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In an era of rapid climate change, there is a pressing need to un-
derstand how organisms will cope with faster and less predictable
variation in environmental conditions. Here we develop a unifying
model that predicts evolutionary responses to environmentally
driven fluctuating selection and use this theoretical framework to
explore the potential consequences of altered environmental cycles.
We first show that the parameter space determined by different
combinations of predictability and timescale of environmental vari-
ation is partitioned into distinct regions where a single mode of
response (reversible phenotypic plasticity, irreversible phenotypic
plasticity, bet-hedging, or adaptive tracking) has a clear selective ad-
vantage over all others. We then demonstrate that, although sig-
nificant environmental changes within these regions can be accom-
modated by evolution, most changes that involve transitions between
regions result in rapid population collapse and often extinction. Thus,
the boundaries between response mode regions in our model cor-
respond to evolutionary tipping points, where even minor changes in
environmental parameters can have dramatic and disproportionate
consequences on population viability. Finally, we discuss how differ-
ent life histories and genetic architectures may influence the location
of tipping points in parameter space and the likelihood of extinction
during such transitions. These insights can help identify and address
some of the cryptic threats to natural populations that are likely to
result from any natural or human-induced change in environmental
conditions. They also demonstrate the potential value of evolutionary
thinking in the study of global climate change.

fluctuating selection | global change | phenotypic plasticity |
bet-hedging | adaptive tracking

Understanding how organisms cope with and adapt to changes
in their environments is a central theme in evolutionary ecol-

ogy (1). However, we currently lack the tools to predict the most
likely evolutionary responses to changes in environmental con-
ditions (2), including those currently experienced through global
change (3, 4). Evolutionary responses to within- and among-year
fluctuation in ecological parameters like ambient temperature or
precipitation can be highly informative about the process of ad-
aptation to environmental change, as well as about the potential
consequences of the recently accelerated rates of global change
and the associated increase in climatic variability and unpre-
dictability (5–8). Earlier work indicates that some organisms face
environmental uncertainty by hedging their bets with a strategy
that minimizes fitness variance across all possible environmental
conditions (conservative bet-hedging) (9), whereas others have
evolved a mix of strategies to take advantage of alternative envi-
ronmental scenarios in a probabilistic fashion (diversification bet-
hedging) (9). In still other cases, organisms cope with environ-
mental variation through phenotypic plasticity, which is the ability
to respond to environmental cues through the adjustment of ge-
notypic expression either during early development (irreversible or
developmental plasticity) (10) or throughout life (reversible plas-
ticity) (11). Finally, environmental variation is also known to result
in correlated variation in mean population traits, as natural selection

favors different phenotypes over evolutionary time (adaptive
tracking) (12). Although an increasing amount of attention has
been recently devoted to the conditions that promote these
different forms of evolutionary response to environmental var-
iation (hereafter “response modes”) (2, 9, 13–18), most studies
have considered only one or a small subset of response modes
(16, 17), and few have explored the general conditions under
which one (or more) may be selected above the others (2, 18).
Addressing these issues will be critical for improving our ability
to predict whether and how populations will adapt to both
natural and human-induced environmental change.
Here we develop a theoretical model that considers the joint

evolution of a comprehensive range of evolutionary responses to
environmental variation. Although we illustrate our model by
exploring the effects of temperature, the principles we describe
apply to other naturally fluctuating environmental variables (e.g.,
precipitation). We use the term insulation, I, as a broad de-
scriptor of morphological (e.g., coat thickness) (19), behavioral
(e.g., huddling), or physiological (e.g., sweating) characteristics
that help counter thermal stress. To investigate the dynamics of
adaptation to environmental variation, we use individual-based
evolutionary simulations in which the pattern of variation in
genotypic expression across a range of environmental conditions
(i.e., the reaction norm of the genotype) (14) is assumed to be
heritable and subject to mutation and natural selection. We
begin by testing the consistency of evolutionary response to
different types of environmental change and then use this gen-
eral framework to explore how systems react to disruption in the
nature of environmental oscillations. A nontechnical description
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of how our model can inform issues related to global change is
included in the SI Text.

