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Correspondence: iuliana_ene@brown.edu; al.brown@abdn.ac.uk

Fungal pathogens must assimilate local nutrients to establish an infection in their mammalian
host. We focus on carbon, nitrogen, and micronutrient assimilation mechanisms, discussing
how these influence host–fungus interactions during infection. We highlight several emerg-
ing trends based on the available data. First, the perturbation of carbon, nitrogen, or micro-
nutrient assimilation attenuates fungal pathogenicity. Second, the contrasting evolutionary
pressures exerted on facultative versus obligatory pathogens have led to contemporary path-
ogenic fungal species that display differing degrees of metabolic flexibility. The evolution-
arily ancient metabolic pathways are conserved in most fungal pathogen, but interesting
gaps exist in some species (e.g., Candida glabrata). Third, metabolic flexibility is generally
essential for fungal pathogenicity, and in particular, for the adaptation to contrasting host
microenvironments such as the gastrointestinal tract, mucosal surfaces, bloodstream, and
internal organs. Fourth, this metabolic flexibility relies on complex regulatory networks,
some of which are conserved across lineages, whereas others have undergone significant
evolutionary rewiring. Fifth, metabolic adaptation affects fungal susceptibility to antifungal
drugs and also presents exciting opportunities for the development of novel therapies.

Nutrient assimilation is a central and funda-
mental prerequisite for the growth and sur-

vival of all living organisms. Pathogenic fungi
inhabit dynamic and contrasting niches and
must display rapid and effective adaptation to
changes in nutrient availability in these mi-
croenvironments. To achieve this, they regulate
specific nutrient uptake mechanisms and mod-
ulate their metabolism, displaying an impres-

sive degree of metabolic flexibility. This meta-
bolic flexibility, which enhances the fitness of
the fungus, is often as essential for pathogenic-
ity as virulence factors, thereby representing an
attractive target for potential therapeutic inter-
vention.

The major fungal pathogens of humans have
evolved in a polyphyletic manner (i.e., pathoge-
nicity has emerged independently in different
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phylogenetic branches of the fungal kingdom).
Furthermore, major fungal pathogens display
different lifestyles, and, consequently, their met-
abolic flexibility has been shaped by different
evolutionary pressures. For example, the asco-
mycete Candida albicans is a facultative patho-
gen that exists primarily as a commensal of the
oral cavity, gastrointestinal tract, and urogenital
tract but can also persist within other extracel-
lular microenvironments (blood, tissues) and
within intracellular microenvironments (inside
damaged epithelial and endothelial cells, and
even the phagolysosome of macrophages). Dur-
ing its commensal stage, C. albicans must adapt
to the nutrients present on mucosal surfaces
and compete with cohabitating microflora,
whereas during infection, the fungus exploits
an alternative array of nutrients available in
host tissues. The apparent lack of a significant
environmental niche for C. albicans (Odds
1988) means that, in recent evolutionary time,
the metabolic flexibility of this fungus has been
tuned to these host niches. In contrast, fungi
such as the basidiomycete Cryptococcus neo-
formans and the ascomycete Histoplasma cap-
sulatum, are opportunistic pathogens that are
associated with environmental niches such as
pigeon guano, soil, and trees but can cause
chronic pulmonary infections and devastating
systemic infections in immunocompromised
individuals (Sil 2006; Heitman 2011). The met-
abolic flexibility of these fungal pathogens en-
sures survival during the saprophytic phases of
their life cycle as well as promoting their ability
to cause pulmonary and disseminated infec-
tions (Kronstad et al. 2012). Therefore, different
evolutionary pressures have been imposed on
the processes that mediate metabolic adaptation
in major fungal pathogens.

In addition, there are significant differences
between fungal pathogens regarding the degree
of evolutionary adaptation to their mammalian
hosts. For example, the filamentous ascomycete,
Aspergillus fumigatus is probably an accidental
pathogen. This “grass eater” (Tekaia and Latgé
2005) lives mainly as a saprophyte, degrading
plant and other organic material in the environ-
ment but can cause severe pulmonary infec-
tions in immunocompromised patients. At the

other end of the spectrum, Pneumocystis species
are obligate fungal pathogens that appear to
have coevolved with their mammalian hosts to
such an extent that they have shed several met-
abolic pathways and, so far, it has not been pos-
sible to culture them in vitro (Cushion 2004;
Cushion et al. 2007; Hauser et al. 2010). C. al-
bicans and Candida glabrata lie between these
extremes, apparently being obligate parasites of
warm-blooded animals (Odds 1988) and yet
retaining a high degree of metabolic flexibility
in vitro and in vivo (Brown et al. 2007; Wilson
et al. 2009). Clearly the metabolic flexibility of
fungal pathogens has been influenced by the
evolutionary time scales over which environ-
mental selection pressures have been exerted,
as well as by the nature of these pressures.

