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For as long as the human blood-brain barrier (BBB) has
been evolving to exclude bloodborne agents from the central
nervous system (CNS), pathogens have adopted a multitude
of strategies to bypass it. Some pathogens, notably viruses
and certain bacteria, enter the CNS in whole form, achieving
direct physical passage through endothelial or neuronal cells
to infect the brain. Other pathogens, including bacteria and
multicellular eukaryotic organisms, secrete toxins that
preferentially interact with specific cell types to exert a broad
range of biological effects on peripheral and central neurons.
In this review, we will discuss the directed mechanisms that
viruses, bacteria, and the toxins secreted by higher order
organisms use to enter the CNS. Our goal is to identify ligand-
mediated strategies that could be used to improve the brain-
specific delivery of engineered nanocarriers, including
polymers, lipids, biologically sourced materials, and imaging
agents.

Barriers to CNS Delivery

Peripherally administered molecules encounter many barriers
before they reach their target. Active agents must avoid degrada-
tion and clearance while traveling through blood, cells, and extra-
cellular matrix. These processes will direct the distribution of
molecules within tissue compartments, thus determining whether
an agent is capable of exerting a biological effect in its target tis-
sue. The blood-brain barrier (BBB) remains one of the prototypi-
cal examples of a tissue barrier that restricts the action of
peripherally administered substances." Non-fenestrated brain
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endothelial cells possess cell-cell junctions that inhibit passive dif-
fusion of circulating agents into the parenchyma, while efflux
transporters, such as P-glycoprotein (Pgp), actively deplete the
concentration of molecules that have achieved entry into cells.

Maintenance of BBB integrity is a critical physiological pro-
cess in human health, since the concentrations of ions, hormones,
and metabolic products must be regulated within tight ranges to
achieve proper neuronal function. It is well-appreciated that
many chemicals and biomolecules that are considered innocuous
in peripheral tissue are in fact neurotoxic when present in the
CNS. Accordingly, the BBB is evolutionarily conserved, and
known to exclude nearly 98% of small molecules and 100% of
large molecules.” The BBB thus poses an often insurmountable
blockade to the preclinical evaluation and clinical translation of
novel therapies to treat CNS disease.

For as long as the human BBB has evolved to exclude
bloodborne agents, pathogens have adopted a multitude of
strategies to bypass it.”> CNS entry may be achieved through
various routes, which are described in Figure 1. Pathogens or
pathogen-derived substances are capable of reaching the CNS
by direct passage across the BBB (transcellular), through
spaces created between cells (paracellular), by carriage within
peripherally circulating leukocytes that engage in immune
surveillance of the CNS (Trojan horse), via the axons of neu-
rons that originate the periphery (retrograde), or through
regions of the brain with distinct BBB physiology (regions of
altered permeability, for example, in the choroid plexus). We
propose that the mechanisms utilized by human pathogens
for achieving CNS tropism could be adapted to engineer the
delivery of drugs to the brain. By linking drugs or drug-
loaded carriers to ligands that instruct pathogen entry into
the CNS, it may be possible to improve the action of drugs
in the brain while reducing systemic dose.

In this review, we will discuss the directed mechanisms that
viruses, bacteria, and toxins use to enter the CNS. Our goal is to
identify ligand-mediated strategies that could be used to improve
the brain-specific delivery of engineered nanocarriers, including
polymers, lipids, biologically sourced materials, and imaging
agents. Within each main class of virus or organism, example
pathogenic strategies that have particular relevance to current
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Figure 1. The mechanisms by which human pathogens and the toxins
they secrete achieve CNS entry include: (1) receptor- and non-receptor
mediated transcytosis, (2), paracellular transport, (3), carriage within
immune cells, (4) retrograde transport from the periphery, and (5) entry
through regions of altered BBB permeability, such as those found in the
choroid plexus of the cerebral ventricles or olfactory neurons.

drug delivery literature are discussed. In the final section, we
describe in vitro and in vivo studies where payloads have been
tethered to a pathogen-derived agent to achieve specific delivery
to neurons or the CNS.

Directed Mechanisms of CNS Entry
by Pathogens and Toxins

Viruses

Viruses are perhaps nature’s first targeted nanocarriers,
depositing their bioactive payload not only within specific cell
populations, but also to precisely targeted intracellular locations.
Viral particle size and structure play important roles in determin-
ing viral infectivity.G‘8 Genomic material, either DNA or RNA,
is encapsulated within a 20-750 nm viral capsid, a protein coat
consisting of structurally similar subunits called capsomeres,
whose composition ultimately dictates capsid size and shape.
Viruses are classified structurally by the symmetry of their capsid,
either as icosahedral, with 20 identical equilateral triangle faces
arranged with 5:3:2 rotational symmetry, or helical, for which
the protein coat is tightly wound around the viral genome to
form a rod. Icosahedral viruses contain a minimum of 60 capso-
meres with larger viruses containing additional capsomeres,
termed hexameres, that are arranged along the flat faces of the
icosahedron. Thus, additional volume for containing greater
quantities of genomic material may be achieved by increasing the
protein content of each face. Complex virus morphologies that
incorporate both icosahedral and helical symmetries are also
possible.

