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Accurate and rapid diagnosis of active tuberculosis (TB) disease is still hampered by inade-
quate tools. Although current assays relying on single-marker readouts mostly display inad-
equate sensitivity and/or specificity, host-related multimarker signatures are especially
poorly developed. As a consequence, research programs have been initiated to search for
combinations of markers—so-called biosignatures with superior performance. Many such
investigations harness high-throughput platforms to analyze the host response during infec-
tion and disease. A major challenge for these activities is the analysis of vast amounts of data
produced. Specialized bioinformatic tools are being applied to identify the most robust
biosignatures for classification of exposed and diseased individuals and prognosis of risk of
disease in endemic areas. Validation of the most promising biosignatures in ongoing multi-
cohort studies will bring us a step closer to the identification of an accurate unified signature.

Whereas most current diagnostic assays
identify the presence of the pathogen in

the host, host-related biomarkers hold promise
for use in prognostic research and vaccine trials
and for monitoring treatment responses. Over
the last decade, host-related biomarker research
in tuberculosis (TB) has witnessed a clear shift
from investigations on single markers to high-
throughput studies revealing signatures con-
sisting of multiple integrated markers (Weiner
et al. 2013). On the one hand, such high-
throughput profiling has become feasible by
advanced modern technologies. On the other
hand, researchers in the field have realized that
single markers usually lack the sensitivity and/
or specificity of a true correlate that can suc-
cessfully be implemented in a clinical setting.
Biosignatures are believed to hold higher prom-
ise for clinical application in areas such as pa-

thology and immunology and to be suitable
to discriminate etiologically different diseases
with similar clinical features in a single assay
(Weiner et al. 2013). These apparent improve-
ments of multimarker biosignatures, however,
suffer from the drawback of complex readout
and interpretation. Whereas single-marker as-
says can be easily interpreted and evaluated,
studies relying on high-throughput platforms
are faced with the challenge of highly dimen-
sional data sets, thereby requiring more sophis-
ticated bioinformatics tools and more in-depth
interpretation skills.

HIGH-THROUGHPUT BIOMARKER
PLATFORMS

High-throughput platforms currently used in
TB biomarker research comprise (1) proteo-
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mics, assessing the total composition of pro-
teins and peptides in a given biological sample;
(2) metabolomics, which measures small mol-
ecules involved in, or an end product of, basic
metabolic processes taking place in biological
systems; and (3) transcriptomics, which covers
the expression of genes in relation to disease or
in response to a pathogenic insult. Transcrip-
tomics has become the most widely applied ex-
perimental readout in TB biomarker research.
Microarray platforms have thus far been the
method of choice to simultaneously quantify
the transcriptional activity of all genes in host
cells. This approach has revealed a multitude
of potential biosignatures in TB, which can po-
tentially be integrated into clinical settings to
identify active TB disease in suspected cases
(Maertzdorf et al. 2012a; Joosten et al. 2013).
More recent studies also attempt to combine the
transcriptional activity of both human cells and
the pathogen to investigate host–pathogen in-
teractions in more detail.

One drawback of microarray technologies
is the lack of absolute and detailed evaluation
of gene expression. Modern deep sequencing
technologies provide quantitative and qualita-
tive information on gene expression and geno-
mic composition down to the single-nucleotide
level (Normand and Yanai 2013). Because of the
high cost and time-consuming process of such
deep sequencing analyses, this technology is
currently mostly restricted to small-scale ex-
ploratory studies, in which evaluation and val-
idation of identified biomarkers are assessed by
more standard methods.

Although high-throughput platforms cur-
rently in use have their own strengths and
weaknesses, they share the inevitable need for
complex analysis of the huge amount of data
generated.

A prerequisite of successfully applying high-
throughput platforms is the high quality of
the biological samples. In the case of TB, most
studies rely on peripheral blood as the source
for transcriptional, metabolic, and proteomic
profiling. Although the immunological battle
against the invading pathogen is focused at the
site of infection and pathogen persistence (i.e.,
the lung), this pathologic status is reflected in

the peripheral blood by circulating immune
cells (Weiner et al. 2013). For studies focused
on proteomic and genomic analysis of blood
cells, the complexity of such biological samples
poses an additional challenge. The many differ-
ent types of cells present in the blood and their
varying composition between individuals add
an additional level of complexity to the already
staggering number of readout parameters being
assessed (Jacobsen et al. 2006). This biological
variation between individuals, and between dif-
ferent ethnic groups, renders validation studies
in distinct cohorts an essential requirement to
assess the potential clinical validity of biomark-
ers and biosignatures.