In this review, we focus on the metabolic
flexibility of major fungal pathogens during
the infection process: commensalism, coloniza-
tion, and disease progression. We address major
fungal pathogens that are highly significant in
clinical settings, such as C. albicans, A. fumiga-
tus, and C. neoformans, mentioning other path-
ogens where appropriate. We concentrate on
nitrogen and carbon metabolism, and micro-
nutrient assimilation, which are both critical
for pathogenesis and well characterized in path-
ogenic fungi.

NITROGEN ASSIMILATION

Nitrogen is required for almost all biosynthetic
processes and, like carbon, must be assimilated
in large quantities. Therefore, the acquisition of
both nitrogen and carbon compounds from the
host is essential for pathogenic fungi to survive,
grow, and persist within a host. The high degree
of metabolic flexibility is reflected in the differ-
ent types of nitrogen sources exploited by fun-
gal pathogens. In the absence of preferred nitro-
gen sources, such as ammonia or certain amino
acids, these fungi can use compounds like pro-
teins or polyamines. Some pathogenic fungi
(e.g., pathogenic Aspergillus species) can also
reduce nitrate to ammonia (Zhou et al. 2002).
However, the pathogenic Candida and Crypto-
coccus species are unable to use nitrate as a ni-
trogen source.
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Although fungal nitrogen utilization has
been extensively studied in vitro, it is less clear
which nitrogen sources are used by human
pathogenic fungi in vivo. However, transcrip-
tional profiling studies using microarrays or se-
rial analysis of gene expression (SAGE) in ex
vivo or in vivo infection models have provided
insights into the nitrogen metabolism of path-
ogenic fungi such as C. albicans (Fradin et al.
2005; Thewes et al. 2007; Zakikhany et al. 2007;
Walker et al. 2009; Wilson et al. 2009; Cheng
et al. 2013), C. glabrata (Kaur et al. 2007), A.
fumigatus (McDonagh et al. 2008), C. neofor-
mans (Fan et al. 2005; Steen et al. 2003), and
dermatophytes (Staib et al. 2010) during infec-
tion (reviewed by Cairns et al. 2010).

Proteases, Oligopeptide, and Amino Acid
Transporters

During infection, C. albicans expresses various
secreted aspartic proteases (Saps), one of the
best-investigated virulence attributes of this
fungus (Naglik et al. 2003). Liberated oligopep-
tides and amino acids are then taken up by
dedicated oligopeptide transporters (Opt1–8)
(Reuss and Morschhauser 2006) and a family of
22 predicted amino acid permeases (Sychrova
and Souciet 1994; Kraidlova et al. 2011). When
expressed in host tissues, these factors enable
C. albicans to use a broad range of nitrogen
sources over the course of an infection, driving
host tissue damage and invasion (Villar et al.
2007; Naglik et al. 2008; Dalle et al. 2010; Cheng
et al. 2013). This proteolytic activity might also
promote immune evasion, as factors of the im-
mune system, antimicrobial proteins, and pep-
tides may be degraded (Naglik et al. 2003;
Gropp et al. 2009; Meiller et al. 2009). Similarly,
the aspartic proteases of C. glabrata and Candi-
da parapsilosis have been implicated in survival
following phagocytosis by macrophages (Kaur
et al. 2007; Horvath et al. 2012).