Results
Environmental variation includes both deterministic (i.e., cli-
mate) and stochastic (i.e., weather) components. For example,
temperatures oscillate deterministically from cold winters to hot
summers, but the actual values experienced in a given day vary
stochastically from the seasonally expected average. We modeled
these components as

Et = A · sinð2πt=LRÞ+B · e;

where t is time, L is the number of time steps per generation (i.e.,
lifespan), R is the relative timescale of environmental variation
(i.e., number of generations per environmental cycle), « is a sto-
chastic error term, and A and B are scaling constants reflecting
the relative importance of deterministic and stochastic factors.
This equation describes a simple sinusoidal oscillation in environ-
mental conditions when R is intermediate or small and approx-
imates a slow directional change when R is very large. Because R
is a relative metric, the findings presented below are easily appli-
cable to organisms with different lifespans.
In nature, changes in environmental conditions are often pre-

ceded by correlated changes in photoperiod, barometric pressure,
or other environmental cues. For example, day length variation
tends to be well correlated with seasonal temperature variation in
temperate regions. Thus, we model the predictability of envi-
ronmental conditions, P, by altering the degree to which an en-
vironmental cue, C, is correlated with future temperature values
(SI Text and Fig. S1). When temperatures and cues are perfectly
correlated, the environment is completely predictable, P = 1, and
when they are not correlated at all, it is completely unpredictable,
P = 0. In the simulations presented here, cues are provided to
individuals before experiencing any changes in their environment
(Methods).
Simulation runs in our model proceed in discrete time steps

with nonoverlapping generations and individual lifespans of L =
5 time steps. Individuals possess seven genetic traits—loci h, s, a,
I0, I0′, b, and b′—that determine the amount of insulation to be
produced under different environmental cues. Every genotype
specifies two different reaction norms: one encoded by I0 and b,
and another one encoded by I′0 and b′. Loci I0 and I′0 determine
baseline degrees of insulation, whereas loci b and b′ determine
the degree to which insulation is made dependent on environ-
mental cues. Each individual in our model expresses only one of
these reaction norms through life: the one based on I0 and b′ is
chosen at birth with probability h, whereas the one based on I0′
and b′ is chosen with probability 1 − h. In practice, this implies
that locus h enables individuals with the same genotype to re-
spond to environmental variation in two completely different
ways (as in diversifying bet-hedging). Locus s is a genetic switch
that determines whether the organism makes its insulation de-
pendent on environmental cues (i.e., whether it allows for phe-
notypic plasticity; s > 0.5) or not (s ≤ 0.5). Nonplastic individuals
ignore environmental cues and exhibit a fixed insulation phe-
notype encoded by the baseline loci I0 or I0′. Plastic individuals
adjust their insulation phenotypes, I, to the environmental cues
they perceive using linear norms of reaction such that, I =
I0 + b ·C or I = I0′+ b′ ·C. Locus a determines whether this cue
dependence is only happening during ontogeny (irreversible or
developmental plasticity) or also throughout the individual’s life-
time (reversible phenotypic plasticity). In practice, this means that
individuals with a = 0 respond to environmental cues only during
development—and therefore exhibit a single phenotype through-
out life—whereas those with a > 0 alter their phenotypes with
probability a at each time step after development. As in earlier
studies (14), we assume that phenotypic plasticity is costly both

during and after development. Thus, plastic individuals pay a one-
time developmental cost, kd, and each phenotypic adjustment after
development is assumed to incur in an additional cost of ka.
To establish a baseline for comparison, we began by evaluating

the effects of environments with a constant temperature. As
expected, this simple scenario led to the evolution of nonplastic
insulation strategies with a mean population value that approx-
imately matched the temperature experienced. We then con-
sidered completely stochastic environments (A = 0 and B = 1),
where individuals had no information about the potential state of
the environment (P = 0). Under these conditions, populations
evolved to ignore uninformative cues, producing instead a fixed
phenotype at the average environmental condition (I = 0; Fig.
1A). In contrast, when we allowed these same stochastic envi-
ronments to be completely predictable (P = 1), the resulting re-
action norms led to insulation levels that varied with the intensity
of environmental cues (Fig. 1B). In completely deterministic
environments (A = 1 and B = 0) with rapid environmental vari-
ation (logR = 0), we observed that phenotypic plasticity also
evolved only when individuals were able to anticipate environ-
mental changes (Fig. 1 C and D). This result highlights a key
aspect of adaptation to environmental change: the way in which
environments vary (i.e., whether the pattern of environmental
oscillations appears to be stochastic or deterministic) is less im-
portant to evolution than the degree to which individuals can
anticipate the future state of the environment (20). Thus, the
remaining simulations focus on the effects of predictability of
environmental variation and assume, for simplicity, that A = 1
and B = 0 (SI Text).
We proceeded to explore evolutionary outcomes at different