SINGLE BIOMARKERS IN TB
DIAGNOSTICS—A MATTER OF SENSITIVITY
AND SPECIFICITY

Among the major challenges in using single ca-
nonical biomarkers in TB diagnostics is the is-
sue of sensitivity and specificity. Generally, cur-
rent clinical diagnosis applies a combination of
“old” and “new” biomarkers. One of the most
broadly used assays is the sputum smear test,
which detects the presence of acid-fast bacteria
in sputum of (suspected) TB cases (Norbis et al.
2013). This sputum smear test has the benefits
of being low cost and easy to handle and of the
fact that a positive result provides certainty
about the presence of mycobacteria. However,
there are several important drawbacks to this
assay. First and foremost of all, this test often
results in false-negative results, thereby miss-
ing a substantial number of patients with active
pulmonary TB (Harries et al. 1998). Second, the
assay does not distinguish between live and
dead bacteria, and thus it cannot detect active
bacterial replication as a hallmark of active TB
disease, which is of importance for monitoring
treatment responses. Thus, although the spu-
tum smear test has a high specificity, its overall
sensitivity is low (Davies and Pai 2008).

A more sensitive and widely applied diag-
nostic test to detect the presence of live bacilli is
culture from sputum. Although a positive cul-
ture result directly proves the presence of live
and replicating mycobacteria in the lungs of a
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suspected TB patient, the slow growth charac-
teristics of Mycobaterium tuberculosis (Mtb)
make the culture assay a lengthy procedure last-
ing up to several weeks. Although new technol-
ogies such as liquid culture have brought this
down to several days, it still is a long time for
rapid patient management (Norbis et al. 2013).

The more recently developed GeneXpert as-
say is designed to detect mycobacteria in spu-
tum of suspected cases. Instead of staining, this
assay uses the much more sensitive (quantita-
tive) polymerase chain reaction (PCR) to detect
specific sequences in the bacterial genome. Al-
though much more sensitive than the smear
test, it too does not distinguish between live
and dead bacteria. The GeneXpert assay has
very high specificity and reasonably good sen-
sitivity (Steingart et al. 2013) and has been
endorsed by the World Health Organization.
It is relatively costly (making routine screening
in clinical settings unaffordable for countries
with low financial resources) and requires spe-
cial equipment operating on a constant and re-
liable power supply.

Often performed in combination with spu-
tum smear or GeneXpert assays is the examina-
tion of chest X rays. Principally, lung lesions and
inflammatory tissue are readily recognized in
patients with active TB (Walzl et al. 2011). How-
ever, X ray does not detect active bacterial rep-
lication and may produce false-negative results,
especially in early stages of TB disease develop-
ment. The specificity of chest X rays is restricted
by the inability to identify the causative agent or
processes underlying pulmonary pathology and
lung damage. Therefore, chest X ray is incon-
clusive for diagnosis of TB (Al-Zamel 2009).

Another group of clinical assays, targeted
at host responses, rely on biomarkers of im-
mune activation and memory to mycobacterial
antigen(s). The widely used tuberculin skin test
(TST) assesses local immunological responses
elicited by mycobacterial antigens (Bekmur-
zayeva et al. 2013) and is primarily used to
show prior sensitization and latent infection.
Subcutaneous injection of an extract of heat-
killed Mtb proteins evokes a delayed-type hyper-
sensitivity (DTH) reaction, causing transient
swelling and reddening of the skin. Although

of low cost, the test has profound limitations
for detecting latent infections both with respect
to sensitivity and specificity, which range wide-
ly depending on the population tested and
can be affected by HIV infection and Bacillus
Calmette–Guérin (BCG) vaccination (Bekmur-
zayeva et al. 2013).

The more recent approach in this group of
diagnostic tests, the interferon-g release assays
(IGRAs), such as the Quantiferon test, rely on
ex vivo activation of T lymphocytes secreting
interferon-g (IFN-g) on stimulation with de-
fined Mtb-specific proteins (Bekmurzayeva et
al. 2013). Although a positive test result indicates
previous exposure of a person’s cellular immune
response to Mtb, it is not a measure of bacterial
activity or even persistence of the bacillus. As
such, failure to discriminate latent Mtb infec-
tion (LTBI) from active TB is a major drawback
of IGRAs (Bekmurzayeva et al. 2013; Norbis
et al. 2013). IGRAs have a sensitivity equal to
the TST but are more specific. However, partic-
ularly in highly TB-endemic regions, IGRAs
are unsuitable for diagnosing active TB disease
(Walzl et al. 2011). Some individual cases under
clinical suspicion of having TB can also present
with negative results, which in turn increases the
risk of false exclusion of TB (Mazurek et al.
2007). The test may also be impaired by T-cell
anergy in HIVþ individuals (Barth et al. 2008).