One of the first steps in viral anchorage to target tissue is their
interaction with negatively charged glycosaminoglycans (GAGs)
expressed on host cells, including heparin sulfate and chondroitin
sulfate.” Many viruses are naked, or non-enveloped, in which case
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the capsid proteins are exposed for direct interaction with target
cells.'” Naked viruses replicate within the cytoplasm and, by
necessity, must destroy the host cell to release viral particles.
Other viruses are enveloped, whereby a host-derived lipid bilayer
is obtained by passage of the viral particle through organelle or
host cell membranes, which can alter both shape and flexibility of
viral particles. Because the lipid bilayer is host-derived, the viral
envelope contributes to immune evasion, facilitates interaction
with target cells, and enables virus propagation to occur non-
destructively.'"'* Importantly, viral and host proteins incorpo-
rate with the envelope, either orienting centrally (matrix proteins,
which engage capsid with envelope) or outwardly (glycoprotein
spikes, which engage envelope with host cell). Overall viral avid-
ity for host cells will be a balance between the receptor affinity
and the number and arrangement of those receptors. Some evi-
dence suggests that increasing glycoprotein-receptor affinity
above a critical threshold does not further increase viral uptake.'”

The interaction of a virus with host membrane proteins not
only brings the virus in close proximity to the host cell, but can
also trigger conformational changes to exposed proteins or acti-
vate molecular machinery for viral internalization and transport.
Envelope proteins are therefore important in mediating the virus
release in to the cytoplasm, which makes these proteins a first
lead in identifying potential ligands for receptor mediated inter-
nalization of synthetic constructs.'*'> However, viral tropism is
not determined exclusively by surface-host interactions. This is
especially evident when considering that virus receptors are fre-
quently distributed across a much broader range of tissues than
what the virus is known to actually infect. Intracellular trafficking
patterns and the relative abundance of necessary transcription
factors for viral replication will contribute to selectivity of infec-
tion, thus determining overall virulence.

There are many examples of viruses that are known to be
infective to the nervous system (Table 1)."* Viruses achieve phys-
ical passage into the brain by a variety of mechanisms, including
via transcellular, paracellular, immune cell-mediated, and retro-
grade routes. Some of these viruses — notably, rabies virus, human
immunodeficiency virus, and West Nile virus—possess CNS tro-
pism that is associated with their severe health burden. However,
virulence typically results from the presence and replication of
the virus, as opposed to acute neurotoxicity of the substances that
the virus produces. Many viruses specialize in immune evasion
strategies that contribute to their CNS tropism. The viral pro-
teins that facilitate CNS invasion are therefore an interesting
starting point to direct the tropism of engineered nanocarriers to
treat human disease.

Rabies virus

Rabies virus (RV) is well-adapted for CNS entry, and infec-
tion in humans without timely immunization is nearly unexcep-
tionally fatal. Virus is introduced into muscle tissue through the
saliva of an infected host, where it enters neurons for retrograde
transport to the brain. Infection via aerosol exposure has also
been reported.'” The virus is understood to enrich at the neuro-
muscular junction (NM]J) or sensory neurons, after which it
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Table 1. Examples of neurotropic viruses and their receptors

Known
Point of Receptor
Virus transmission Involvement Reference
Measles Virus Respiratory SLAM 116
CD46
‘Receptor X’
Cytomegalovirus Oronasal; Heparin sulfate "7
Sexually proteoglycans
transmitted EGFR
1 integrins
TLR2
Varicella Zoster Virus Oronasal Man6P 118,119
Insulin
degrading
enzyme
Human Immunodeficiency Bloodborne; CD4 120
Virus Sexually CXCR4
transmitted CCR5
Rabies Virus Peripheral tissue  NCAM [16-19]
exposure; NAChR
Aerosol P75NTR
West Nile Virus Bloodborne TLR3 121,122
aVB3 integrin
Polio Virus Oronasal CD155 123

travels along axons at a speed of up to 3mm/hr to reach the brain.
The RV envelope is comprised of a host-derived lipid membrane
and both a matrix protein and a glycoprotein. The full-length
type I transmembrane glycoprotein is 505 amino acids in length
with 3 N-glycosylation sites, and it protrudes from the viral enve-
lope as trimeric spikes. A 29 amino acid (aa) sequence of the
rabies virus glycoprotein (RVG) was demonstrated in several
independent studies to be a critical requirement for both entry
and transport of virus in the CNS, although the molecular mech-
anisms by which entry and transport occur remain under discus-
sion.'® Potential receptors for RV include the p75 neurotrophin
receptor (p75NTR), neural cell adhesion molecule (NCAM),
and the nicotinic acetylcholine receptor (nAChR).""" Virus is
believed to interact with nAChR at the apex of NM]J folds, which
could facilitate enrichment of RV to improve the efficiency of
neuronal entry. There is evidence implicating NCAM in specific
uptake of virus; for example, the susceptibility of different cell
lines to RV infection was a function of NCAM expression, and
infection-resistant lines were rendered susceptible when trans-
fected with an NCAM-encoding gene.'® Viral particles have
been reported to achieve entry via adsorptive endocytosis, being
localized in clathrin pits, uncoated vesicles, and ultimately

20
lysosomes.