predictability levels and across a comprehensive range of time-
scales of variation (Fig. 2). For each set of conditions, we per-
formed 100 replicated simulations. Each subplot in Fig. 2A
depicts the 100 evolved mean reaction norms at generation
50,000 (e.g., I = b ·C+ I0, where b and I0 correspond to the
mean population values for b and I0). Overall, we find that
evolution results in remarkably consistent outcomes for the
majority of parameter combinations (Fig. 2A, SI Text, and Fig.
S2) and that different response modes occur largely in non-
overlapping regions of parameter space (Fig. 2B, Table S1, SI
Text, and Fig. S3). These findings are robust to the imple-
mentation of density- and frequency-dependent selection, as well
as to alternative coding schemes for genotype-to-phenotype
mapping (SI Text and Fig. S4). In cases where environmental
variation within a generation is both predictable and fast (P is
large, R is small; upper left corner of Fig. 2B), each subplot in
Fig. 2A shows a single cluster of reaction norms. This indicates
that (i) similar reaction norms evolved in all 100 replicate sim-
ulations at that parameter combination, (ii) the evolved pop-
ulations exhibit a high degree of plasticity (i.e., s> 0:5 and b≈ 1),
and (iii) individuals in these populations often adjust their
phenotypes after development (a≈ 1; Table S1). As R becomes
larger, locus a quickly evolves to a≈ 0 (depicted in blue in Fig.
2A) because the diminishing benefits of avoiding thermal mis-
matches no longer surpass the costs of phenotypic adjustment
(13, 21, 22). We label this strategy irreversible plasticity because
individuals in these populations exhibit plasticity exclusively
during development. The transition from reversible to irrevers-
ible plasticity occurs at progressively shorter timescales in less
predictable environments because the expected benefits of pheno-
typic adjustment decrease with higher potential for errors in antici-
pating environmental change.
When environmental conditions are fairly unpredictable, the

rate at which environments change determines the resulting evo-
lutionary outcome. If R is large (lower right corner of Fig. 2B), the
slow rate of environmental change allows for beneficial mutations
in I0 to appear and approach fixation. The resulting pattern is
a gradual change of the mean phenotype that tends to lag behind
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the change in environmental conditions (adaptive tracking in Fig.
S5A). However, at faster timescales (lower center and lower left in
Fig. 2B), environmental change is too fast to be tracked by mu-
tation and too unpredictable to be addressed through plasticity.
Consistent with previous studies (9, 16), this extreme form of
uncertainty forces individuals to hedge their bets. When individ-
uals experience all possible conditions with similar probability
(e.g., very low R), we observe the evolution of fixed phenotypes at
I ∼ 0. Although this insulation value rarely matches the actual
conditions experienced, it matches the average environment and
therefore minimizes overall thermal mismatch across the entire
range of potential environmental conditions (Table S1). Thus, this
strategy resembles conservative bet-hedging (9) in that it mini-
mizes the variance in fitness among selection events and across
individuals that share the same genotype. In contrast, when indi-
viduals of a given genotype experience only a fraction of the en-
vironmental cycle (e.g., logR = 0.5), we observe the evolution of
mixed strategies that produce alternative phenotypes with either
heavy or light insulation in a probabilistic fashion (green in Fig.
2A). This strategy resembles the phenotypic polymorphism of di-
versification bet-hedging (9) (Table S1), because the different
phenotypes produced by a single genotype minimize thermal
mismatch in different scenarios (i.e., the larger I phenotype does
best when experiencing disproportionally more of the upper than
the lower half of the environmental cycle, and the smaller I
phenotype does best in the opposite situation).
Having determined the most likely evolutionary outcomes

under a comprehensive range of parameter combinations, we
proceeded to explore how populations are affected by changes in
the predictability or timescale of environmental variation (i.e., in
the signature of their environment). The well-defined response
mode regions observed in Fig. 2 allowed us to make a simple but
important a priori prediction: changes in environmental signatures
that require the evolution of an entirely different mode of response
may be harder to cope with than those that do not. To test this
hypothesis, we abandoned the assumption of a constant population
size in our model and linked reproductive output to absolute rather
than relative fitness (Methods). By relaxing this assumption, we
were able to assess the demographic consequences (e.g., changes in
population size and risk of extinction) of different environmental
challenges. In this eco-evolutionary version of our model, maximal