The lack of sensitivity and specificity of
current diagnostic tools illustrate that a single
marker is unlikely to fulfill the requirements for
reliable discrimination between active TB and
other pulmonary or related infections. As a
consequence, researchers have started searching
for combinations of biomarkers, often referred
to as biosignatures, to tackle the issue of sensi-
tivity and specificity in TB diagnosis.

GENETIC BIOSIGNATURES IN TB DISEASE

One of the most pronounced genetic biosigna-
tures present in the blood of TB patients is the
elevated expression of transcripts involved in
IFN signaling. First described in detail by Berry
et al. (2010), this signature, consisting of both
IFN type I and type II, was shown to be mainly
driven by neutrophils. Albeit a prominent sig-

Toward a Unified Biosignature for Tuberculosis

Cite this article as Cold Spring Harb Perspect Med 2015;5:a018531 3

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



nature in TB disease, an IFN gene expression
profile has also been observed in other chron-
ic inflammatory conditions like systemic lupus
erythematosus (SLE) and sarcoidosis (Koth et
al. 2011; Maertzdorf et al. 2012b; Bloom et al.
2013). As such, an IFN signature in itself is in-
sufficient for a definitive identification of TB,
but it may be implemented for the identifica-
tion of a more generic underlying inflammato-
ry condition. Likely, it will also be of value for
the definition of predictive biomarkers (e.g., for
progression of LTBI toward active TB disease
before actual clinical signs are observed).

Another pronounced transcript signature,
which has been described in several studies, is
the increased activity of the Fc g receptor sig-
naling pathways. First described as an increased
expression of CD64 (another alias for FCGR1A)
in TB patients (Jacobsen et al. 2007) and later
confirmed by others (Maertzdorf et al. 2011a;
Joosten et al. 2012), its expression was shown to
be strongly correlated with other inflammatory
markers with a central role for the JAK-STAT
pathway (Maertzdorf et al. 2011b). This feature
is also illustrated by its connection to IFN-in-
ducible genes and its association with Toll-like
receptors (TLRs), guanylate-binding proteins
(GBPs), and components of the complement
system (Maertzdorf et al. 2011a). Key regulators
within the JAK-STAT pathway are cognates of
the suppressor of cytokine signaling (SOCS)
family. Dysregulated expression of SOCS3 in T
lymphocytes from TB patients has also been
suggested to play a role in susceptibility to TB
(Jacobsen et al. 2011).

Activation of the complement system, as in-
dicated by increased gene expression of multi-
ple factors herein, may, on the one hand, reflect
an innate defense mechanism against Mtb. On
the other hand, its chronic activation may sig-
nificantly contribute to inflammation-mediat-
ed tissue damage (Welsh et al. 2012), contrib-
uting to the pathogenesis of the disease.

Involvement of the complement system is
also observed in autoimmune diseases like
SLE (Ballanti et al. 2013), in which the disease
is not triggered by a pathogen, but rather by a
dysregulated chronic activation of the comple-
ment system. Complement activation in TB and

similarities with SLE are also illustrated by the
high enrichment of TB-induced genes in signa-
tures associated with SLE (Maertzdorf et al.
2011a).

A recent publication was the first to combine
information of all genetic biosignatures in blood
of TB patients described so far (Joosten et al.
2012). As the diverse platforms used in tran-
scriptome analysis for TB biomarkers by various
authors are not directly comparable with canon-
ical analytical methods, the authors have ana-
lyzed a “superset” of transcripts, which have
been found in the previous experimental stud-
ies. This resulted in improved sensitivity, al-
lowing identification of significant enrichment
in pathways and groups of genes which were
until now not linked to a TB signature. While
confirming the presence of most described sig-
natures in multiple studies, their study identi-
fied a hitherto underappreciated role of the B-
cell compartment. The results also point to an
involvement of TREM1 signaling in active TB
disease, something that had not been described
in any of the previous studies separately (see also
Walzl et al. 2014). Shortly after, Cliff et al. (2013)
also identified significant changes in expression
of a network of B-cell-related genes during dis-
ease resolution.

The major biological pathways active in TB
can be clearly grouped into three dominant
clusters—that is, (1) signaling and inflamma-
tion pathways, (2) IFN and immune pathways,
and (3) T- and B-cell pathways—based on a set
of 1446 differentially expressed transcripts, as
recently shown by Bloom et al. (2013). First
described by Maertzdorf et al. (2012b), this
study revealed similarities, but also significant
differences in blood gene expression signatures
between TB and sarcoidosis. Moreover, Bloom
et al. also included pneumonia and lung cancer
in their study, indicating that, whereas TB and
sarcoidosis share the dominant IFN signatures,
the other two pulmonary diseases show distinct
signatures dominated by inflammatory genes.