Human immunodeficiency virus

Human immunodeficiency virus (HIV) is the virus that
causes acquired immunodeficiency syndrome (AIDS). Although
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HIV may be best known for its ability to infiltrate the human
immune system (which is one of multiple mechanisms by which
the virus achieves entry into the CNS*'), the HIV-derived
trans-activating regulatory protein (Tat) has gained notoriety in
its own right.”> Tat (86-101 aa) is a small, positively charged
protein that stabilizes transcription to support viral replication,
and it is actively released from HIV-infected cells to produce a
variety of biological effects. Among other functions, Tat is neu-
rotoxic and immunosuppressive.”>** Peptides derived from the
full sequence are cell penetrating and potently capable of cross-
ing the BBB.?” Of note, although the CNS is not the dominant
target tissue for HIV virulence, Tat penetration of brain endo-
thelial cells is well established in vitro and in vivo, with evidence
presented for both active and passive (diffusion-mediated)
mechanisms of entry.?>® Three cell-surface domains have been
identified for active interaction of Tat with endothelial cells,
including GAGs, integrins, and the vascular endothelial growth
factor receptor-2.>’

Bacteria

Bacteria are ubiquitous in the human environment, displaying
a broad diversity of sizes and shapes that have evolved over mil-
lions of years to facilitate their colonization and proliferation in a
diverse set of environments. While bacteria are tremendously suc-
cessful in achieving long-term and relatively innocuous or even
beneficial residence within the human periphery, the presence of
bacteria in the human CNS is almost always a severe health
concern.

A typical bacterium is 500-5000 nm in length, taking on
spherical (cocci), rod-shaped (bacilli), or more complex morphol-
ogies (e.g., vibrio, spirilla, spirochaetes, stella, haloarcula, or fila-
mentous).”® Bacteria are enveloped by an exoskeletal cell wall,
termed the sacculus, which is composed of peptidoglycan, a sugar
with alternating N-acetylglucosamine and N-acetylmuramic acid
repeats.”” A variety of bacteria are capable of entering the CNS,
either directly via exposed protein and receptor interactions,
through immune cells, or by altering BBB 1:>ermeability.4’30 It is
important to note that CNS entry is not always the primary goal
of bacterial pathogenesis, and in fact often results as a secondary
infection (meningitis) that, if left untreated, will be rapidly fatal
to the host.

Clostridium tetani and Clostridium botulinum

Perhaps the most widely appreciated neurotropic bacterial
toxin is the tetanus toxin C-fragment (TTC), secreted by Clos-
tridium tetani. Tetanus toxin enters the CNS via neuromuscular
junctions to cause the spastic paralysis known as tetanus; with an
LD50 of 1 ng/kg, intact toxin is quite deadly. However, when
broken down into its 3 main components, one light chain
(L, 50 kDa) and 2 heavy chains (Hy and H¢, 100kDa com-
bined), independent functions for toxin pathophysiology are
observed. TTC virulence originates from the L chain, which
binds and cleaves the membrane protein VAMP and degrades
synaptobrevin in inhibitory neurons, preventing the release of

GABA and glycine and producing painful muscle spasms.”"**
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The H¢ (C-terminal) and Hy (N-terminal) chains alone are non-
toxic, being responsible for different phases of neuronal transport
of the toxin to target inhibitory neurons. The He (TTC) frag-
ment of tetanus toxin binds to highly enriched areas of polysialo-
gangliosides on peripheral nerve terminals of motor neurons.
Once endocytosed, it is transported by retrograde routes to syn-
aptic terminals connecting to inhibitory interneurons located
within the spinal cord. Once within the spinal cord, the toxin is
endocytosed into the connecting neuron, where the Hy fragment
burrows into the vesicle membrane, translocating the disulfide-
linked L chain into the cytosol of the inhibitory neuron.>*?*

Given the neuronal-targeting action of the H fragments, TTC
is an attractive candidate for facilitating drug delivery to neurons.
However, one challenge to applying TTC in humans is that vac-
cination will promote rapid clearance of TTC linked agents by
immune cells, which could prevent effective administration of
TTC-linked agents. As of 2010, an estimated 64% of the United
States population was reported by the CDC to have been vacci-
nated against tetanus.”” Botulinum toxin (BoN'T) is more potent
than TTC, and immunization against the bacteria is infrequent
in humans. Thus, the H. fragment of BoNT-A, which also
presents strong neuronal tropism, would be expected to be a can-
didate for CNS delivery. However, BoNT-A is known to exert its
primary effect on the peripheral nervous system on cholinergic
nerve terminals. The question of whether BoNT-A can achieve
CNS entry has not yet been resolved.***”

