylin/eosin (HE), for CD34þ HSPCs,
CD3þ T cells and CD20þ B cells
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on the timing, duration and amount of secretion. Initially, IFNg
was described as a suppressor of hematopoiesis. This was
based on experiments indicating that IFNg induces differ-
entiation and apoptosis of human and murine HSCs and
reduces their colony formation capacity in vitro.93,94 In
analogy, infection of perforin-deficient mice with lymphocytic
choriomeningitis virus (LCMV) induced lethal pancytopenia
because of the persistence of the virus, leading to prolonged
and increased secretion of tumor necrosis factor a (TNFa) and
IFNg by cytotoxic effector CD8þ T cells (CTLs).95 In contrast,
accumulating evidence from more physiologic infection
models indicates that IFNg induces an expansion of
HSCs and myeloid progenitors and modulates the production
of mature myeloid cells.96–101 Baldridge et al. documented
that IFNg directly increases HSC proliferation through
IFNg receptor 1-STAT-1 signaling during infection with
Mycobacterium avium.96 In contrast, we recently demon-
strated that IFNg secreted by activated CTLs during
acute LCMV-infection stimulates the expansion of early
MPPs and downstream myeloid precursors in the BM.102

Interestingly, IFNg did not act directly on hematopoietic cells,
but stimulated MSCs in the BM to secrete IL-6, which induced
proliferation of MPPs and myeloid differentiation. This
resulted in elevated myeloid cell counts in the circulation
and an increased number of inflammatory monocytes in

secondary lymphoid organs that contributed to pathogen
clearance. Therefore, IFNg has an important role in the
demand-adapted response to infections and probably
regulates HSPC proliferation via direct and indirect mechan-
isms. However, IFNg may have comparable effects on
LSCs. We found that CTL-secreted IFNg induces prolifera-
tion of LSCs and leukemia progression in a murine CML
model (Figure 5).103 Interestingly, this effect was dependent
on the amount of secreted IFNg. If adoptively transferred,
activated leukemia-specific CTLs were re-stimulated
in vivo by large amounts of antigen, CTL-secreted IFNg
induced LSC proliferation and expansion. The quantity of
secreted IFNg correlated with the leukemia load and with
the antigen expression pattern that is, leukemia-specific
expression versus expression in, healthy, non-malignant
tissue. Similarly, IFNg increased the colony formation
capacity of lin�CD34þ stem/progenitor cells from CML
patients in vitro.103

TNFa is another major pro-inflammatory cytokine that is
released by activated macrophages, natural killer cells and
T cells. Similar to IFNg, TNFa has been shown to suppress
the colony formation capacity of human lin�CD34þ stem/
progenitor cells and of murine HSCs in vitro as well as their
ability to reconstitute recipient mice.93,104 Rezzoug et al.
documented contradictory results in that TNFa promoted

Figure 4 The ‘immune niche’. The BM microenvironment hosts various mature immune cell types including T and B cells, dendritic cells, neutrophils and macrophages.
These immune cells contribute to the BM microenvironment (‘immune niche’) and regulate hematopoietic stem cells (HSCs) during steady-state and emergency
hematopoiesis directly by secretion of hematopoiesis-promoting cytokines such as IL-3 and GM-CSF.16 In addition, immune cells can indirectly regulate HSPCs through
signaling via mesenchymal stem/stromal cells (MSCs), for example, by prostaglandin E2 that increases the expression of CXCL12, angiopoietin-1 and vascular cell adhesion
molecule-1 (VCAM-1) in MSCs.77 a-SMA, monocytes/macrophages expressing high levels of a-smooth muscle actin; CAR cell, CXCL12-abundant reticular cell;
EC, endothelial cell; HPC, hematopoietic progenitor cell; OB; osteoblast; OC, osteoclast; OLP, osteolineage progenitor cell; Treg, CD4þCD25þFOXP3þ regulatory T cell
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engraftment and colony formation of HSCs resulting in
increased numbers of HSPCs.105 A small fraction of CD8þ