Although the above-described biological
signatures reflecting TB pathology have been
identified in multiple studies, their unique spe-
cificity for TB is low and many signatures are
shared with other inflammatory diseases. These
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features provide important insights into the
biology underlying TB pathology; yet they are
of lesser value for clinical applications such as
distinguishing TB patients from healthy indi-
viduals or from patients suffering from other
diseases. Several studies have therefore tried to
identify gene expression signatures that can spe-
cifically accomplish such distinctions, regard-
less of their biological relevance. The number of
gene transcripts in such signatures range from
three (Jacobsen et al. 2007) to hundreds (Berry
et al. 2010; Bloom et al. 2013). Although the
sensitivity and specificity of these signatures in
distinguishing TB patients from healthy indi-
viduals are quite robust in most studies, they
also seem to contain cohort-specific informa-
tion at least to some degree. This is, for example,
illustrated by the study by Bloom et al. (2013),
applying signatures from two other studies
(Koth et al. 2011; Maertzdorf et al. 2012b)
onto their own data set led to a significant re-
duction in sensitivity in class predictions
(Bloom et al. 2013). A global analysis combin-
ing genetic signatures in numerous cohorts of
TB patients and controls from various TB-en-
demic areas around the world would allow the
identification of a unified and general signature.

METABOLIC PROFILING BIOMARKERS IN TB

Although gene expression biomarkers from
whole blood RNA have been widely applied
to characterize differences between TB pa-
tients and control groups, other avenues have
been taken as well. Assuming that RNA expres-
sion from whole blood predominantly reflects
changes in peripheral blood cells, additional in-
formation can be gained by measuring mole-
cules that are derived directly from the site of
infection (Maertzdorf et al. 2012a). Weiner et al.
(2012) analyzed metabolic profiles in serum
samples of TB patients and healthy controls
and showed that a biosignature based on meta-
bolic profiles can achieve sensitivity and specif-
icity, at least on par with transcription profiles
(Weiner et al. 2012). Some of the predictive me-
tabolites were directly derived from the site of
infection. Kynurenine, which was found at sig-
nificantly higher levels in the sera of TB patients

than in controls, is synthesized from trypto-
phan by the enzyme IDO1, induced in macro-
phages and dendritic cells in contact with Mtb.
It is likely that high kynurenine abundance in
serum reflects release of this molecule from
granulomas.

Among groups of metabolites that were
found at different abundance in TB patients
and healthy controls, distinct amino acids (e.g.,
histidine and cysteine), bile acids and uremic
toxins (such as taurocholate and glycocholen-
ate), N-acetylneuraminate, cortisol, fibrino-
peptides, and lysophosphatidylcholines were
most prevalent (Weiner et al. 2012). Intriguing-
ly, several processes comprising changes in their
metabolic components (including higher levels
of kynurenine and cortisol and lower abun-
dance of lysophosphatidilcholines, which may
be caused by inhibition of phospholipase A2)
can be linked to immunosuppressive mecha-
nisms.

In a parallel approach, cytokines were de-
termined in the same study groups. Distinct
cytokines correlated with defined metabolites,
showing the link between metabolite abun-
dance in serum and the immune processes in
response to TB disease. For example, the che-
mokine C-X-C motif chemokine 10 (CXCL10,
IP-10), the cytokine interleukin 6, and the
growth factor granulocyte colony-stimulating
factor (GCSF) showed a negative correlation
with abundances of several amino acids (for
example, glutamine and tryptophan) and pos-
itive correlation with metabolic markers elevat-
ed in sera of TB patients, including N-acetyl-
neuraminate and hypoxanthine.

VARIABILITY OF BIOMARKERS IN TB
PATIENTS

Both transcriptomics and metabolomics re-
vealed that the variance of the variables was
higher in TB patients than in healthy subjects
(J. Weiner, unpubl.). This becomes most ap-
parent when visualization techniques such as
Chernoff faces or spider plots are applied—
the corresponding features are more profound
in patients than in healthy individuals. A prox-
imate explanation for this phenomenon is that
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the disease induces higher expression of sever-
al genes, and expression strength may correlate
with variance of the measured expression sig-
nal. However, differential variability of gene
expression (Ho et al. 2008) has been found in
immune-modulated, stress-induced, and hor-
monally regulated genes in mice (Pritchard et
al. 2001).