Extracellular proteases have also been re-
ported to be virulence attributes for the most
common airborne pathogenic fungus, A. fumi-
gatus (Monod et al. 1999), which contains mul-
tiple protease genes (Nierman et al. 2005). Al-
though an oligopeptide transporter and a key

regulator for extracellular proteolysis are re-
quired for in vitro growth of A. fumigatus on
complex substrates, these proteins are not cru-
cial for survival in vivo (Hartmann et al. 2011).
Similarly, C. albicans Sap2, a protease essential
for the growth on protein as the sole nitrogen
source, is not essential for survival in vivo (Hube
et al. 1994, 1997). Furthermore, similar obser-
vations have been made for dermatophytes such
as Arthroderma benhamiae and Trichophyton ru-
brum. Proteases have always been considered de
facto to be a key virulence attribute of dermato-
phytes, as these fungi infect keratin-containing
tissue and are necessarily keratinolytic. Indeed,
their genomes display a clear enrichment in pro-
tease genes (Burmester et al. 2011). However,
those protease genes most highly expressed dur-
ing growth on keratin in vitro, and hence for
which an important role in virulence would be
expected, differ from those genes that are highly
up-regulated during infection (Zaugg et al.
2009; Staib et al. 2010). This highlights the fact
that in vitro growth conditions often differ sig-
nificantly from in vivo microenvironments.

Nitrogen Acquisition in Host Niches

Little is known about the nitrogen sources that
pathogenic fungi assimilate in host niches. Pre-
sumably the types and concentrations of nitro-
gen source differ significantly between certain
niches, such as mucosal surfaces, the gastroin-
testinal (GI) tract, and the bloodstream. Most
information about fungal nitrogen assimilation
has been gleaned through fungal transcriptom-
ics using ex vivo infection models combined
with limited molecular dissection via targeted
gene mutation.

The environment inside the phagosome of
phagocytes is thought to be poor in nitrogen.
This is reflected in the transcriptional response
of C. albicans and C. glabrata after internaliza-
tion by macrophages (Lorenz et al. 2004; Seider
et al. 2010; Roetzer et al. 2011; Brunke and Hube
2013; Mayer et al. 2013; Miramon et al. 2013).
For example, C. albicans up-regulates amino
acid biosynthetic pathways, suggesting that the
fungus at least transiently faces amino acid dep-
rivation. The arginine biosynthetic pathway is
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the only amino acid biosynthesis pathway sig-
nificantly up-regulated in C. albicans cells after
phagocytosis by macrophages (Lorenz et al.
2004). Engulfment by neutrophils induces the
up-regulation of arginine, leucine, lysine, and
methionine anabolic pathways as well as GCN4
(Rubin-Bejerano et al. 2003; Fradin et al. 2005),
the gene encoding the master regulator of amino
acid synthesis (Tripathi et al. 2002). C. glabrata
also up-regulates the synthesis of arginine and
lysine on internalization by macrophages (Kaur
et al. 2007).

The specific contributions of these amino
acids to fungal survival within the phagocyte
remain to be tested. However, arginine biosyn-
thetic gene induction might play a critical role
in the fungal response to macrophage-derived
reactive oxygen species (Jimenez-Lopez et al.
2013). Arginase can convert arginine to urea,
which in turn is degraded by urea amidolyase
to produce ammonia and CO2. These break-
down products can contribute to neutralization
of the acidic pH of the phagolysosome, promot-
ing the intracellular induction of hyphal forma-
tion and allowing fungal escape and killing of
the host cell (Ghosh et al. 2009). Similarly, the
extracellular ureases of C. neoformans and Cryp-
tococcus gattii (Ure1) degrade urea, which is
abundant in the cerebrospinal fluid. The liber-
ated CO2 acts as a signal to induce capsule for-
mation, a well-studied virulence factor in this
fungus (Frazzitta et al. 2013).

Under sugar-limiting conditions, C. albi-
cans cells can exploit amino acids as a carbon
source (Fig. 1). The amino acids are imported
via amino acid permeases, the expression of
which is up-regulated by the transcription fac-
tor Stp2. The amino acids are metabolized in a
glucose-repressible manner, and the excess ni-
trogen is excreted as ammonia via Ato5, a pu-
tative ammonia transporter, thereby raising
environmental pH and autoinducing hypha for-
mation (Vylkova et al. 2011). Similarly, Dur31
is a sodium/substrate symporter for the poly-
amine spermidine, and the amino groups of
spermidine can potentially be used to generate
ammonia. In fact, a dur31D mutant is unable to
actively increase the local ambient pH. This sug-
gests that Dur31 is an integral component of the

mechanisms that promote extracellular alkalin-
ization and hyphal autoinduction. Indeed,
DUR31 is required for morphogenesis (Mayer
et al. 2012). Interestingly, Dur31 not only trans-
ports spermidine but also histatin 5, a highly
cytotoxic antimicrobial peptide (Mayer et al.
2012). Therefore, Dur31 appears to have dual
functions as a virulence attribute and as an avir-
ulence factor.