T-cell receptor-negative cells in the BM was identified as a
major source of TNFa in this process. Furthermore, mice

deficient of the p55 TNF receptor 1 a (TNFRSF1a� /� ) have
increased numbers of HSPCs and an increased BM cellularity
compared with wild-type mice and mice lacking the p75
TNF receptor 1 b (TNFRSF1b� /� ).106 This increase in

Table 1 Shared molecular pathways in the regulation of HPSCs during infection and LSCs in leukemia

Effector
molecule

Expression of receptor Effect in demand-adapted
myelopoiesis

Effect in leukemia

IFNa HSCs, MPPs
LSCs

Dormant HSCs enter the cell cycle88,89

Permanent signaling leads to
exhaustion of HSCs88–90

Modulation of gene expression (CML)143

Pro-apoptotic and anti-proliferative signals (CML)144

Adhesion to microenvironment (CML)145

Downregulation of BCR/ABL (CML)146

Immunomodulation (CML)147

IFNg HSCs, MPPs, CMPs, MEPs, GMPs
LSCs

Apoptosis of HSCs in vitro94

Proliferation of HSCs and MPPs
in vivo96,102

Increased myeloid differentiation in vivo
Permanent signaling leads to suppres-
sion of HSCs95

Pro-apoptotic effects (CML)
Proliferation of CD34þ cells (CML)
Proliferation of LSCs and leukemia progression in vivo
(CML)

TNFa HSCs
LSCs

Reduced colony formation in vitro and
reconstitution in vivo104,146

Increased colony formation capacity
in vitro105

Suppression of HSC proliferation
in vivo106

promotes NF-kB activity, LSC survival and expansion
(CML, AML)110,111

IL-1b HSCs
LSCs

Increased granulocyte numbers in
BM148

Inhibits self-renewal capacity of LSCs (AML)149

IL-6 MPPs
Leukemia MPPs

Reduced erythropoiesis115

Increased myelopoiesis102,115
Directs myeloid differentiation and sustains leukemia
development (CML)116

CD70-CD27 HSCs, MPPs, CMPs, GMPs
LSCs

Negative feedback signal to leukocyte
differentiation122

Increased proliferation of LSCs and leukemia progression in
CML123 and AML (unpublished results)

Abbreviations: AML, acute myeloid leukemia; BM, bone marrow; CML, chronic myeloid leukemia; CMP, common myeloid progenitor; GMP, granulocyte-macrophage
progenitor; HSCs, hematopoietic stem cells; HPSCs, hematopoietic stem- and progenitor cells; IFN, interferon; IL, interleukin; LSCs, leukemic stem cells; MPPs,
multipotent progenitors; MEPs, megakaryocyte-erythrocyte progenitors; NF-kB, nuclear factor kB; TNF, tumor necrosis factor

Figure 5 The interaction of activated cytotoxic effector CD8þ T cells (CTLs) with CML leukemic stem cells (LSCs). In CML, the BM is infiltrated by activated leukemia
antigen-specific CTLs. (a) LSCs express MHC class I and present peptides derived from leukemia antigens to specific CTLs. Specific CTLs can eliminate LSCs in vitro and
donor-derived CTLs can eliminate LSCs after allogeneic HSC transplantation.103,141 Whether autologous CTLs can eliminate LSCs in vivo is currently unclear. (b) LSCs
express programmed death ligand 1 (PD-L1) that interacts with programmed death 1 (PD-1) on activated CTLs and leads to CTL inhibition and ultimately deletion.
CTL-secreted IFNg further leads to upregulation of PD-L1 on LSCs and therefore protection of LSCs from CTL attack.103 (c) LSCs express the IFNg receptor and can directly
respond to IFNg resulting in proliferation of LSCs and leukemia progression.103 In addition, IFNg activates mesenchymal stem/stromal cells (MSCs) to produce IL-6.102

