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Cancer arises through the sequential accumulation of mutations in
oncogenes and tumor suppressor genes. However, howmany such
mutations are required for a normal human cell to progress to an
advanced cancer? The best estimates for this number have been
provided by mathematical models based on the relation between
age and incidence. For example, the classic studies of Nordling
[Nordling CO (1953) Br J Cancer 7(1):68–72] and Armitage and Doll
[Armitage P, Doll R (1954) Br J Cancer 8(1):1–12] suggest that six or
seven sequential mutations are required. Here, we describe a dif-
ferent approach to derive this estimate that combines conven-
tional epidemiologic studies with genome-wide sequencing data:
incidence data for different groups of patients with the same can-
cer type were compared with respect to their somatic mutation
rates. In two well-documented cancer types (lung and colon
adenocarcinomas), we find that only three sequential mutations
are required to develop cancer. This conclusion deepens our under-
standing of the process of carcinogenesis and has important impli-
cations for the design of future cancer genome-sequencing efforts.
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Somatic mutation theories of cancer have been unequivocally
substantiated by the identification of the genes responsible

for neoplasia over the last 40 y. The conceptual foundation for
this field of research was established by the seminal work of
Nordling (1) and Armitage and Doll (2). These investigators
realized that the relationship between age and cancer incidence
was a power function, suggesting that the process was driven by
sequential (rather than single) mutations. Moreover, by exam-
ining the slope of the curve depicting incidence against age (or
incidence curve), they predicted that six or more mutations were
required for most common cancer types. These insights have
guided the field for the last half-century.
The research stimulated by these studies has led to several

conceptual challenges (3–8). For example, there are relatively
large fluctuations in the slopes of incidence curves, leading to
great uncertainty in the estimation of the number of rate-limiting
events required for cancer. Moreover, clonal expansions during
the neoplastic process complicate the analysis and interpretation
of incidence curves. Inclusion of such clonal expansions into
conventional models can substantially reduce the estimated
number of required events. As a result of these uncertainties, esti-
mates of the number of rate-limiting events required for cancer range
from two to seven (3–9) and are still the subject of active debate.
With the advent of genome-wide sequencing, one might en-

vision that issues such as these could be conclusively addressed.
However, instead of providing definitive answers, the sequencing
studies have actually raised new questions related to these issues.
Typical solid tumors each contain hundreds or thousands of
genetic alterations, the vast majority of which are point muta-
tions or small insertions or deletions. Only a few of these are
“drivers,” conferring selective growth advantages to the cancer

cell in which they occur (9–11). The remaining thousands of
mutations are “passengers” that coincidentally occurred during
the large number of cell divisions associated with the neoplastic
process (12). Driver genes are defined as genes containing driver
mutations. Although genes can be confidently identified as
drivers because mutations in them are observed in many tumors,
the identification of driver genes that are infrequently mutated is
more difficult. Several criteria for identifying driver mutations
have been proposed (9–11), but none has been validated in an
objective fashion. In addition to point mutations, alterations such
as gene fusions, chromosomal translocations, and copy number
changes further complicate our understanding of tumors’ geno-
mic landscapes (13).
Recent reviews have emphasized that, in most patients with

solid tumors, it is challenging to identify the six or seven driver
gene mutations predicted by the original incidence curve analy-
ses (9, 10). This could result from imperfect sequencing or lim-
itations in sequence analysis, even when genomes are sequenced
to high coverage.
Alternatively, the paucity of mutations could indicate that there

is “dark matter” in the cancer genome, i.e., epigenetic changes and
genomic alterations that cannot be easily identified by massively
parallel sequencing or other commonly used methods.
We are therefore confronted with a frustrating situation: we

do not always know how to identify a driver mutation when we
see one, and we do not even know how many we are looking for
in an individual cancer. The current study addresses the latter
issue. If we knew the number of driver mutations we should
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expect in a cancer, it would both simplify the interpretation of
individual cancer genomes and contribute to our understanding
of cancer progression. As a corollary, the number of driver
mutations that can be targeted by therapeutic agents would be-
come clearer. In this work, we describe a method to infer the
number of driver mutations required for cancer development.
It combines, in a novel fashion, genome-wide sequence data
with epidemiologic data. Using this approach in colorectal and
lung cancers, we show that the number of required driver
mutations, even for advanced cancers, is likely to be three.