Some other chronic infectious diseases are
characterized by a spectrum of clinical manifes-
tations. Notably, in leprosy, a disease caused by
Mycobacterium leprae, clinical manifestations
range from tuberculoid leprosy to lepromatous
leprosy. Furthermore, despite the fact that TB is
often depicted as having two stages (latent and
active TB), the reality is more complex (Barry
et al. 2009), and the spectrum of clinical TB
disease includes a diversity of manifestations
and stages that falls between these two extremes
and depends on a balance between pro- and
anti-inflammatory responses (Lin and Flynn
2010). Moreover, even within an individual
host, the granulomatous lesions show a remark-
able diversity both in pathology and in response
to treatment (Lin et al. 2014). Thus, the host
response to TB is variable, and consequently
individual variability is reflected by gene ex-
pression and metabolic profiles. This merits a
more detailed analysis.

BIOSIGNATURES AND MACHINE LEARNING

Biosignatures are often presented as lists of
genes that distinguish between groups of in-
terest (e.g., between TB patients, patients with
other diseases, and healthy controls). Generally,
these genes are differentially expressed between
groups. However, the reverse need not be true:
Generating a biomarker set or a multivariate
biosignature is not limited to selecting genes
that differ most profoundly between condi-
tions. A biosignature must be capable of distin-
guishing not only the samples it was derived
from (the training set), but more importantly,
any novel sample set that it will be confronted
with. For example, if one has selected a number
of genes that differentiate between the condi-
tions in a given sample set, one needs to test
whether these genes distinguish between condi-

tions in another, independent set (the valida-
tion set). In essence, this is an application of
supervised machine learning (ML).

An ML model is defined not only by a list of
genes, metabolites, or other predictive variables,
but also by the specific values of these variables
and model parameters, such as weights which
determine how each variable influences the
model. Kaforou et al. (2013) analyzed a substan-
tial number of samples from 12 different groups,
from two cohorts (Malawi and South Africa,
see Table 1), and three disease states (healthy
control subjects, TB patients, and patients
from a disease other than TB, which includes
TB in differential diagnosis) (Kaforou et al.
2013). Furthermore, the study included HIV2

and HIVþ individuals. The authors developed
a simple, yet effective ML algorithm. Based on
the training set, a list of less than 50 genes was
compiled to differentiate between distinct dis-
ease states, and each gene was assigned a weight
of þ1 or –1 depending on whether it was more
highly expressed in TB (þ1) or in the control
group (–1). The expression values from the se-
lected list were multiplied by the weights and
then summed and compared with a threshold
calculated based on the levels of gene expression
in the training set. Thus, the actual biosignature
consisted of (1) a list of genes, (2) the assigned
weights, and (3) a parameter (disease risk score
[DRS] threshold) based on expression levels
from the training set. In more complex ML al-
gorithms the number of parameters required
can be even higher. Notably, this same signature
may not necessarily be successful if applied to
another study based on an unrelated cohort and
an independent readout platform.

MACHINE LEARNING ALGORITHMS

Several supervised ML algorithms exist, of
which only a few have been exploited for TB
data set analyses thus far (Table 1, see Method
column).

k-nearest neighbors (KNN) (related to an
unsupervised clustering method, k-means clus-
tering) has been successfully applied by Berry
et al. (2010). In KNN, the variates are treated
as coordinates in an N-dimensional space,
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Table 1. List of studies of human whole blood transcriptome in the context of active TB

Cohort

Study groups (sample

size)

Classification error measures

and error rates Method Study

United Kingdom
(training set)

TB (13), LTBI (17), CTRL
(12)

All results TB versus non-TB:
sensitivity, 91.7%;
specificity, 96.6%

k-nearest
neighbor

Berry et al.
2010a

United Kingdom
(test set)

TB (21), LTBI (21), CTRL
(12)

Sensitivity, 61.7%;
specificity, 93.8%;
indeterminate, 1.9%

k-nearest
neighbor

Berry et al.
2010

South Africa
(validation set)

TB (20), LTBI (31) Sensitivity, 94.1%;
specificity, 96.7%;
indeterminate, 7.8%

k-nearest
neighbor

Berry et al.
2010

South Africa TB (33), LTBI (34), CTRL
(9)

TB versus LTBI using a four-
gene signature: sensitivity,
94%; specificity, 97%

Random forest
with LOO
cross-
validation

Maertzdorf
et al. 2011b

Gambia TB (46), LTBI (25), CTRL
(37)

TB versus non-TBe: accuracy,
82%; sensitivity, 74%;
specificity, 87%

Random forest
with LOO
cross-
validation

Maertzdorf
et al. 2011a

United States CTRL (12) Accuracy, 100% PAM-R Lesho et al.
2011Brazil LTBI (6), TB (5) Accuracy, 100% PAM-R