fecundity, q, was defined as the average number of offspring that an
individual produces when it pays no plasticity costs and is able to
exactly match its environment at every time step of its life. Thus,
the mean fecundity of individual i, Fi, is determined by the fraction
of the maximum payoff that it is able to achieve, such that
Fi = q ·Wi=Wmax(Methods). Fig. 3 depicts the potential for extinc-
tion at each parameter combination (inner squares), as well as
during transitions between adjacent combinations in parameter
space when q = 2.2 (see Fig. S6 for alternative values of q). Each of
the four possible transitions to an adjacent cell is depicted using
trapezoids. For example, the color of the upper trapezoid within a
given subplot indicates the effects of transitioning from that par-
ticular parameter combination to the one above it. As predicted,
we found that the potential for extinction during these transitions is
considerably higher when populations are forced into a different
response mode region (a result that holds even if much larger
changes in P or R are attempted).
The nonuniformity of transitional extinction rates in our model

is driven by at least two different mechanisms. First, some tran-
sitions imply moving into regions of parameter space that are
particularly challenging for adaptation. For example, when envi-
ronmental oscillations are quick and unpredictable (i.e., the bet-
hedging region), baseline levels of extinction are high, particularly
at lower q values (Fig. S6). Thus, any population that is suddenly
forced into this region will also be expected to have a high like-
lihood of extinction (Fig. 3A). The second contributor to extinc-
tion relates to the complexity of genetic changes required for
adaptation during transition and is more readily observable after
accounting for potential differences in baseline levels of extinc-
tion in the new environments. For example, when relative ex-
tinction rates are considered (Fig. 3B), we find that extinction is
only more likely than expected when populations move into a
different response mode region (even if this transition involves
moving into regions of parameter space that appear to be easier
for adaptation, such as into more predictable environments). The
reason for the increased risk of extinction during these tipping
point transitions is that adapting to a completely new strategy for
phenotypic development often requires a radical restructuring of
the genome, which can be particularly difficult to achieve as
populations collapse. For example, in the transition from phe-
notypic plasticity to bet-hedging, plastic strategies become

Fig. 1. Effects of environmental stochasticity on the evolution of thermal strategies when environments are either completely unpredictable (A and C) or
completely predictable (B and D). Stochastic environmental variation (A and B) was modeled by setting the value of weighting constants to A = 0 and B = 1.
Conversely, comparable deterministic variation (C and D) was modeled through A = 1, B = 0, and R = 1. The norm of reaction plots depict the strategies of
5,000 individuals at generation 50,000 in representative replicate simulation runs. Darker colors indicate that a higher number of individuals share a given
response to a particular environmental cue. Comparison of the top and bottom panels indicates that the way in which environments vary, stochastically vs.
deterministically, is less important to evolution than the degree to which individuals can anticipate such variation.
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maladapted (i.e., their expected number of offspring, W, is less
than 1) and population decline is swift (Fig. 4). Thus, given that
adaptation to the new environment requires in this case resetting
developmental switches (s and a) and adjusting almost every other
locus in the virtual genome, the stochastic nature of mutation
supply and the reduced standing genetic variation of declining
populations are more likely to result in extinction (Fig. 4A) than in
evolutionary rescue (Fig. 4B). Conversely, the relative extinction
rates for the reverse transition are also high because the fitness of
fixed strategies is low compared with that of plastic ones, and
because many of the mutations that can potentially transform a
fixed strategy into a plastic one will, in the absence of other
necessary genetic changes, result in maladapted phenotypes. An-
other case with high relative rates of extinction during tipping
point transitions is the change from conservative to diversifying
bet-hedging, which involves similarly extensive genetic changes,
including the resetting of h, I0, I0′, b, and b′. In contrast, when
genomic changes are relatively simple, as in the case of the tran-
sition between reversible and irreversible plasticity, the likelihood
of adaptation during transition is much higher (Fig. 3).

Discussion
Our model suggests that evolutionary response to environmental
variation may be more predictable than previously anticipated.
Through evolutionary simulations, we showed that fundamen-
tally different adaptive responses consistently evolve under dif-
ferent timescales and predictabilities of environmental variation.