Results
Quantifying Mutation Rates in Individual Cancers. Cells with higher
mutation rates develop into cancer more rapidly than those with
lower mutation rates. This principle is widely accepted, long
recognized, and supported by numerous independent lines of
investigation (14–16). It explains why patients whose cells are
exposed to exogenous mutagens or have endogenous defects in
DNA repair enzymes are at greater risk for cancer than other
individuals (14, 17, 18). The novel aspect of the analysis presented
here is the quantitative comparison of cancer incidence in groups
of patients whose cells have different mutation rates. This simple
comparison allows us to infer the number of rate-limiting mutations
required for cancer development in a time-independent fashion.
To reach this objective, we first need to estimate the mutation

rates in individual cancers. Cancers with higher mutation rates
are expected to have higher numbers of somatic mutations in
their tumors, as documented in many cancer types (9). We chose
two tumor types, lung adenocarcinomas (LUADs) and colorectal
cancers (CRCs), for our analyses because these tumors are
common, each can be easily divided into subgroups expected to
have different mutation rates, and exome-wide sequencing data
on large numbers of patients have been made available by the
The Cancer Genome Atlas (TCGA) (cancergenome.nih.gov). In
LUAD, the two subgroups we compare are those whose mem-
bers have smoked at some point in their lives (“smokers”) and
those whose members never smoked (“never-smokers”). Fig. 1A
presents the distributions of mutation counts in these cohorts.
The median number of somatic mutations per tumor is 357.5
(57–2,487, 2.5–97.5% quantiles) in smokers, 3.15 times higher
[median ratio; 2.48–3.90, 95% confidence interval (CI); P = 2.5 ×
10−9] than in never-smokers (median, 111; 24–610, 95% CI)
(Materials and Methods). The number of somatic mutations per
tumor can be converted to a somatic mutation rate, R, by di-
viding the number of mutations by the age of the patient at di-
agnosis. As shown in Fig. 1B and Table 1, this somatic mutation
rate is 3.23 higher (median ratio; 2.58–4.05, 95% CI) in lung
cancer patients who smoked vs. those who did not; this differ-
ence is highly statistically significant (P = 1.5 × 10−9). The def-
inition and units of this rate (somatic mutations per year) are
different from those usually used to describe mutation rates
(somatic mutations per base pair per cell generation). Assuming
a constant rate of cell division implies that R is a constant mul-
tiple of the conventional mutation rate, in which case, the ratio
of the R values between two groups is equivalent to the ratio of
the conventional mutation rates.
In CRC, we compare patients with and without a mismatch

repair (MMR) deficiency. Cells with defects in MMR are mu-
tation-prone, particularly at microsatellite sequences but also
throughout the genome (19, 20). To determine whether in-
dividual cancers have defective MMR, two markers are com-
monly used: microsatellite instability (MSI) and MLH1 (MutL
homolog 1) silencing (19, 20). MLH1 silencing is used because it
can be easily assayed with conventional immunohistochemical
staining, and this silencing is the mechanism underlying most
cancers with defective MMR. The number of mutations in CRCs
with MMR deficiency is about 10 times higher than in MMR-
proficient CRC. Specifically, based on MSI, the ratio is 10.05

(median ratio; 8.79–11.52, 95% CI; P = 1.8 × 10−15), whereas
based on MLH1 silencing it is 9.13 (median ratio; 8.05–10.43,
95% CI; P = 1.4 × 10−12) (Fig. 2 A and C). The rate of somatic
mutations, as defined above for LUAD, is also higher in CRCs
with MMR deficiency (P < 2.5 × 10−12). When categorized by
MSI, the somatic mutation rate in MMR-deficient tumors was
8.85 times larger (median ratio; 7.77–10.11, 95% CI) than the
non–MMR-deficient tumors (Fig. 2B and Table 1). When cate-
gorized by MLH1 silencing, the somatic mutation rate was 7.81
times larger (median ratio; 6.89–8.78, 95% CI) in the MMR-
deficient tumors (Fig. 2D and Table 1).