The response of C. albicans to neutrophils
also includes the up-regulation of the ammoni-
um permease genes MEP1 and MEP2 (Fradin
et al. 2005). By analogy to the amino acid trans-
porters and the spermidine transporter Dur31,
the roles of these ammonium transporters ex-

Starvation Abundant

Stp2

NH3

Gcn2

Gcn4

Ambient pH

Morphogenesis

Pathogenesis

Growth

Amino acid
biosynthesis

Central
metabolism

Amino acids

Glucose

Excess N
Ato5

AAP

Figure 1. Candida albicans responds to amino acid
starvation by activating the GCN pathway, which up-
regulates amino acid biosynthesis via Gcn2 and Gcn4
to support the resumption of growth (Tripathi et al.
2002; Tournu et al. 2005). The transcription factor
Gcn4 also activates filamentation (Tripathi et al.
2002). When amino acids are abundant, and in the
absence of glucose, they are imported via amino acid
permeases (AAP), the expression of which is activat-
ed by the transcription factor Stp2 (Vylkova et al.
2011). These amino acids are used to sustain central
metabolism and the excess nitrogen is exported as
ammonia via transporters such as Ato5. This leads
to alkalinization of the local microenvironment,
which stimulates morphogenesis (Vylkova et al.
2011). Metabolism fuels the growth of C. albicans
cells and host colonization, and morphogenesis pro-
motes the virulence of this pathogen (see text).
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tend beyond the uptake of nitrogen, because
Mep2 can activate hyphal formation in response
to ammonium limitation. This signaling role
appears to be independent of the role in the
extracellular alkalinization hyphal autoinduc-
tion pathway (Biswas and Morschhauser 2005).

Interestingly, C. glabrata can form pseudo-
hyphae-like structures under certain nitro-
gen starvation conditions (Csank and Haynes
2000). However, unlike C. albicans, this filamen-
tous morphology is not used as an escape mech-
anism from macrophages. Instead, C. glabrata
continues to replicate as yeasts inside the
phagosome until the host cell bursts by an un-
known mechanism (Seider et al. 2011). This in-
tracellular survival and replication depends on a
specialized form of autophagy (pexophagy) to
survive internalization by macrophages (Roet-
zer et al. 2010).

In general, the recycling of cellular proteins
is a common strategy of fungi to overcome ni-
trogen starvation. For example, C. albicans vac-
uolar protease genes associated with intracellu-
lar protein degradation such as APR1, PRB1,
PRB2, or PRC1 are up-regulated in response
to phagocytosis by either macrophages (Lorenz
et al. 2004) or neutrophils (Fradin et al. 2005). A
second, ubiquitin-dependent pathway contrib-
utes to protein recycling under nutrient-limit-
ing conditions in C. albicans (Leach et al. 2011).
This might explain why autophagy is not essen-
tial for this fungus to survive and to form hy-
phae within macrophages. C. albicans cells with
defects in autophagy and cytoplasm-to-vacuole
trafficking (atg9D) can survive macrophages
and retain the ability to kill host cells (Palmer
et al. 2007). Meanwhile, C. albicans polyubiqui-
tin (ubi4) mutants display attenuated virulence
(Leach et al. 2011). Similarly, A. fumigatus does
not require autophagy for full virulence in a
neutropenic mouse model (Richie et al. 2007),
probably because its hyphae are not taken up by
macrophages (Palmer et al. 2008). In contrast,
fungi that can reside inside the phagosome for a
long time, such as C. glabrata and C. neofor-
mans, seem to require autophagy for full viru-
lence, and the inactivation of the autophagic
system reduces the virulence of C. neoformans
in mice (Hu et al. 2008).