Borrelia, Escherichia coli, and others

Members of the phylum spirochaetes include the neuroinva-
sive genera Treponema and Borrelia, which contain the species
that cause syphilis and Lyme disease, respectively. Spirochaetes
are long and slender bacteria, with a corkscrew-type, helical con-
formation that enables them to propel effectively through highly
viscous fluids. The mechanisms that facilitate Borrelia infection
in the CNS include immune evasion, ECM degradation via acti-
vation of host cell enzymes, and direct passage across the BBB.
These activities are coordinated by a highly diverse set of surface
proteins promoting pathogen interaction with host cells to
achieve tissue tropism.”®?? Borrelia mode of entry into the CNS
remains under discussion, with evidence presented for both para-
cellular (via opening of tight junctions) and transcellular (via
receptor mediated mechanisms) movement across brain endothe-
lial cells. Borrelia interacts with a range of extracellular or cell-
surface-associated host molecules, including fibronectin, glycosa-
minoglycans, integrins, and receptors such as CD40.4041

Although it is a relatively rare complication of human infec-
tion, the bacterium Escherichia coli is capable of achieving physi-
cal entry by paracellular routes into the CNS to cause bacterial
meningitis. Bacterial passage through the BBB is believed to
involve rearrangement of the host cell actin cytoskeleton via acti-
vation of Rho GTPases.”>*® E. coli K1 invasion through human
brain microvascular endothelial cells (HBMEC) was studied to
identify ligands necessary for physical entry of the bacteria.*
Outer-membrane protein A (OmpA) and type 1 fimbriae
(FimH) on the surface of E. co/i bind gp96 and CD48 on the
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Table 2. Pathogenic ligands known to bind to 37/67kDa receptor (LamR)

LamR-binding
Pathogen ligand Reference
Bacteria  E. coli CNF1 124
S. pneumoniae CbpA 47
N. meningitidis PilQ, PorA 47
H. influenzae OmpP2 a
Viruses Dengue virus Glycoprotein E 125
West Nile virus Glycoprotein E 126
Tick borne encephalitis virus Glycoprotein E 127
Sindbis virus E2 Glycoprotein 128,129
Japanese encephalitis virus Unknown 130

surface of HBMEC, respectively, which will lead to cytoskeletal
rearrangement to enable pathogen invasion.

The 37kDa/67kDa laminin receptor (LamR) has come to
the forefront within the past decade as an important receptor
for multdiple neurotropic pathogens, both bacterial and viral
(Table 2). E. coli, Streprococcus pneumoniae, Neisseria meningi-
tidis, and Haemophilus influenzae are bacteria known to use
LamR as a receptor for entry into the BBB; their presence in
the CNS will produce bacterial mc:ningitis.45’46 Ligand bind-
ing domains on these organisms for LamR are conserved struc-
turally, rather than on an amino acid level, and are typically
found on surface-exposed loops of porins within the bacterial
membrane.”*" Competitive binding studies have revealed
that most bacterial ligands target the laminin binding site (res-
idues 161-182) or an extracellular domain (residues 263-282)
on LamR.*’

Listeria

In both healthy and diseased brain, peripherally circulating leu-
kocytes enter the brain parenchyma for immune surveillance of the
CNS.*® Bacteria, viruses, and protozoa are thus capable of infecting
leukocytes as a means to achieve BBB passage. This process is
termed the “Trojan horse” mechanism, and is a well-characterized
point of entry for Listeria monocytogenes. Multiple in vitro and in
vivo studies have demonstrated the ability of L. monocytogenes to
cross the BBB via infected monocytes, macrophages, or micro-
glia.**> In vitro, L. monocytogenes is capable of directly crossing
HBMEC:s with the aid of bacterial internalin proteins, which are
thought to be the mechanism used to cross intestinal epithelium
following bacterial ingestion.”” In the presence of human serum,
however, direct passage of L. monocytogenes through HBMECs is
grossly inhibited. >* These data suggest that entry is primarily medi-
ated by circulating immune cells.

Eukaryotes: secreted toxins

Toxins secreted in animal venoms often contain complex
mixtures of organic molecules and proteins that act in a variety
of ways to affect cellular function. Spider venom, for example,
contains over 10 million bioactive peptides, while cone snails
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produce over 1,000 conopeptides per species.”> Given this
high biological diversity, venom-derived peptides are of
intense interest for therapeutic applications.54 In nature, toxins
are used for both defense and as a mechanism for immobiliz-
ing food sources, and thus venom-derived peptides must often
be modified to circumvent toxicity while maintaining target
specificity. The efficacy of native toxin action may also be
improved by peptide engineering. For example, teprotide, a
nonapeptide derived from the venom of the pit viper Bothrops
jaraca, was found to have antihypertensive effects by inhibiting
angiotensin converting enzyme (ACE). Its lack of oral bio-
availability prompted the isolation of the peptide’s active site,
and further modifications eventually brought about captopril,
an FDA-approved drug now prescribed for hypertension and
congestive heart failure.

Bioactive peptides can alter cellular function via interaction
with cell surface receptors or channels by occlusion or by modify-
ing the properties of ion channel gates to interfere with the kinet-
ics of channel opening. The diversity of venom-derived peptide
structures is extremely broad; however, conserved function ena-
bles grouping. For example, many spider, cone snail, and snake
derived neurotoxins that bind to calcium or sodium ion channels
present a similar structural organization where the peptides form
compact disulfide-bonded hydrophobic cores with short loops.
This conserved structure is termed the inhibitor cystine knot
motif (ICK).”” It is important to recognize that tertiary peptide
structure may be an important component of bioactivity and
should be considered while modifying peptide chemistry. For
example, many types of neurotropic peptides contain a high
number of disulfide bridges for increased stability in biological
fluids.>® Although stability could be an advantage for maintain-
ing bioactivity of ligands in vive, disulfide-linked peptides are
more difficult to produce synthetically.