Comparing Mutation Rates with Rates of Cancer Development. In the
classic results of Nordling and Armitage and Doll, it is known
that n, the number of rate-limiting mutational events in cancer
development, is exponentially related to cancer incidence. The
basic insight that inspired the current analysis is the following. If
the average mutation rate in cancer subgroup A is twice that in
cancer subgroup B, then the cancer incidence at any chosen age
should be 2n times higher in subgroup A than in subgroup B (an
adjustment to the power n is needed when n is larger than 2; see
Materials and Methods for details). Similarly, a threefold increase
in mutation rate should result in approximately a 3n-fold increase
in cancer incidence. We use this insight to infer the number of
driver gene mutations required to develop lethal malignancies. A
critical point is that, even though cancer incidence is a function
of age, the fold increase in incidence resulting from a higher
mutation rate is the same for all ages. Interestingly, this is sup-
ported by epidemiological data on the cumulative risk of lung
cancer with respect to age, showing approximately exponential
incidence curves with the same zero intercept and different bases
across different smoking subgroups [see figure 3 in Peto et al. (18)].
Doll and Hill (21) were the first to show that smoking signif-

icantly increases the incidence of lung cancer. Their 50-y study
of British physicians found that smoking increased LUAD in-
cidence by fourfold for former smokers and by 25-fold in those
who smoke 25 or more cigarettes a day (22). More recent
analyses show that the incidence of LUAD is 16.2-fold (10.25–
25.6, 99% CI) in smokers compared with never-smokers (23).
Now compare this increased LUAD incidence in smokers to

the 3.23-fold increase in somatic mutations in LUADs from
smokers noted above. If LUADs occurred through the sequen-
tial acquisition of two driver mutations, then the expected fold
increase in incidence in smokers would be (3.23)2 = 10.4 (6.66–
16.4, 95% CI), which is smaller than the actual increase. Alter-
natively, if LUAD formation required three mutations, the in-
cidence in smokers would be 18.75 (10.69–33, 95% CI)-fold
higher than in never-smokers, whereas with four mutations it

Fig. 1. Distributions of the total number of somatic mutations and of the
somatic mutation rates (somatic mutations per year) in smokers (blue) and
never-smokers (red) in LUAD. The rightmost parts of the red distributions
have been excluded to facilitate comparison. Distributions of the number of
somatic mutations (A) and of the somatic mutation rates (B).
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would be 33.7 (17.17–66.43, 95% CI) higher, which is larger than
the actual increase (see Materials and Methods for an explanation
of why an adjustment to the power of 3 or 4 is needed). By per-
forming a goodness-of-fit test on these data (Materials and Meth-
ods), we can infer the number of mutations required. For LUAD,
three mutations provide the best fit to the actual increase ob-
served, as graphically depicted in Fig. 3.
A similar analysis can be performed in the CRC subgroups.

Patients with an inherited MMR deficiency are cancer-prone
(17, 19). Recent studies have shown that the age-adjusted CRC
incidence in such patients is 114.2-fold increased (60.7–217, 95% CI)
(14). Compare this increase in CRC incidence to the 7.7- to
8.8-fold increase in somatic mutations in MMR-deficient CRCs
noted above.
If CRCs occurred through the sequential acquisition of an

average of two driver gene mutations, then the expected increase
in incidence in MMR-deficient cancers would be too small. If it
occurred through four or more sequential driver gene mutations,
the expected increase would be too large (Fig. 4). A goodness-
of-fit test on these data shows that the most likely number of
mutations required for CRC in the general population is three,
just as it was for LUAD.