The response mode regions predicted by our model are largely
consistent with a variety of empirical findings in a range of bi-
ological systems. For example, reversibly plastic adaptations like
torpor (23) and hibernation (24) have been shown to occur in
response to frequent (i.e., daily or yearly) and predictable changes
in environmental conditions. In some examples of reversible
phenotypic changes, such as the seasonal change in coat coloration
in temperate mammals, there is even evidence that the increasing
unpredictability of relevant environmental parameters is currently
exerting strong selection on natural populations (e.g., snow cover
for snowshoe hares) (25). Another potential example of reversible
plasticity is cognitive ability, particularly given its role in enabling
behavioral flexibility (26). Consistent with our predictions, the
evolution of cognitive enhancement appears to be driven in many
systems by the exposure to intense, short-term, and only moder-
ately predictable environmental variation (27–29). In contrast,
most well-documented examples of developmental (i.e., irrevers-
ible) plasticity occur when environmental features remain constant
during a lifetime but vary among individuals. For example, the
short-lived Daphnia cucullata only develops costly and life-long
protective helmets if coexisting with predatory fish (30). Empirical
examples of conservative (e.g., cooperative breeding behavior)
(31), and diversifying bet-hedging [e.g., maternal adjustment of
variance in offspring traits (32) or fimbriae expression in bacteria
(33)] also conform to our predictions as they all involve responses
to highly unpredictable environmental conditions. Over much
longer timescales, where our model predicts adaptive tracking, we
see congruence with empirical examples like the slow changes in
breeding and migration dates in birds (34) or even the rise of arid-
adapted African mammals—including hominids—in response to
increased aridity in East Africa during the Pliocene and early
Pleistocene (35).
A key insight from our model is that adaptive capacity to

environmental change is likely to be subject to evolutionary
tipping points (36), where most environmental changes will be
relatively innocuous but some—even very small ones—can have
disproportionate and dramatic effects. Specifically, the potential
for adaption to changes in the predictability or timescale of

Fig. 2. Evolutionary response to environmental variation under different
levels of predictability (P) and relative timescale of environmental variation
(R). At each parameter combination in A, the 100 mean population reaction
norms that evolved at generation 50,000 in different replicate simulations
are depicted as in Fig. 1 with environmental cues on the x axis and the
resulting insulation phenotypes on the y axis (labels omitted for simplicity). If
only one reaction norm is visible, this is an indication that the same response
evolved in all replicates. As illustrated in C, reaction norms are depicted in
black when s≤ 0:5 (see Table S1 for details). In such a case, phenotypic
plasticity does not occur (a is not expressed) and the reaction norm is flat. In
case of a plastic response (s> 0:5), reaction norms are depicted in a color
gradient ranging from red when a= 1 (reversible plasticity) to blue when
a= 0 (irreversible plasticity). For simplicity, secondary reaction norms are
depicted in green with intensity proportional to how often they are used
(i.e., they are not visible if h= 1). (B) The consistency of outcomes across
replicates in A suggests that different regions in parameter space favor
different modes of response. Conservative and diversifying bet-hedging are
identified in B as CBH and DBH, respectively. Dashed gray lines in B depict
changes in the boundaries between different adaptive regions when ad-
justment costs, ka, are doubled from 0.01 to 0.02, and solid gray lines depict
changes when the cost of development, kd, is doubled from 0.02 to 0.04.