Germany TB(8), sarcoidosis (18),
CTRL (18)

Three-way classification
error rates: sarcoidosis,
5.6%; TB, 12.5%; CTRL,
0% (overall error rate,
4.55%)

Random forest
with LOO
cross-
validation

Maertzdorf
et al. 2012b

United Kingdom;
France (training
set)

TB (16), sarcoidosis (25),
pneumonia (8), lung
cancer (8), CTRL (38)

TB versus non-TB:
sensitivity, 88%;
specificity, 94%

Support vector
machines

Bloom et al.
2013

United Kingdom;
France (test set)

TB(11), sarcoidosis (25),
pneumonia (6), lung
cancer (8), CTRL (52)

Sensitivity, 82%; specificity,
91%

Support vector
machines

Bloom et al.
2013

United Kingdom;
France
(validation set)

TB (8), sarcoidosis (11),
CTRL (23)

Sensitivity, 88%; specificity,
92%

Support vector
machines

Bloom et al.
2013

South Africa TB/HIVþ (49), TB (47),
LTBI HIVþ (48), LTBI/
(50), OD/HIVþ (68),
OD/(49)

TB versus LTBI: sensitivity,
95%; specificity, 90%. TB
versus OD: sensitivity,
93%; specificity, 88%

DRS Kaforou et al.
2013

Northern Malawi TB/HIVþ (60), TB/ (59),
LTBI HIVþ (41), LTBI/
(36), OD/HIVþ (38),
OD/(39)

TB versus LTBI: sensitivity,
95%; specificity, 90%. TB
versus OD: sensitivity,
93%; specificity, 88%

DRS Kaforou et al.
2013

South Africa TB (10), cured (10)c,
recurrent(10)c, LTBI
(10)

Accuracy, 93.75% Stepwise linear
discriminant
analysis

Mistry et al.
2007

Indonesia TB (23)d, CTRL (23) Not used for classification task Ottenhoff
et al. 2012

South Africa LTBI (38), TB (29) Not used for classification task Bloom et al.
2012United Kingdom TB (8)b Not used for classification task

Continued
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where N is the number of variables (e.g., genes,
for which expression has been measured). For
each group, its center is determined by averaging
the position of all samples that belong to the
group. Classification of new samples relies on
determining the distance from each of the cen-
ters and choosing the center closest to the sam-
ple in question. A major advantage of this meth-
od is that decisions can be easily interpreted.
The DSR algorithm described above and used
by Kaforou et al. (2013) can be considered as a
variant of this method, using Manhattan dis-
tances (in which the expression levels of single
genes are summed) instead of Euclidean dis-
tances (in which the distance is measured as a
square root of sum of squared differences in
gene expression).

Random Forests (RF) ML algorithm is an
ensemble-based algorithm closely related to an-
other class of ML algorithms, decision trees. RF
generates a large number of decision trees; when
applied to a sample of the validation set, the
decision how to classify this sample is based
on the majority vote from the trees. RF has
been successfully applied in several settings; in
gene expression analysis, it compares favorably
with other methods. A major advantage of RF is
the fact that high accuracy can be obtained with
only a few predictors (Diaz-Uriarte et al. 2006)

and that accurate cross-validated error rates are
provided “out of the box” (so-called OOB clas-
sification error rates).

Support vector machines (SVMs) are a type
of generalized linear classifiers. Data points
(samples) are mapped onto a multidimension-
al space in such a way that it is possible to cal-
culate a hyperplane (a multidimensional plane),
which separates the classes of samples. Whereas
originally suitable only for two-class data, it can
be extended to analyze also multiclass problems.

PERFORMANCE OF BIOSIGNATURES

Some 500 gene expression profiles have been
collected from TB patients in different studies
and the majority of these have been used in
an ML context to generate biosignatures of TB
(Table 1). Several groups have attempted to
compare the signatures generated based on
their data with the signatures based on lists of
genes from other publications, with the overall
outcome of achieving lower error rates when the
signature was defined from the same data set
than when a signature derived from another
data set and a different algorithm were applied.
Analyzing disease-specific biosignatures, Bloom
et al. (2013) applied lists of genes correspond-
ing to the biosignatures published by Maertz-

Table 1. Continued

Cohort

Study groups (sample

size)

Classification error measures

and error rates Method Study

South Africa
(training set)

TB (18) at time of
diagnosis, and 1, 2, 4,
and 26 weeks
postdiagnosis

Overall accuracy, 92.6% Neuronal
network

Cliff et al.
2013

South Africa
(test set)

TB (9)

Donors were HIV2 unless indicated otherwise.