Regulation of Nitrogen Metabolism

Flexibility in nitrogen assimilation requires
sensing of the available nitrogen sources and
appropriate regulation of nitrogen assimilation
genes. There are strong similarities between
C. albicans and the model yeast, Saccharomyces
cerevisiae, with respect to the regulation of key
nitrogen acquisition pathways. In C. albicans,
this occurs mainly via the SPS sensor mecha-
nism, comprising the amino acid receptor Csy1
(a Ssy1 homolog), the scaffold protein Ptr3, and
the signaling endopeptidase Ssy5 (Ljungdahl
2009). Similar to S. cerevisiae, the presence of
extracellular amino acids is detected by the
SPS sensor, leading to the proteolytic process-
ing, activation, and nuclear translocation of the
transcription factors Stp1 and Stp2 (Andreas-
son and Ljungdahl 2002; Martinez and Ljung-
dahl 2005). In an interesting twist, C. albicans
Stp1 and Stp2 each activate a specific subset of
nitrogen acquisition-related genes. Stp1 acti-
vates the transcription of genes involved in
protein utilization, such as the genes encoding
the secreted protease Sap2 and the oligopeptide
transporter Opt1. On the other hand, Stp2 ac-
tivates transcription of amino acid permease
genes, for example, GAP1, GAP2, and CAN1
(Martinez and Ljungdahl 2005). As Stp1 levels
are also strongly reduced in the presence of ami-
no acids, this system allows C. albicans to use
free amino acids when they are available, and
to obtain nitrogen from extracellular proteins
under amino acid-limiting conditions. In the
host, this allows optimal utilization of available
nitrogen sources, and hence contributes to the
pathogenicity potential of C. albicans (Ljung-
dahl 2009).

Microarray data suggest a key role for the
Gpa1-cAMP–PKA pathway in the survival of
C. neoformans within macrophages, which in-
cludes the up-regulation of amino acid trans-
porters (Fan et al. 2005). This pathway not
only regulates the transcription of genes encod-
ing the major virulence attributes of C. neofor-
mans, capsule, and melanin production but
also responses to nutrient limitation within
phagosomes. Consequently, gpa1D and pka1D
mutants display reduced growth within macro-
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phages (Fan et al. 2005). Microarray experi-
ments also indicate that Paracoccidioides brasi-
liensis regulates amino acid metabolism during
interactions with macrophages (Tavares et al.
2007), and that there is a close link between
amino acid assimilation and the infectious and
pathogenic states of H. capsulatum as amino
acid transporters are differentially regulated in
conidia, yeast, and mycelia (Inglis et al. 2013).

Amino acid starvation in C. albicans triggers
the induction of genes on essentially all amino
acid biosynthetic pathways via general amino
acid control (the GCN response) (Fig. 1) (Tri-
pathi et al. 2002; Yin et al. 2004; Tournu et al.
2005). This response is analogous to the GCN
response in S. cerevisiae (Hinnebusch 1988; Na-
tarajan et al. 2001; Hinnebusch and Natarajan
2002) and cross-pathway control in Aspergillus
and Neurospora species (Paluh et al. 1988; Hoff-
mann et al. 2001; Krappmann et al. 2004).
Briefly, amino acid starvation activates Gcn2,
which phosphorylates eIF2a thereby decreasing
the activity of this essential translation initiation
factor. This reduces the overall rate of mRNA
translation while enhancing the translation
of GCN4 via upstream open reading frames
(uORFs) in the unusually long 50-leader se-
quence of this mRNA. Hence, Gcn4 levels in-
crease, leading to the transcriptional activation
of amino acid biosynthetic genes via GCN re-
sponse elements in their promoters. In S. cere-
visiae, GCN4 expression is regulated primarily
at the translational level (Hinnebusch 1988),
whereas in C. albicans Gcn4 synthesis is primar-
ily regulated at the transcriptional level (Tripa-
thi et al. 2002; Tournu et al. 2005). Also, in bak-
ers’ yeast purine biosynthesis is induced by the
GCN response, unlike in C. albicans (Yin et al.
2004). Furthermore, in C. albicans Gcn4 inter-
acts with the Ras-cAMP pathway to induce
morphogenesis in an Efg1-dependent fashion
(Fig. 1) (Tripathi et al. 2002). The GCN re-
sponse contributes to biofilm formation in
C. albicans but is not required for the virulence
of this pathogen in the mouse model of systemic
infection (Brand et al. 2004; Garcia-Sanchez
et al. 2004). In contrast, the corresponding
CPC response is required for A. fumigatus viru-
lence in the murine model of pulmonary asper-

gillosis (Krappmann et al. 2004). These con-
trasting observations might reflect differential
transcriptional outputs of the C. albicans Gcn4
and A. fumigatus CpcA transcription factors,
and/or differential amino acid availabilities in
the mouse lung and kidney.