Fig. 3. Rates of extinction when transitioning into nearby regions of pa-
rameter space when q = 2.2. Each subplot within each panel depicts the
baseline level of extinction at a given parameter combination (inner square),
and the extinction rates associated with transitioning into the nearest pa-
rameter combination to the top, bottom, left, and right of that cell (tra-
pezoids). The boundaries between response mode regions in Fig. 2B are
presented as dashed lines. (A) We use a color gradient from gray (0%) to red
(100%) to depict absolute extinction rates (i.e., the proportion of simulations
that went extinct during 100 replicate transition runs). (B) Relative rates
were computed as (TR − BR)/BR, where TR = transition rate of extinction, and
BR = baseline rate of extinction at the target parameter combination (i.e.,
where the population is moving into). The color scale for these rates ranges
from blue (≤−100%) to red (≥100%). The absence of blue trapezoids in B
indicates that, in practice, transition rates were always similar or greater
than their corresponding baselines.
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environmental change appears to depend more on the location
of parameter space that populations are moving into than on the
magnitude of the change itself. For example, our simulations in-
dicate that evolution can easily accommodate rather large changes
in environmental signatures if the same general strategy for phe-
notypic expression is appropriate before and after the change.
However, it also shows that populations will decline rapidly and
tend to go extinct whenever they are forced into situations where
their current strategy is no longer appropriate (i.e., when crossing
boundaries into different response mode regions; Fig. 3). These
observations have important implications in the context of global
climate change because they suggest that even species that appear
to be coping well with current changes in environmental signatures
(3) may become vulnerable to extinction if a tipping point is
crossed. Thus, an empirical characterization of evolutionary tipping
point dynamics could be of major importance for a better under-
standing of otherwise cryptic threats to natural populations and for
a proper design and implementation of conservation strategies.
Several aspects of the natural history of an organism are likely

to influence the location and intensity of tipping points in pa-
rameter space. For example, species that pay higher costs of
plasticity may move across an evolutionary tipping point much
sooner than others, because the boundaries between plastic and
nonplastic response mode regions occur at higher predictability
values when ka and kd increase (Fig. 2). Similarly, organisms with
slow life histories that do not reproduce often or that produce
low numbers of progeny during each breeding attempt (modeled
here as low values of q) are likely to be more vulnerable to envi-
ronmental oscillations and tipping point transitions because of their
potentially lower supply of beneficial mutations and their de-
creased ability to rebound from population bottlenecks (Fig. S6).

In addition, our model indicates that the potential for extinction
during tipping point transitions depends critically on the genetic
architecture of relevant traits (37) and in particular on the number
or magnitude of mutations required to achieve the genotypic op-
timum for the new selection regime. For example, we expect that
populations will be more likely to go extinct when the strategy that
needs to be evolved requires either de novo evolution (or loss) of
complex organs and structures or a major readjustment of basic
physiological/developmental pathways. Conversely, we expect lower
vulnerability to extinction when the desired new strategy after tran-
sition is achievable through the evolution of simple genetic changes
that do not interfere with major body plans.
In conclusion, our model provides a unifying theoretical frame-

work for predicting evolutionary responses to environmental change
and leads to a series of testable predictions regarding organismal
capacity to adapt to natural or human induced changes in the en-
vironment. These predictions can be tested through experimental
evolution of microorganisms or through comparative analyses of
populations or species distributed along a gradient of environ-
mental variation. Ultimately, evolutionary models like the one we
present here can aide in determining the specific type of adaptation
that organisms may use to cope with specific environmental
changes, thereby improving our understanding of how populations
and species may respond to either global change or other en-
vironmental challenges.

Methods
Norms of Reaction. The tendency of a genotype to be systematically expressed
as different phenotypes across a range of environmental conditions is known
as the genotype’s norm of reaction. Our model assumes that the effects of
heat and cold stress are symmetric and that selection favors phenotypes that
match the environmental condition in which they are expressed (see below).
These simplifying assumptions imply that if individuals have perfect in-
formation about the environment, then they can maximize their returns
with I = E. Accordingly, we have parameterized reaction norms in our model
as linear functions. Thus, I = I0 + b·C (or I= I0′+b′ ·C with probability 1 − h),
where I0 is the insulation level produced at C = 0, and b is a slope that
determines the degree to which insulation levels change as a function of
changes in environmental cues (for alternative genotype-phenotype map-
ping schemes, see SI Text and Fig. S3).

Fitness. Every individual in our model lives for L = 5 time steps. Each time step
proceeds in a defined order. First, environmental conditions are updated
and environmental cues are computed from Et and P as described above.
Then, individuals have access to the cue and are given the opportunity to
develop or adjust their phenotype accordingly. Finally, individuals are ex-
posed to selection by computing their phenotypic mismatch, M, with the
condition experienced such that

Mi,t =
��Et − Ii,t

��,
where Et is the current environmental state and Ii,t is the individual’s current
phenotype. At the end of a generation, a nonplastic individual’s lifetime
payoff, Wi, is computed as a function of the sum total of phenotypic mis-
matches throughout life, such that

Wi = exp

 
−τ ·

XL
t=0

Mi,t

!
,

where τ is a constant that determines the strength of fitness decay as
a function of total phenotypic mismatch. For plastic individuals (i.e., s > 0.5)

Wi = exp

 
−τ ·

XL
t=0

Mi,t

!
− kd −n ·ka,

where n is the total number of times an individual adjusts its phenotype
during its lifetime.