CTRL, healthy controls; DRS, disease risk score; HIVþ, human immunodeficiency virus positive; LOO, leave one out; LTBI,

latent tuberculosis infection; OD, other diseases; PAM-R, prediction analysis of microarrays with R; TB, tuberculosis.
a Data for the 393-transcript signature.
b Eight patients were followed up during TB treatment.
c Cured, cured patients who underwent one episode of TB; recurrent, cured patients who underwent two or three recurring

episodes of TB; six individuals from each group were used as a training set, and the remaining four individuals were used as a

test set.
d Samples from 23 patients were collected before, during, and after successful completion of the treatment.
e Data provided by the authors (J Maertzdorf, pers. comm.).
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dorf et al. (2012b) and Koth et al. (2011). They
found that the derived SVM models had a much
lower performance when applied to their data
set. Similarly, Kaforou et al. (2013) used the
393-gene list derived from Berry et al. (2010)
and found that when applied to their meth-
od and their data, its performance was much
lower than the models corresponding to the
list of genes originally derived by Kaforou et
al. (2013).

Some sets of genes can (and do) perform
objectively better than others when used in a
classification task ceteris paribus. Yet, lists of
genes derived from a biosignature comprising
specific parameters and applied to a specific
data set generated with a specific microarray
or RNAseq platform need not be compatible
with other data sets and other algorithms.
Gene lists produced by variable selection will
differ even for the same data set when different
algorithms are applied to the same data set. For
a meaningful comparison, complete biosig-
natures, including the specific algorithms and
parameters, such as weights or decision trees,
should be directly applied to the same data
set. Such a comparison has not yet been per-
formed. Consequently, one of the major chal-
lenges awaiting the field of TB biomarkers is
the unification of diverse platforms and data
sets to achieve a platform-independent, global
signature of TB.

A supervised ML algorithm is trained using
a set of samples with known associations to
groups (e.g., healthy controls and TB patients).
Applied to a new set of samples, the algorithm
should correctly classify these samples. In a sim-
ple setting with only two classifications (e.g.,

disease vs. healthy, or one selected class against
all other classes), the errors of the algorithm
correspond to type I and type II errors in a hy-
pothesis-testing framework. Type I errors (false
positives) arise when a “negative” sample (e.g.,
from a healthy patient) is classified as “positive”
(e.g., TB disease). Type II errors (false negatives)
arise in the opposite situation: A positive sam-
ple is classified as negative. Therefore, it is log-
ical to describe the performance of an algorithm
by its overall error rate (also termed accuracy)
(Table 2).

For a single sample, the probabilities of type
I and type II errors can be given. However, the
actual number of false-positive and -negative
predictions (e.g., in a clinical setting) also de-
pends on the population demography. The ac-
tual numbers of incorrect predictions depend
on the relative frequency of each group. An al-
gorithm with sensitivity and specificity of 99%
each will produce 10 times more false positives
than false negatives if applied for detection of a
disease with a 10% incidence in a population.
This is known as the “accuracy paradox”: If the
prevalence of a group is sufficiently low, then an
algorithm that uniformly predicts that a sample
belongs to a majority group (e.g., healthy rather
than TB disease) can have a higher accuracy
(lower overall error rate).

More suitable measures of performance of
an algorithm are available. Precision rate (also
called positive predictive value, PPV) is the
proportion of true positives among all samples
that have been classified as positive. Another
group of measures is derived from the receiv-
er–operator characteristics (ROC) curves. If an
ML algorithm is applied to a test set, the pre-

Table 2. Measures of machine learning algorithm performance

Prediction

Accuracy measureNegative Positive

Reality
Negative TN FP, type I error Specificity ¼ TN/(TN þ FP)
Positive FN, type II error TP Sensitivity ¼ TP/(FN þ TP)

Accuracy
measure

NPV ¼ TN/(TN þ FN) PPV ¼ TP/(FP þ TP) Accuracy ¼ (TP þ TN)/N
¼1 – overall error

FP, false positive; FN, false negative; NPV, negative predictive value; PPV, positive predictive value; TN, true negative; TP, true

positive.
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dictions of that algorithm are sorted by their
confidence to derive an ROC curve. The area
under the curve is a test statistic with known
characteristics; a set of random predictions will
form a diagonal, and the greater the area, the
better the predictions.

Attempts to estimate the predictive power of
a whole set of transcript biomarkers in TB have
reported strikingly similar results (Fig. 1; Joos-
ten et al. 2013). The accuracies, specificities, and
sensitivities frequently range between 85% and
95% (Table 1). Although two studies obtained
no misclassifications in some comparisons, this
would be attributable to the small sample size
used: Given an error rate of 5% and a total sam-
ple size of 20, one expects on average only one
incorrect classification. Intriguingly, a study fo-
cusing on metabolic profiles rather than tran-
scriptomes also revealed 3%–5% overall errors
(Weiner et al. 2012). This could indicate an up-
per limit for the performance of biomarkers
derived from blood samples.