Discussion
One of the major goals of cancer genomics is the identification of
the driver genes responsible for tumor initiation and progression.
A key question in this quest is a simple one: how many driver
genes are needed? In certain neoplastic types, the number of
drivers is small. For example, in chronic myeloid leukemia,
a single mutation (a chromosome translocation juxtaposing the
BCR and ABL genes) may be all that is required to convert
a normal bone marrow stem cell into a tumor cell (24), and the
transformation of myelodysplastic syndrome to acute myeloid
leukemia appears to be the result of a single event (25). For most
solid tumors, however, it is generally thought that a larger
number of driver gene mutations is required. This number has
been debated for decades, and the only way of estimating it,
before genome-wide sequencing, has been through modeling
of incidence vs. age curves. Using an approach that is independent
of the steep dependence of cancer incidence on age, we show
that, in two common solid tumors, the number of driver muta-
tions required for cancer is likely to be three. This number
represents a good fit for the total number of driver gene muta-
tions typically found in CRC, as well as in a variety of other solid
tumors (figure 5 in ref. 9).
Does this mean that three mutations are sufficient for lethal

cancers, i.e., those that are metastatic, or just for the initial stages
of invasion that distinguish cancer from benign tumors? This
question can be addressed through the analysis of LUAD, which
is the predominant form of lung cancer. The great majority

(89%) of LUAD patients already have a nonlocalized tumor,
either regionally spread to lymph nodes (22%) or metastatic
(57%) at diagnosis, and their 5-y survival rate is only 26.5% and
4%, respectively (26). Over one-half of LUAD patients die from
their disease within 1 y of diagnosis (26). Thus, our analysis of
LUAD indicates that only three driver gene mutations are re-
quired for the appearance of late-stage cancers.
A related point is that our analysis should not be taken to

imply that there are a maximum of three driver genes in lung
or colorectal cancers. Cancer continually evolves, responds to
changing microenvironments (including those associated with
chemotherapy and radiation), and can develop new mutations
that confer a selective growth advantage at any time. Our anal-
ysis suggests that three mutations are sufficient for a lethal
cancer to develop, but we would expect that additional mutations
could develop thereafter, often in a heterogeneous manner
within a single tumor. This expectation is consistent with the
numerous studies documenting genetic heterogeneity within
tumors (9–11, 27, 28).
What are the limitations of our approach? One is that we have

only studied two cancer types—LUAD and CRC. Other cancers
may require more or fewer driver gene mutations. We have used
the approach described here to evaluate head and neck cancers
and pancreatic ductal adenocarcinomas, two other cancer types
associated with smoking. The results on these tumors are con-
sistent with the trend suggesting that three mutations are suffi-
cient, but the number of cases that we could evaluate (i.e., those
complete with clinical information and somatic mutation data)
was too small to allow confident interpretation.
We have ignored driver gene mutations that are not rate-

limiting steps, because, by definition, their occurrence is not a
bottleneck for the appearance of cancer. Another potential
limitation of our analysis is that we have assumed that driver gene
mutations are the only rate-limiting steps. In reality, it is likely
that epigenetic changes represent rate-limiting steps in some
cancers (29). However, the existence of such epigenetic drivers
could only lower, not raise, our estimate of the average number of
driver gene mutations required for cancer development (Materials

Fig. 2. Distributions of the total number of somatic mutations (A and C)
and of the somatic mutation rates (somatic mutations per year) (B and D) in
MMR-proficient (MSS or MLH1-normal) and MMR-deficient (MSI or MLH1-
silent) CRCs. The rightmost parts of each red distribution have been excluded
to facilitate comparison.

Table 1. Comparison of the somatic mutation rate R (somatic
mutations per year) between smokers and never-smokers with
LUAD, and between MMR-deficient and -proficient CRCs

Tissue type Min
First

quartile Median Mean
Third

quartile Max

LUAD smoker 0.55 2.77 5.72 9.10 10.56 114.30
LUAD never-smoker 0.39 0.97 1.54 2.74 2.83 17.98
MSI 2.82 7.13 11.76 13.97 16.64 38.97
MSS 0.36 0.96 1.33 5.95 1.82 564
MLH1 silent 2.27 7.07 10.46 11.8 13.36 27.7
MLH1 normal 0.36 0.97 1.36 6.86 1.83 564

MMR deficiency can be assessed either by showing that a tumor has MSI
or by showing that a tumor has silenced MLH1. Tumors that are MMR-pro-
ficient are MSS and have normal MLH1 expression.
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and Methods). Thus, in certain cancers, two conventional driver
gene mutations plus one epigenetic change might be sufficient for
cancer development. In mathematically formal terms, the ap-
proach used here provides an upper bound for the required
average number of rate-limiting driver gene mutations to de-
velop cancer (explained in detail in Materials and Methods).
In conclusion, our analysis shows that only a relatively small

number of driver gene mutations appears to be required for the
development of advanced cancers of the lung and colon. In ad-
dition to the understanding of human tumor genetic data it
provides, this number should prove useful for implementing
experimental model systems of cancer in vitro and in vivo. As
more sequencing and epidemiologic data are gathered on can-
cers of various types, it will be of interest to assess what our
approach reveals about other types of cancers and various types
of exposures and hereditary risk factors.