Spiders

Voltage-gated ion channels, including calcium, potassium,
and sodium, are a common target for neurotropic spider venoms.
Hanatoxinl (HaTx;) is a 35 amino acid peptide with an ICK
motif extracted from the venom of the tarantula Grammostola
spatulata. HaTx; inhibits the Kv2.1 potassium channel by
altering gating energetics.”” Interestingly, HaTx; also binds to
voltage-gated calcium channels, suggesting that the receptor
binding motif may be conserved among different ion channel
types. Another class of potassium channel toxins contains the
phrixotoxins, which are derived from the venom of the Chilean
copper tarantula Phrixotrichus auratus and block Kv4 channels in
a voltage-dependent manner.”® There are millions of sodium
channel toxins found in taxonomically diverse species, suggesting
that this channel has been evolutionarily conserved and was
potentially initiated at an early stage of venom gland evolution.
For example, the d-HXTX-Arla toxin from the Sydney funnel-
web spider, Atrax robustus, inhibits activation of the sodium ion
channel, while p-agatoxins from the American funnel spiders,
Agalenopsis aperta, change the voltage to more negative potentials
for channel activation and opening.”®> The venom of the
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Phoneutria genus of spiders, also known as the Brazilian wander-
ing spiders, secrete venom containing phoneutria nigriventer
toxin-3 (PhTx3), which is a broad-spectrum calcium channel
inhibitor that affects glutamate transport. Components of Pho-
neutria nigriventer venom also have temporary but potent effects
on the BBB, disrupting cell-cell junctions and reducing Pgp
efflux pump function to increase permeability.”® Perhaps most
interestingly, this disruption is spatially heterogeneous and
observed primarily in the hippocampus.®® Peripherally adminis-
tered dye achieved hippocampal entry via transcellular (microtu-
bule-dependent) routes, with paracellular dye observed only in
arterioles and venules, and not in capillaries. Venom neurotoxic-
ity was not directly associated with increased BBB permeability,
raising the intriguing possibility that venom components could
be used for brain-region specific drug delivery.

Snakes and snails

Both snake and snail venoms contain peptide motifs that
antagonize neuronal nicotinic acetylcholine receptors (nAChR).
The nAChR is a pentameric integral membrane protein complex
arranged around a central pore permeable to cations. The neuro-
nal receptors are composed of homomeric species or a mixture of
a- or B- subunits. Receptor subunit composition is specific to
different tissue types, making the nAChR a promising lead for
achieving CNS tropism. For example, the a7-nAChR is widely
expressed in the brain and spinal cord, while a9- and «10-
nAChR have not been found in the brain, being restricted to the
car and some ganglia.®'

Snake venom members include 3-finger toxins, a-neurotox-
ins, and muscarinic toxins, among others.® Three-finger toxins
(TFT) contain 2 major structural domains: the 3-finger domain
which is responsible for binding the nAChR and forming an
interaction with the target cell membrane, and a globular region
which is also necessary for membrane interaction.®> NAChR-
toxin complexes cross cells via endocytosis, which occurs in 2 dis-
tinct phases. In the first phase, the complex is isolated within a
vesicle induced by a Racl GTPase-initiated actin polymerization
step. This is followed by the second phase where the vesicle is
delivered to the lysosome, a mechanism similar to the internaliza-
tion of lipoproteins by macrophages.®*

TFTs are often classified by toxin length. Table 3 lists BBB-
specific long alpha neurotoxins, which bind to homopentameric
neuronal nAChR that are typically comprised of a7 or a3 subu-
nits.**” A well-known example of a TFT nAChR agonist is
a-bungarotoxin (o-Bgtx), which is derived from the genus of
venomous snakes known as Krairs.®® Studies of a-Bgtx have
shown the second loop interacts directly with the nAChR,
directly followed by an influx of Ca**.%®

Conopeptides, or conotoxins, are isolated from marine cone
snails from the genus Conus. Predatory cone snails use their
venom to incapacitate worms, mollusks, and small fish.®%7° Sev-
eral conopeptides are in clinical trial. Ziconotide (Prialt) is a con-
otoxin derived drug that is clinically approved and marketed as a
therapy to reduce severe pain. Conopeptides act on voltage-gated
ion channels, ligand-gated ion channels, G-protein-coupled
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Table 3. Three-finger toxins that specifically target nAChR and have been associated with BBB penetration

Scientific Toxin Relative How IC5o
Snake Name Name I1Cso was determined Reference
King Cobra Ophiophagus hannah Toxin B 325 nM Assayed competitive binding against 13
o-Bgtx on brain capillary endothelial cells
Monocled Cobra Naja Kaouth a-Cobratoxin 4.1 nM Xenopus oocytes expressing human a7- 66
nAChR
Pygmy Copperhead Austrelaps Labialis a-elapitoxin-Al2a 1.2 pM SH-SY5Y cells 132

receptors and neurotransmitter receptors.”’ The a-conotoxins are
between 10-30 amino acids and typically contain disulfide
bonds. Although they are not members of the TFT family, these
peptides demonstrate a diverse array of bioactivity, including
their ability to antagonize the nAChR by interacting with the
same domain as a-Bgtx. The a-conotoxins have shown specific-
ity to various nAChR a-subunits, with a number of a-conotoxins
identified that specifically interact with a7-nAChR, which are
expressed highly in brain (Table 4).°"7>