Note that the performance of biomarkers
can only be as good as the quality of the training
set—in this case, the accuracy of clinical diag-
nosis of TB. If the training set includes mis-
classified individuals, then the performance of
the biosignature will inadvertently suffer. This is
particularly important when considering com-
parisons of TB patients with clinically healthy,
but latently infected individuals. Most attempts
to harness biomarkers for the segregation of
healthy uninfected and individuals with LTBI
have produced relatively large error rates (often
.30%), which could be the result of low sensi-
tivity and low specificity of the tests used to
determine the infection status. Considering
that both groups are free of active disease, their
blood signatures are more similar, resulting in
a lower discriminative power to distinguish the
two groups. Moreover, subclinical TB may al-
ready progress to clinical disease in some of
these individuals and manifest as an apparent
TB-like signature. However, if this were the case,
it could in fact be harnessed for diagnosis TB in
early stages using a biomarker-based diagnostic
approach.

Another important issue has been raised by
Kaforou et al. (2013). These authors compared

the performance of biomarkers depending on
whether the biosignature was based on a train-
ing set which included, in addition to samples
from HIV2 donors, also HIVþ TB patients and
HIVþ controls. They observed that performance
substantially increased when HIVþ TB patients
were included; biomarkers derived from such a
test set could be used to accurately classify HIV2

patients, but not vice versa: if the model con-
struction was based on HIV2 TB patients only
and controls only, then its performance in the
HIVþ population was poor.

PREDICTIVE BIOSIGNATURES FOR TB

A large body of evidence shows that diagnos-
tic biosignatures of active TB disease can be
defined. However, a high-throughput biosig-
nature capable of predicting TB disease at a
subclinical stage remains to be identified. This
could be used for predicting (1) TB reactivation
(progression from latent to active TB), (2) pro-
tective vaccine efficacy, and (3) treatment out-
come.

It is tempting to assume that a host response
signature can be defined at the molecular level,
which precedes clinical diagnosis. This issue
is being addressed by two ongoing efforts, a
biomarker study based on an adolescent cohort
(Mahomed et al. 2013) and GC6-74 (http://
www.biomarkers-for-tb.net/consortium). In
these studies, household contacts of active TB
patients are being monitored over years to de-
fine signatures that can predict progression from
infection to active TB disease. In the GC6 study,
for example, �3% of �4500 household con-
tacts developed active TB disease during the ob-
servation period of 2 years. Currently, metabolic
and transcriptomic signatures are being defined
that predict active TB disease at an early stage
(i.e., before clinical TB diagnosis). It is hoped
that it will be possible to capture early changes
in gene expression and metabolic composition
predictive of clinical TB onset thereafter.

The effect of drug treatment of TB on tran-
scriptomic profiles has been investigated in in-
dependent studies by Bloom et al. (2012) and
Cliff et al. (2013), who both detected rapid
changes in IFN signaling and in innate immu-
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Figure 1. Normalized expression profiles of two selected genes (BATF2, basic leucine zipper transcription factor ATF-Like 2;
GBP5, guanylate-binding protein 5) across different studies and study groups show a consistent landscape of TB responses
on transcriptional level. CTRL, healthy donors (uninfected or with latent TB); other, other diseases; TB, clinical TB
diagnosed.
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nity, as early as 1 to 2 weeks after initiation of
treatment. This finding suggests that it would be
possible to quantitatively measure the response
to TB treatment at an early stage of chemother-
apy, although larger studies are needed for val-
idation.

CONCLUSIONS

Most current diagnostic assays for TB have
their own specific drawbacks and often rely
on canonical single biomarkers with insuffi-
cient sensitivity and specificity. These limita-
tions have prompted intensive search for multi-
marker host signatures with better predictive
accuracy and improved diagnostic validity.
High-throughput platforms, notably transcrip-
tomics and metabolomics, have revealed nu-
merous TB-related features, the majority of
which have been confirmed in multiple studies.
Focusing on the host response in TB, results are
to a large extent compatible and reveal that
the overall accuracy of a transcript biosignature
can be as high as 95%. Bioinformatic analyses
of the signatures identified are currently under
validation in multicohort studies, bringing us
a step closer to the identification of a unified
signature of general applicability. Future ef-
forts will be focused on validating the existing
findings and, most importantly, on derivation
of predictive signatures, useful for early diag-
nosis of risk of disease in infected healthy indi-
viduals.
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