CARBON ASSIMILATION

Carbon assimilation is essential for the genera-
tion of new biomass, and rapid fungal growth in
the host relies on the efficient uptake and me-
tabolism of available carbon sources. These can
include fermentable sugars (such as glucose,
fructose, and galactose) and nonfermentable
carbon sources (such as amino acids and organ-
ic acids) (Lorenz and Fink 2001; Lorenz et al.
2004; Piekarska et al. 2006; Vieira et al. 2010;
Ueno et al. 2011). Fungal pathogens have
evolved different carbon assimilation profiles
that presumably reflect their different niches.
For example, saprobes that are opportunistic
pathogens (such as A. fumigatus) have retained
the ability to use a broad range of carbon
sources. C. albicans does not display any known
auxotrophies, can metabolize a broad range of
sugars, and can use all amino acids as sole ni-
trogen sources (Odds 1988; Kaur et al. 2005).
However, C. glabrata lacks certain metabolic
pathways that exist in other pathogenic yeasts
as a result of gene losses that have occurred dur-
ing its evolution (Dujon et al. 2004). C. glabrata
cannot catabolize galactose (loss of GAL1, 7, 10)
or allantoin (DAL1–4, 7), and is auxotrophic
for pyridoxine (SNO1, 2, 3), thiamine, and nic-
otinic acid (BNA1–6) (Dujon et al. 2004; Wong
and Wolfe 2005). Presumably, these nutritional
restrictions are overcome in the specific host
niches that are colonized by C. glabrata. More
dramatic gene loss has occurred during the evo-
lution of Pneumocystis species, which appears to
have shed significant numbers of metabolic
genes, retaining only two of 20 amino acid
biosynthetic pathways. Based on gene content,
glycolysis, the tricarboxylic acid (TCA) cycle,
mitochondrial function, and energy metabo-
lism appear to have remained intact (Cushion
2004; Cushion et al. 2007; Hauser et al. 2010).
However, the inability to culture pathogenic
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Pneumocystis species in vitro has prevented the
direct exploration of their metabolic capacity.

Most pathogenic fungi prefer to assimilate
sugars because their catabolism via glycolysis
and respiration is energetically favorable. Dur-
ing the assimilation of alternative carbon
sources, energetically demanding pathways
such as gluconeogenesis and the glyoxylate cycle
must be invoked to generate the hexose and
pentose sugars required for cell wall and nucle-
otide synthesis, for example. Fungi can be clas-
sified into Crabtree-negative and Crabtree-pos-
itive species based on their carbon utilization
patterns. Crabtree-negative species up-regulate
the pyruvate dehydrogenase complex in the
presence of glucose, such that most of this car-
bon flows into the TCA cycle to generate bio-
mass and CO2 (Chambergo et al. 2002; Maeda
et al. 2004; Xie et al. 2004). Crabtree-positive
fungi ferment most of the glucose to generate
ethanol (Klein et al. 1998), which is thought to
promote the competitive ability of yeasts within
polymicrobial microenvironments owing to the
antiseptic nature of ethanol (Crabtree 1928).

Regulatory Rewiring of Central Carbon
Metabolism

In general, the central metabolic pathways are
conserved across the fungal kingdom. However,
S. cerevisiae and C. albicans do display some
significant differences in their carbon metabo-
lism gene sets. Indeed, genome-wide compari-
sons have revealed striking differences, with C.
albicans harboring additional genes with roles
in respiration and oxidative metabolism (Jones
et al. 2004). In addition, there are significant
differences between C. albicans and S. cerevisiae
with respect to the regulatory networks that
control central metabolism. S. cerevisiae is a
Crabtree-positive yeast, the balance between fer-
mentation and respiratory metabolism being
modulated by glucose concentration, oxygen
availability, and growth rate (Gancedo 1998).
In contrast, C. albicans has been classified as a
Crabtree-negative yeast because it retains respi-
ratory activity even in the presence of glucose
(Niimi et al. 1988). Bioinformatic and tran-
scriptomic analyses have revealed significant