One potential challenge to conotoxin-based drug delivery strate-
gies is that «a-conotoxins containing the sequence of
XCCXPACGXXXXCX are on the CDC’s select agent list, which
would severely limit their laboratory investigation. This regulation
was put into place due to the high affinity and acute toxicity that
these peptides display. Under these regulations, no research or com-
mercial entity may possess more than 100 mg at a time without
conforming to significant US federal security protocols.”

Scorpions

Scorpion venom contains hundreds of individual compo-
nents, including peptides, proteins, lipids, amines, and nucleoti-
des. The amino acid sequence of at least 250 individual
neurotoxins has been determined, with the majority comprising

Table 4. Conopeptides that specifically interact with nAChR and are
associated with BBB penetration

Protein Superfamily/species Target Reference
AlphaD-cap D-superfamily % 133
AlphaD-mus D superfamily o7 133
ArlA A superfamily a7 134
ArlB A superfamily a7 134
A-TxIA A superfamily a7 135
TxIA(AT0L) A superfamily a7 135
LsIA C. limpusi a7 > a3f2 136
PniB C. pennaceus a7 > a3P2 136
GID C. geographus a7 > a3f2 > a4p2 136
Iml A. californica a7 137
€944449-6
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short (23-67 aa), disulfide-bonded peptides. These peptides pri-
marily target ion channels, and are of focused interest as biophar-
maceuticals.”* Chlorotoxin (CTX) is one particularly interesting
peptide taken from the venom of Leiurus quinquestriatus,
or deathstalker scorpion, that blocks chloride-selective ion chan-
nels. CTX also appears to interact specifically with matrix
metalloprotease-2 (MMP-2) that is expressed in high levels in
brain tumor cells but not expressed in normal tissue. In one
study, CTX demonstrated remarkable histological specificity for
primary brain tumor and primitive neuroectodermal tumors.””
CTX binding was undetectable in normal brain (neurological
disease or healthy brain controls), skin, kidney, or lung. Evidence
for the ability of CTX and CTX-bound agents to bypass the
BBB is found in translational drug delivery work, discussed
below. With 8 cysteines forming 4 disulfide bonds, CTX is rela-
tively resistant to hydrolysis, but expensive to produce. It remains
uncertain how disulfide binding contributes to function. Given
the varied tropism of scorpion neurotoxins for specific receptors
that are expressed differentially in the peripheral and central ner-

vous system, the potential for targeted therapy is high.”® 77

Drug Delivery

Nature is a rich source of biomimicry, having evolved a multi-
tude of strategies that could be used as inspiration for engineering
CNS-targeted nanocarriers (Fig. 2). Some pathogens, notably
viruses and certain bacteria, enter the CNS in whole form,
achieving direct physical passage across cells to infect the brain.
Other pathogens, including bacteria and multicellular eukaryotic
organisms, secrete toxins that preferentially interact with neurons
to exert a broad range of biological effects on peripheral and cen-
tral neurons. In many instances, pathogen-type strategies would
be considered dangerous. For example, whole tetanus toxin
causes painful muscle spasms. However, isolation of the mini-
mally necessary component of the protein that enables its neuro-
tropism achieves neuronal targeting without deleterious effect.
These observations suggest that pathogen-derived strategies for
achieving CNS entry could be engineered to facilitate the accu-
mulation of synthetic or biologically derived nanocarriers in the
brain. Here, we will review drug delivery literature reporting
pathogenic mechanisms for achieving neuronal targeting.

Example strategies for delivering payloads to the brain via patho-
genic mechanisms are summarized in Table 5. Several themes
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Figure 2. Bio-inspired nanocarriers can be engineered to improve drug
delivery to the CNS. In this example, a solid polymer nanoparticle encap-
sulates a therapeutic (small molecule, nucleic acid, or protein) or imaging
agent. The surface of the viral-sized nanoparticle is modified to display a
pathogen-derived peptide (e.g., rabies virus glycoprotein) that will facili-
tate passage of nanoparticle with cargo across the BBB. Therapeutic
compounds that have been encapsulated in biodegradable nanopar-
ticles will be released slowly over time for targeted treatment. A solid
polymer nanoparticle is shown as one example of a targeted drug carrier;
many other types of carriers or conjugates can be similarly modified to
improve CNS delivery (for example, liposomes, micelles, drug-antibody
conjugates, and others'"?).

emerge. First, pathogenic ligands may be tethered to a therapeutic
(small molecule, protein, or gene), to a vehicle containing therapeu-
tic, or to an imaging agent. Tethered agents include low molecular
weight polymers, protein carriers, and viral-sized nanoparticles.
Second, when the pathogenic ligand is tethered to a vehicle capable
of releasing its payload before reaching its target cell, demonstrating
true target specificity can be challenging. Third, the majority of
characterization is performed in wvitro, typically by utilizing