Materials and Methods
Statistical Analysis. We analyzed two whole-exome sequencing datasets pub-
licly available on the TCGAwebsite: LUAD (281 patients) and CRC (276 patients)
(30). We considered all patients for whom the required smoking or MMR in-
formation was available. Sequencing for all datasets was performed using
Illumina GA DNA sequencing as described elsewhere (cancergenome.nih.gov).

We defined a “smoker” as an individual that reports to be (or to have
been) a smoker (244 patients), independently of smoking duration. We
considered all other individuals to be “never-smokers” (37 patients). In the
CRC dataset, the number of patients in each group was as follows: MSI
(28 patients), microsatellite stable (MSS) (160 patients), MLH1 silent (23
patients), and MLH1 normal (196 patients).

We defined the somatic mutation rate R as the ratio of the total number
of somatic mutations found in a patient and the patient’s age. To test the
null hypothesis of no difference between the distributions of R or of the
total number of somatic mutations, or more specifically, against the alter-
native hypothesis that one distribution is stochastically greater than the
other (and therefore that one distribution has a larger median value than
the other), we used the two-sided Wilcoxon–Mann–Whitney test (Wilcoxon
rank sum test). We computed medians and CIs for the ratio of the R values
between two groups via bootstrap (10,000 values). We performed the
goodness-of-fit analysis using the Kolmogorov–Smirnov test statistics for
comparing the distribution for the increase in R due to smoking or silent
MLH1 (raised to the appropriate powers), as estimated from the TCGA data
via bootstrap, with the distribution of the fold increase in cancer incidence
determined by epidemiological studies. We used Jha et al. (23) for LUAD and
Dowty et al. (14) for CRC. We averaged CIs for men and women. Because

only a CI rather than the full distribution for the fold increase in cancer in-
cidence was available from these studies, we assumed a normal distribution
consistent with that CI. The Kolmogorov–Smirnov statistic was D = 0.80, 0.21,
and 0.69 for two, three, and four drivers, respectively, in LUAD; and D = 1,
0.91, 0.42, and 0.98, for one, two, three, and four drivers, respectively, in
CRC. For robustness, other distributions (uniform, gamma) were considered,
and these yielded equivalent results. All statistical analyses were performed
using R software, version 3.0.3 (31).

Mathematical Modeling. There are various ways to derive the equation for
cancer incidence found in Armitage and Doll (2). Here, we briefly review the
basic assumptions behind this equation and show its derivation. We also dis-
cuss our new modeling approach and the methodology used in this paper.

Assume that in a healthy tissue the mutation rate of a given driver gene is
approximately constant in time. Then the time, X, until the occurrence of
a driver mutation in this gene can be modeled by an exponential random
variable with (constant) rate u, where u represent the probability for that
gene to mutate in a unit interval of time. This implies that the probability of
that gene to be mutated by a given age t is 1 – e−ut, which is approximately
equal to ut, given that u is many orders of magnitude smaller than t−1 (12).
Now assume that, to evolve a given tumor at a given stage, a sequence of n
driver mutations (rate-limiting steps) are required. It follows that the time of
cancer occurrence is given by X1 + X2 + . . . + Xn, a sum of exponentially
distributed independent random variables, where Xj+1 is the time it takes for
driver j + 1 to occur once driver j has occurred, with probability density
approximately (for ut � 1):

IðtÞ=u1 u2 . . .un
tn−1

ðn−1Þ! ,

where ui is the rate for Xi, i = 1, 2,. . .n. This probability density then repre-
sents the incidence for that cancer type at age t, if we disregard competing
risks (in our analysis, epidemiological cancer incidence estimates at old ages
will be avoided for this reason).