IL-6 secretion induces myeloid differentiation at the level of MPPs. In CML, IL-6 is secreted by BCR/ABL1-expressing leukemic cells, leading to a paracrine feedback loop.116

(d) LSCs and leukemic progenitors express the TNFR molecule CD27. CD27 is ligated by CD70 expressed on activated CTLs.123 CD27 signaling leads to activation of the Wnt
pathway, proliferation of LSCs and leukemia progression
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HSPC numbers is accompanied with a decrease in HSC
function. Competitive repopulation assays documented that
TNFRSF1a� /� HSCs have an impaired self-renewal capa-
city. Therefore, TNFa is a major regulator of baseline and
demand-adapted hematopoiesis via signaling through the p55
subunit of the TNF receptor (TNFR). However, in analogy to
IFNs, prolonged and excessive TNFa signaling is associated
with BM failure and myelodysplastic syndrome.107 Early
in vitro experiments using AML blasts demonstrated that TNFa
has the ability to either support or inhibit cell proliferation,
depending on the growth factors present in the culture
medium.108,109 Very recently, two studies highlighted the
importance of TNFa for CML and AML stem cell survival
and expansion.110,111 Autocrine TNFa production by LSCs
increased nuclear factor kB pathway activation and leukemia
progression.

IL-6 was originally identified as a T-cell-derived cytokine
that induces B-cell maturation into antibody-producing
cells.112 IL-6 is expressed by a variety of normal and
transformed cells including T and B cells and has important
functions in the regulation of immune responses, acute-phase
reaction and hematopoiesis.113,114 IL-6 regulates hemato-
poiesis in response to Toxoplasma gondii infection in mice.
BM stromal fibroblast-derived IL-6 blocked erythroid
development but expanded granulocyte-macrophage
progenitors.115 Similarly, as discussed above, LCMV
infection increased IL-6 secretion by MSCs because of
CTL-secreted IFNg.102 IL-6 then expanded MPPs and
myeloid progenitors leading to increased numbers of
myeloid cells in the circulation and in lymphoid organs.
Quite comparable to its function during an acute infection,
IL-6 directs CML MPPs toward myeloid lineage.116 CML
cells were the main source of IL-6 and BCR/ABL1 activity
controlled IL-6 expression, establishing a feedback-loop
that contributed to disease progression.

Although the immune system mainly interacts with HSPCs
via soluble factors, direct cell–cell interactions are also
involved in the regulation of HSCs and LSCs. CD27, a
member of the TNFR superfamily, is expressed on lympho-
cytes and on HSCs.117 The cellular effects that are initiated
after ligation of CD27 by its unique ligand CD70 have been
extensively studied in lymphocytes. CD70-CD27 signaling
leads to cell expansion, survival, memory formation and
cytokine production.118–121 CD27 signaling on HSPCs
reduces colony formation in vitro and lymphocyte, mainly B
cell, differentiation in vivo.122 As CD70 is only expressed on
lymphocytes and on subsets of DCs upon immune activation,
CD27 signaling on HSPCs may represent an important
regulatory mechanism during infection. We recently docu-
mented that CD27 is expressed on LSCs in CML123 and AML
(unpublished results). In contrast to its inhibitory effect on
HSCs, CD27 signaling on LSCs increased LSC proliferation
and colony formation. Thus, the activated immune system
contributes to leukemia progression by CD27 signaling on
LSCs and leukemic progenitors (Figure 5). CD27 signaling in
LSCs activated the Wnt pathway via the TRAF2- and NCK-
interacting kinase. As the Wnt pathway is crucial for CML and
AML stem cells,124–126 blocking CD27 signaling and reducing
Wnt pathway activity resulted in a reduction of LSC numbers
and delayed disease progression.