Individual-Based Simulations.Our evolutionary model is based on populations
of 5,000 individuals exposed to mutation and natural selection for 50,000
discrete, nonoverlapping generations (simulation runs were replicated 100
times at each parameter combination). Reproduction occurs only at the end

Fig. 4. Representative examples of population dynamics during transitions
through evolutionary tipping points in our model. (A) In the simulations
depicted here, populations were forced to move from the region of re-
versible plasticity into that of bet-hedging by lowering P from 0.3 to 0.2 at
log R = 0 (all other model parameters as in the main text). (Top) Change in
the correlation between cues and environmental values. (Middle) Evolution
of traits before and after the transition (black = s, blue = a, green = h, gray =
I0, and red = b; the time of transition is depicted by a dashed vertical line at
generation 5,000). (Bottom) Associated changes in population size over
time. (A) Even though the change in predictability is barely visible to the
naked eye, populations immediately decline after predictability is reduced.
(B) In most situations, populations become extinct because the mutations
required to adapt to the new environment fail to arise. (C) However, in cases
where beneficial mutations arise on time, these traits tend to reach fixation
quickly and evolutionary rescue is complete.
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of each generation and is proportional to the payoffs accumulated during
each individual’s lifetime (Wi). Thus, the number of offspring for individual
i is drawn from a Poisson distribution with mean Wi=W , where W is the
mean cumulative payoff for that generation. As a consequence, the average
number of offspring per individual is equal to one and the size of the off-
spring population is very similar to that of the parent population. To com-
pensate for the occasional differences between these two population sizes,
we randomly removed or replicated offspring when needed to maintain a
population of 5,000. All offspring in our model inherit the alleles at each
locus from their parents, with a per locus mutation probability of μ = 0.001
andmutational steps drawn from a normal distribution with a mean of zero and
an SD of 0.05. The loci that encode slopes in the reaction norms (b and b′) and
reversibility in plasticity (a) are only allowed to mutate if individuals are
plastic (i.e., when s > 0.5). Otherwise, these traits are set to zero and sub-
sequently ignored unless s evolves a value greater than 0.5.

Simulating Transitions to Different Regions of Parameter Space. To include the
possibility of varying population sizes into our model, we replaced relative
with absolute fitness so that reproductive output was directly tied to how
well individuals were able to match their environment. To this end, we
modified the algorithm of our basic model so that the number of offspring for
individual i was drawn from a Poisson distribution with mean q · Wi /Wmax,
where Wmax is the maximum possible payoff (i.e., the payoff an individual
would accrue if it paid no costs and were able to match the exact tempera-
ture of its environment every time step of its life). Because individual payoffs
were compared here to an absolute standard, Wmax, rather than to each
other, the average number of offspring was no longer equal to one and
population size was able to change over time (e.g., everybody attained low
fitness when all strategies in the population did poorly compared withWmax).

To prevent population size from exploding in cases where fecundity was
large, we applied an upper boundary constraint in these simulations at
a population carrying capacity of 5,000 individuals; because increasing car-
rying capacity did not change qualitatively our results, we maintained the
population size used in the constant population size simulations. We then
took the final population of each replicate simulation in Fig. 2 and allowed it
to evolve under different values of P and/or R for 1,000 additional gen-
erations. In transition simulations where R remained the same, we simply
extended the environmental cycle from the time it was left off at the end of
the initial simulation. When R changed, we adjusted the phase of the new
environmental cycle to prevent abrupt discontinuities in the direction or
magnitude of E.

Parameter Settings. All simulations reported above are based on the fol-
lowing parameters unless otherwise stated: L = 5, kd = 0.02, ka = 0.01, τ =
0.25, and q = 2.2. In every replicate, with the exception of transition simu-
lations, the starting population was initialized by setting h = 1 (i.e., assuming
that genomes only code for one norm of reaction), and by drawing the
remaining traits for each individual at random from uniform distributions on
[0, 1] for a and s; [−1, 1] for I0 and I0′; and [−2, 2] for b and b′. Subsequent
evolution was completely unbounded and determined solely by mutation
and natural selection.
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