By taking the logarithm in the above equation, we obtain the well-known
result that the slope of the cancer incidence curve in a log-log plot of in-
cidence vs. age is given by the number of required rate-limiting steps minus 1,
i.e., (n − 1), because

log I
�
t
�
= log

u1 u2 . . .un

ðn− 1Þ! +
�
n− 1

�
log t:

This assumes that all tumors in the individuals used to estimate the inci-
dence require the same number n of rate-limiting steps, as n is a constant
(see below for letting n have a distribution).

All of the above is widely known, and it originated with the work of
Armitage and Doll (2). Estimating the number of rate-limiting steps using

Fig. 3. Relation between the number of rate-limiting driver mutations and
the increase in LUAD incidence observed in smokers. The observed average
increase in LUAD incidence associated with smoking is 16.2-fold (red line);
the pink area is its 99% CI (10.25–25.6) (23). The expected increase in LUAD
incidence associated with the indicated number of rate-limiting mutations is
represented by the blue marks, with the corresponding 95% CI indicated by
blue vertical segments.

Fig. 4. Relation between the number of rate-limiting driver mutations and
the increase in CRC incidence observed in patients with MMR deficiency. The
observed average increase in incidence associated with MMR deficiency is
114.2-fold (red line); the pink area is its 95% CI (60.7–217) (14). The expected
increase in CRC incidence associated with the indicated number of rate-
limiting mutations is represented by the blue marks, with the corresponding
95% CI indicated by blue vertical segments.
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the slope of the log-log plot can be used to estimate the total number of rate-
limiting steps, irrespective of whether they arise from point mutations or
other genomic alterations and/or epigenetic events. A new element is in-
troduced by considering dependence of gene mutation rates on gene
length. Assume for now that all rate-limiting steps are driver gene mutations
and that n of them are required for cancer. Even assuming a constant (av-
erage) mutation probability u per base pair per unit of time, different genes
have different base pair lengths l1, l2, . . ., ln. It is also possible to include the
effects of differing nucleotide compositions by multiplying the various l
values by a factor depending on the specific nucleotide composition of
each gene (32). The formula above may be written as follows:

IðtÞ= l1l2 . . . lnun tn−1

ðn− 1Þ!:

Another relevant element can be introduced into the model using the follow-
ing argument. Evidence indicates that a given cancer type may result from
different combinations of driver gene mutations. It is also possible that n, the
total number of driver gene mutations required by that cancer type, may
not be a constant among patients. It is reasonable to assume that the range
for n is relatively small, as we will explain below, and given the large body of
evidence from age vs. incidence curves estimating n to be between 2 and
7 in various tissues. Thus, instead of assuming a fixed n for all patients of
a given cancer type (at a given stage), we can consider a distribution for n.
To be precise, let n be a variable taking values of positive integers, and m
andM be defined, respectively, as the minimum and maximum of n required
to evolve a given tumor at a given stage. Let jn be an index for all (mutually
exclusive) combinations of exactly n drivers yielding a given detectable
cancer type and let li( jn) be the length of the ith gene in the n-gene com-
bination jn. Then the incidence at age t in the population will be given by
the following:

X
n

X
jn

l1ðjnÞl2ðjnÞ . . . lnðjnÞun tn−1

ðn− 1Þ!=
X
n

In,

where In is defined as the incidence for that cancer type at age t through the
occurrence of n driver gene mutations.

A key element of the model is that an increase by a factor x (where x > 1)
of the average mutation rate (per base pair across all nucleotides) u will
cause an increase of that cancer incidence by a factor xn, independent of t,

X
n

xn

0
@X

jn

l1ðjnÞ l2ðjnÞ . . . lnðjnÞun tn−1

ðn− 1Þ!

1
A=

X
n

xn In:

In other words, the ratio between the incidence of two subgroups, where the
first has a mutation rate x time larger than the second, will yield a ratio of
their incidences equal to xn, independently of age (if we disregard com-
peting risks, which represent a problem for incidence curves at older ages,
and affect all models over that age range). Even for nonlinear trans-
formations of time [for example, if the cell division rate is not constant with
age, but rather any function of it, f(t)], where the standard approach would
strongly suffer the age dependency due to the need of estimating the
power of age t, our approach is independent of such transformations, and
therefore more robust to time dependencies.