Table 5. Examples of CNS-directed delivery achieved by pathogenic strategies

fluorescence microscopy or competitive binding assays to deter-
mine how modification of a ligand mediates specific uptake of the
payload into target cells. [ vivo evaluation sometimes involves
measurement of uptake or distribution in the CNS by fluorescence
or radiographic methods, however, more compelling evidence is
often provided by therapeutic endpoints. For example, Alvarez-
Erviti et al. engineered self-derived exosomes to express the neuro-
tropic ligand RVG on their surface.”® Exosomes were loaded with
siRNA against GAPDH and delivered systemically, with knock-
down observed specifically in neurons, microglia, and oligodendro-
cytes in the brain. In separate experiments, delivery of siRNA
against BACE1 was confirmed at both the mRNA and protein
level. Since siRNA must be delivered intracellularly to achieve gene
silencing, these results provide compelling evidence that exosomes
targeted to the CNS with RVG actually reach specific cellular tar-
gets within the brain parenchyma.

Both RVG and CTX have been recent but highly popular can-
didates for improving brain-specific delivery of systemically
administered carriers, the former achieving impressive preclinical
success in carrying therapeutics to the CNS in rodent models,
and the latter being a component of a targeted radiotherapy that
reached phase II clinical trial (NCT00114309). One reason that
RVG has risen as a surface-modifying ligand may be the fact that
the portion of glycoprotein understood to be responsible for its
highly specific CNS tropism is known and of reasonably short
length (29-aa). The peptide is commercially available and can be
conjugated to the surface of a nanocarrier with well-defined
chemistry that would be expected to preserve orientation of the
ligand for interaction with its cell surface receptor. The short
sequence of RVG should be taken in direct contrast to what is —
or isn’t, as the case may be — known about other viral envelope
proteins, whose full sequences can be hundreds of amino acids
long and may possess multiple binding sites for attachment to
the surface of a nanocarrier.

Ligand Pathogen Entry Payload Vehicle
Rabies Virus Rabies Virus nAchR, P75, NCAM, GABA; Nucleic Acids”® 138140 Exosomes'>®
Glyocprotein (RVG) presumed direct passage Proteins'*'142 Particles'*®
across the BBB; retrograde Small Molecules'? PEI'40
transport is possible Dendrimers'34144
Other79,142
Chlorotoxin (CTX) Scorpion Venom CI" channels and MMP-2; Nucleic Acids®388 Particles®>87: 89 90, 95, 96,101,103

(Leiurus quinquestriatus) presumed direct passage Proteins®® Lipids®391 9294
across the BBB Small Molecules®® 20103 DGL*
Quantum Dots'** Dendrimers®*
Other105 PEGSS, 98-101
PEI86,88
Dendrotoxin Mamba Snake K" channel Quantum Dots'**
Conantokin-G Snail Venom NMDA receptors Particles'®”
Tetanus toxin C. tetani Peripheral nerve Nucleic Acids'*>4® Particles'®>
polysialogangliosides Protein'08 110.149-154 Lipids'*
148
PEI
Hannah toxin King Cobra Snake nAchR Small Molecules131 Micelles''!
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The first report describing delivery of a therapeutic payload
linked to RVG was published in 2007 by Kumar and colleagues
and serves as an excellent example of the direct translation of viral
strategies for CNS entry to improve the brain-specific delivery of
synthetic nanocarriers.””  RVG-pseudotyped
observed to be infective to neuronal (Neuro2A) but not periph-

lentivirus  was
eral (HelLa) cells, whereas vesicular stomatitis virus (VSV) pseu-
dotyped vectors were infective to both cell types. This result is
perhaps not unsurprising, given the broad peripheral tropism of
VSV. Correspondingly, RVG-pseudotyped virus encoding anti-
viral siRNA protected against Japanese encephalitis virus chal-
lenge, whereas VSV pseudotyped vectors did not provide
protection. RVG was then linked to a 9-arginine repeat to carry
antiviral siRNA from peripheral circulation into the brain; 80%
of mice treated with RVG-linked antiviral siRNA survived JEV
challenge, which was fatal in mice treated with antiviral siRNA
linked to a control rabies virus matrix protein (RVMAT). Since
this initial report, RVG-linked polymers, liposomes, and biologi-
cally derived nanocarriers have been used for successful delivery
of proteins, small molecules, and nucleic acids to the CNS, with
functionally improved outcomes in several distinct disease mod-
els. This research presents compelling evidence that pathogenic
strategies for achieving CNS entry can be adapted to improve
delivery of engineered drug carriers.