Immune Responses to Leukemia

It is assumed that HSCs reside in an immune-privileged
environment, supported by BM-resident Tregs. In addition,
HSCs are resistant to most infectious pathogens with only few
exceptions such as the human polyomavirus 2 (JC virus).85

Therefore, during homeostasis and infection, HSPCs are
probably not direct targets of CTLs or antibodies. This
situation may be different in leukemia. Leukemic cells express
antigens that are immunogenic and can be recognized by
CTLs.127 Some leukemia antigens originate directly from the
oncogenic event and are therefore leukemia-specific, such as
BCR/ABL1 in CML128–130 and DEK/nuceloporin 214,129

promyelocytic leukemia/retinoic acid receptor-a,131,132

fms-like tyrosine kinase 3—internal tandem duplication
(FLT3-ITD)133,134 and mutated nucleophosmin 1135 in AML.
However, apart from BCR/ABL1 and FLT3-ITD, these
leukemia-specific antigens are only expressed in a minority
of patients. In addition, the vast majority of the more than 200
known leukemia-specific chromosomal translocations does
not give rise to antigenic proteins.127 Other antigens are not
leukemia specific but are overexpressed by leukemic cells
(leukemia-associated antigens), such as Wilms tumor protein,
proteinase 3, baculoviral IAP repeat-containing gene 5/
survivin, telomerase reverse transcriptase and others. Leu-
kemic cells including LSCs express the molecular repertoire to
interact with T cells, that is major histocompatibility molecules
and co-stimulatory ligands.103,136,137 Clinical and experimen-
tal studies have documented immune responses to leuke-
mia.3,127 CTLs directed against leukemia antigens have been
detected in chronic phase CML and in AML patients.18,138 In
an experimental model of CML, depletion of CD8þ T cells by
mAbs led to rapid disease progression, documenting an
important role of CTLs in the immunosurveillance of leuke-
mia.139 The role of CD4þ T cells in leukemia is less clear and
CD4þ T cells have been shown to be dysfunctional in vivo.140

Therefore, there is ample evidence that antigen-specific
immune responses toward the leukemia are elicited. However,
whether activated T cells can interact with and eliminate LSCs is
under debate. It is reasonable to assume that similar to HSCs,
LSCs are at least partially protected in an immune-suppressive
environment because of the high frequency of Tregs in the BM. In
addition, we found in a murine CML model that LSCs express
the inhibitory molecule programmed death ligand 1 and that its
expression is further upregulated in response to IFNg.
In contrast, leukemia-specific effector CTLs were able to
eliminate LSCs in vitro and in vivo in a setting with minimal
leukemia load.103 Furthermore, allogeneic HSC transplanta-
tion can lead to cure of the leukemia, an effect that is mediated
most likely by donor-derived CTLs that eliminate residual
LSCs.141,142 This indicates that human LSCs may also be
targeted by donor-derived allo-reactive CTLs in vivo.

Conclusions

Besides its main role as a hematopoietic organ, the BM
executes functions of a primary and secondary lymphoid
organ.64 Memory CD4þ and CD8þ T cells and antibody-
secreting plasma cells are maintained long-term in the BM by
cytokines such as IL-7 and IL-15. Up to one-third of all CD4þ

T cells in the BM are Tregs. During homeostasis, especially
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CD4þ T cells contribute to the cytokine milieu in the BM and
influence quiescence, proliferation and differentiation of
HSCs. During acute infections, the immune system regulates
the expansion and differentiation of HSPCs by cell–cell
interactions and by the secretion of cytokines. These feed-
back mechanisms evolved to ensure a concerted action of
lymphoid and myeloid cells in response to an infection.
Although these mechanisms are beneficial to fight an
infection, they may be detrimental in the case of leukemia.
LSCs share many characteristics with normal HSCs and
inflammatory cytokines and signaling via cell contact-depen-
dent receptors such as the TNFR CD27 may induce their
expansion. Cure from leukemia implies the elimination of
LSCs, and a better understanding of the ‘immune niche’ and
its function in the BM microenvironment may help to develop
specific therapies targeting leukemia at the level of the LSC.
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