Our model can be naturally extended to also allow for the somatic mu-
tation rate to have a distribution (even time dependent), making it robust
against variation in the mutation rate.

It is possible to include in the model also other genetic alterations, like
gene fusions, chromosomal translocation, and copy number changes
(amplifications, large deletions, gains or losses of whole chromosomes or
chromosome arms) as well as methylation changes, if the rate of their oc-
currence v were known. Thus, let ip be an index for all (mutually exclusive)
possible combinations of exactly p of these other genetic and epigenetic
alterations, which, together with n point mutations, yield a given detectable
cancer type, and let vi(ip) be the mutation rate of the ith gene in the p-gene
combination ip. Then, by considering these p more rate-limiting steps, we
have the following:

X
p,n

X
ip, jn

v1
�
ip
�
v2
�
ip
�
. . . vp

�
ip
�
l1ðjnÞ l2ðjnÞ . . . lnðjnÞun tp+n−1

ðp+n− 1Þ!=
X
p,n

Ip+n:

Again, an increase by a factor x of the average somatic mutation rate u will
cause an increase of that cancer incidence by a factor xn, independently of
the other p rate-limiting steps to cancer. Note how environmental or
inherited factors causing an increase also in the mutation rate of drivers that

are not gene mutations would then lower, not raise, the estimate of the
average number of driver gene mutations required for cancer development.

For x > 1 (always satisfied in our study), where m, M ≥ 1,

xm
XM
n=m

In ≤
XM
n=m

xnIn ≤ xM
XM
n=m

In:

Therefore, for a given cancer with incidence
P

nIn, an increase by a factor x
of the average mutation rate per base pair will cause an increase in inci-
dence that will be bounded below by xm and above by xM. Let n be defined
as the constant for which the following equality holds:

xn
XM
n=m

In =
XM
n=m

xnIn,

that is, xn is the weighted sum for the increase in incidence, where the
weights are given by Im=

PM
n=mIn, . . . ,IM=

PM
n=mIn,

xn =
XM
n=m

 
xn · In

,XM
n=m

In

!
:

It is precisely the mathematical average of the fold increase xn (across all
possible values for n, and where the weights are given by the frequencies of
the various ns in the population). This is exactly what is identifiable in the data,
whereas the standard weighted average of nwould not. However, what is n?

From the fact that ut � 1, and if we assume that the driver gene length
distribution is not different across the various values of n, it follows that
Im � Im+1 � . . . � IM and

xm Im ≈ xm
XM
n=m

In ≈
XM
n=m

xn In ≡ xn
XM
n=m

In ≈ xn Im,

that is, the overall incidence of a given cancer type should be approximately
determined by the combinations of minimum length (i.e., those for which n =
m) of different driver gene mutations required to get to cancer status. Thus,
n may approximate well its lower bound m, the minimum number of rate-
limiting driver mutations required to get to cancer.

More importantly, let n* be the standard weighted average of n,

n* =
XM
n=m

 
n · In

,XM
n=m

In

!
:

By Jensen’s inequality,

xn* ≤ xn =
XM
n=m

 
xn · In

,XM
n=m

In

!
;

thus, m ≤ n* ≤ n, and therefore n is an upper bound for the average
number of driver mutation hits, n*, required to evolve to a given tumor
type. With n close to m, n should also be a good approximation of n*.

Clearly, xn ≤ xc implies that n ≤ c, which provides a way to estimate an
upper bound.