The first experiments demonstrating affinity of CTX for
brain tumor cells were published in 1998 by Soroceanu
et al.®® 1-125-labeled CTX was shown to bind to at least two
sites (high and low affinity) on glioma cells, with impressive
specificity of delivery to orthotopic glioma xenografts (39% of
ID/g in tumor bearing versus 12% ID/g in healthy brain).
Subsequent studies have suggested very high specificity of
CTX binding to malignant brain tumor cells in patient biopsy
samples compared to non-target tissue, with CTX staining
more than 90% of brain tumor cells, compared to almost no
detectable staining in uninvolved brain tissue.*” When CTX-
linked Cy5.5 was delivered systemically to mice bearing
orthotopic medulloblastoma, fluorescence was detected widely
in tumor and not in healthy brain, in spite of an apparently
intact BBB, which was demonstrated by the lack of Evan’s
Blue dye extravasation from the vascular compartment and
albumin immunostaining.®’ These data suggest that CTX
agents may be capable of bypassing intact BBB, although spe-
cific mechanisms of entry have yet to be characterized. 1-131-
labeled chlorotoxin (TM-601) reached phase II clinical trial
for targeted radiotherapy by direct application to the tumor
resection cavity. Phase I results demonstrated that intracavi-
tary administration of TM-601 was safe, with no dose-limit-
ing toxicity observed and some evidence of therapeutic
benefit.®? In the time since the phase I results were reported,
additional preclinical work has not only confirmed specificity
of CTX for a range of malignant cell types, but also demon-
strated the ability of CTX to ferry systemically administered
agents into the brain.®>"'%

KC2S, a synthetic peptide derived from toxin b of the king
cobra (Ophiophagus hannah), demonstrates similar affinity for
neuronal nAChR as RVG, as judged by competitive inhibition

€944449-8
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assay against a-Bgtx (IC50s of 33nM and 28nM for KC2S§ and
RVG, respectively). KC2S-linked micelles were taken up in brain
capillary endothelial cells but not in HeLa cells.'®® When deliv-
ered systemically, dye-loaded KC2S-micelles were observed to
accumulate slowly in the brain, and drug-loaded KC2S-micelles
provided a modest survival benefit in an orthotopic glioma
model. Interestingly, although blood pharmacokinetic parame-
ters were nearly identical for KC2S-targeted and non-targeted
micelles, C,,.x and AUC in the brain was significantly higher for
the targeted formulation, suggesting active transport of toxin
linked micelles from blood to brain. Toxins from snails have also
been used to deliver tethered payload to neuronal cells, although
work remains to test delivery effectiveness in vivo.'**'"

TTC bound agents are popular tools for studying neuronal
transport and have been used to achieve targeting in vivo. The
specificity of TTC for gangliosides predominantly concentrated
in neuronal membranes allows TTC-tethered agents to selectively
bind neurons. For example, a recombinant fusion of TTC and
wild type SOD-1, a protein whose mutant form is implicated in
the disease pathology of amyotrophic lateral sclerosis (ALS), was
found to have a significantly higher spread and retention com-
pared to free SOD-1 when infused into the brain of mice.'”® In
another study, Ciriza er a/. demonstrated that weekly limb injec-
tion of a TTC-GDNF fusion, a neurotrophic factor known to
increase the survival and proliferation of neurons, was able to
increase survival and quality of life in SOD-1 mutant mice, while
the injection of an insect recombinant TTC-IGF-1 fusion pro-
tein in SOD-1 mutant mice was able to sufficiently reach the spi-
nal cord but not affect the overall survival in treatment
groups.'”!'? Perhaps most interestingly, evidence for retrograde
transport of SOD-1-TTC to the brain was found after intramus-
cular injection in mice, raising the question of whether a larger
carrier (for example, a drug loaded nanoparticle), could achieve
CNS entry by retrograde route.'"" For a more comprehensive
review of therapeutic recombinant fusion TTC proteins, the
authors refer the reader to Toivonen ef al>'

We focus here primarily on ligand-receptor strategies for
receptor-mediated delivery of therapeutic payloads. However,
it is important to note that for certain pathogenic sequences,
including Tat, peptide-modified nanoparticle entry may occur
via non-receptor mediated mechanisms.''* In several intrigu-
ing and recent reports, non-receptor mediated biomimicry has
been used to engineer the interaction of nanocarriers with cell
targets. For example, Ng and colleagues mimicked bacterial
surface composition to target intracellular actin networks, with
the ultimate goal of overcoming diffusional barriers to actively
propel polymer or lipid nanoparticles through the cyto-
plasm.""® In other work, Niu ez 2/ mimicked viral surface
topography to dramatically enhance silica nanoparticle inter-
nalization by cells."'* Viral and bacterial derived carriers have
also been used as vehicles for targeted drug delivery, although
the emerging field of biologically sourced nanocarriers remains
beyond the scope of this review. These and other examples
highlight the potential broad range of pathogen-derived strate-
gies that could be used as inspiration for engineering targeted
drug delivery vehicles.
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Conclusion

Drug delivery remains a critical challenge to achieving bet-
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ter therapy of disease in the CNS. Most systemically deliv-
ered drugs do not cross the BBB, and those that do are often
poorly Dbioavailable. However, many viruses, bacteria, and

neurotoxins are well-adapted for achieving CNS entry. A
variety of pathogenic mechanisms have already been used to
improve the brain or neuronal tropism of drugs, drug-loaded

vehicles, or imaging agents. These strategies have the poten-
tial to improve delivery of peripherally administered agents to

the CNS, which could facilitate the translation of novel ther-

apeutics to the clinic to treat human disease.
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