The model presented up to this point has the important limitation of
assuming that the sequential mutations resulting in cancer occur inde-
pendently of each other. This represents a clear violation of what is known
about cancer progression. For example, driver gene mutations, by definition,
confer growth fitness advantages, some of which have been measured (33).
Thus, the acquisition of a driver gene mutation induces a subclonal expo-
nential growth that will affect the rate at which the next mutations are
acquired. Each driver gene mutation increases the pool of cells already
possessing mutation j and therefore at risk for the next mutation. Although
a thorough analysis of all possible dependencies among driver gene muta-
tions is beyond the scope of this work, we will consider two fundamental
types of known dependencies and show that, even in these cases, an in-
crease by a factor x of the rate u will still cause an overall increase in cancer
incidence by a factor xn, with a potential adjustment to n. If the added fit-
ness advantage conferred by subsequent drivers is equivalent to or higher
than that conferred by a previous driver gene mutation, this adjustment to
n is needed, as described below. If the added fitness advantage conferred by
subsequent drivers is exponentially decreasing, no adjustment is needed.
The main point is that our approach appears to be therefore sound, even
when more complicated dependencies are considered.

First, we consider the case where the acquisition of a driver gene mu-
tation induces a subclonal exponential growth caused by the conferred
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fitness advantage. For simplicity of exposition, we start by considering the
case of n = 2, where the two mutations have a given order of occurrence,
letting λ be the rate of the continuous exponential growth induced by the
first driver, and where the following discrete deterministic approximation
is used. The healthy cell is assumed to divide deterministically in time,
according to a constant division rate, and time is counted by the (discrete)
number of times the healthy cell has divided, i.e., the time to division is
used as the time unit. We also assume, for simplicity of exposition, that cells
divide asymmetrically, and that the possibly required mutation in the second
allele of the first driver is not rate-limiting. The probability to get cancer by
time t is as follows:

∼
Xt
s=1

Pð2nd mutation occurred by time tj1st mutation occurred at 

time sÞ·Pð1st mutation occurred at time sÞ=

=
Xt
s=1

�Zt
s

u2 λ eλ · xdx
�
· ð1−u1Þs−1 u1 =

Xt
s=1

u1 u2
�
eλt − eλs

�
· ð1−u1Þs−1:

As

1−u1ðs− 1Þ≤ ð1−u1Þ s−1 ≤ e−u1ðs−1Þ,

and s ·u1 � 1, for all s≤ t, it is apparent that ð1−u1Þ s−1 ≈ 1: So the two
mutation rates factor out, and the result will not be affected by this
dependency. Note that here the mutation rate probabilities ui are per
cell, and not for the whole tissue’s cell population.

When there are more than two driver gene mutations (n >2), it is possible
to show, by combining results from Tomasetti et al. (12) for the self-renewal
phase of a tissue and from Durrett et al. (34) for tumoral clonal expansion,
that the mutation rates factor out approximately as follows:

u1 u
λ1=λ1
2 u

λ1=λ2
3 . . .u

λ1=λn−1
n ,

where the λi are the growth rates induced by driver i. In our analysis, as in
Figs. 3 and 4, we assume that the fitness advantage added by each successive

driver is constant, a typical assumption given the lack of information on the
actual values. This assumption yields the following values: λ1=λ2 = 1/2, λ1=λ3 =
1/3, and so on. This implies that if the mutation rate is x times higher in a
subpopulation, then the incidence for that subpopulation should be

x · x
λ1=λ1 · x

λ1=λ2 . . . x
λ1=λn− 1

higher than in the control group. Note that for small n values this adjust-
ment is not large. If instead the fitness advantages added by each successive
driver were to be decreasing significantly, i.e., exponentially fast, then the
situation reverts to the standard case with the incidence increasing by ap-
proximately a factor xn and our estimate of three driver gene mutations
would represent an upper bound.

Another type of dependency occurs where a driver mutation will not
appear (i.e., confer a fitness advantage) unless it occurs before the tumor has
reached a certain critical size K. Such a driver gene mutation might, for
example, only be observed once cells outgrow their blood supply. In such
cases, equation 5 of Tomasetti et al. (35) applies, where it is shown that the
probability for that mutation to occur before reaching size K is as follows:

P = 1− e−u K C ,

where C is a constant. Because the above expression is ≈u K C, the mu-
tation rate again factors out and our conclusions are not affected.

We want to note that, with the classical approach of estimating the
number of rate-limiting steps, the results would be much more strongly de-
pendent on the specific form of the assumed model for clonal expansions,
timing of driver gene mutations, etc. Overall, then, we believe our approach
allows a more robust inference of the number of rate-limiting steps required
for cancer with respect to both time dependencies and model misspecifications.
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