regulatory rewiring between these yeasts, and
close links between pathogenicity and metabo-
lism in C. albicans (Ihmels et al. 2005; Mart-
chenko et al. 2007; Askew et al. 2009; Lavoie et
al. 2009). For instance, although galactose utili-
zation genes display a similar syntenic organi-
zation in C. albicans and S. cerevisiae, their
upstream regulatory regions are completely dis-
tinct (Martchenko et al. 2007). In S. cerevisiae
the transcription factor Gal4 activates the galac-
tose utilization genes GAL1, GAL7, and GAL10,
whereas in C. albicans, Gal4 regulates the bal-
ance between respiration and fermentation in a
carbon-source-dependent fashion (Askew et al.
2009). This presumably reflects the importance
of galactose as a carbon source for the patho-
genic fungus (Sabina and Brown 2009), par-
ticularly in lactating mothers and their infants.
The glycolytic transcriptional circuit has also
undergone significant transcriptional rewiring.
C. albicans lacks homologs of the S. cerevisiae
regulators, Gcr1 and Gcr2, which induce glycol-
ysis regulators in this benign yeast (Askew et al.
2009). Instead Tye7 acts as the key regulator of
glycolytic genes in C. albicans with gal4D tye7D
mutants displaying altered glycolytic regulation
under hypoxia and attenuated virulence in
mouse models of infection (Askew et al. 2009).
This highlights the importance of balancing car-
bon flux between respiration and fermentation
in host niches during disease progression.

Recent work has revealed that this regulato-
ry rewiring extends to the posttranscriptional
circuitry. Many yeast species, including S. cere-
visiae, repress pathways involved in the utiliza-
tion of alternative carbon sources in the pres-
ence of glucose with a view to prioritizing sugar
utilization over less favorable carbon sources
(Flores et al. 2000). This repression operates
at multiple levels. In S. cerevisiae, the transcrip-
tion of genes involved in alternative carbon
source utilization (for example, gluconeogenic
and glyoxylate cycle genes) is down-regulated
via AMP kinase and cAMP signaling, and the
transcriptional repressor Mig1 (Gancedo 1998;
Carlson 1999; Johnston 1999; Turcotte et al.
2010). In addition, S. cerevisiae enzymes in-
volved in the assimilation of alternative carbon
sources, such as Fbp1, Icl1, and Pck1, are target-
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ed for ubiquitin-mediated degradation (Schork
et al. 1995; Gancedo and Gancedo 1997; Schule
et al. 2000; Horak et al. 2002; Regelmann et al.
2003). However, in C. albicans the evolution-
ary rewiring of ubiquitination targets allows
these enzymes to persist longer in the cell follow-
ing glucose exposure (Sandai et al. 2012) even
though their genes are subject to strong tran-
scriptional repression in response to glucose
(Lorenz et al. 2004; Rodaki et al. 2009). There-
fore, unlike S. cerevisiae, C. albicans is able to
express glycolytic, gluconeogenic, and glyoxy-
late cycle enzymes at the same time, allowing
it to assimilate glucose and alternative carbon
sources simultaneously (Sandai et al. 2012).
This has presumably evolved to promote the
efficient assimilation of complex mixtures of
carbon sources, and hence to enhance the fit-
ness of this pathogen in the host (Lorenz 2013).

Regulation of Central Carbon Metabolism
in Host Niches

In some host niches, the assimilation of certain
alternative carbon sources is essential for fungal
proliferation. This is the case for C. glabrata,
which relies on lactate assimilation to survive
in the mouse intestine (Ueno et al. 2011). The
importance of central carbon metabolism in
fungal pathogenesis has been reinforced, for ex-
ample, by the targeted mutational disruption of
specific metabolic functions in C. albicans (Lo-
renz and Fink 2001; Barelle et al. 2006). Glyox-
ylate cycle (Icl1), glycolytic (Pyk1), and gluco-
neogenic enzymes (Pck1) are all required for the
full virulence of C. albicans in the murine model
of systemic candidiasis (Lorenz and Fink 2001;
Barelle et al. 2006). These requirements are par-
alleled in C. neoformans to a reasonable extent,
as mutants with glycolytic defects ( pyk1D and
hxk1D hxk2D) are severely attenuated in a mu-
rine inhalation model of cryptococcosis and
display decreased persistence in the central ner-
vous system (Price et al. 2011).

Additional evidence for the significant im-
pact of central carbon metabolism on fungal
pathogenicity has been generated by transcript
profiling of fungal cells exposed to macrophag-
es. For example, C. albicans glyoxylate cycle and

fatty acid b-oxidation genes are induced follow-
ing phagocytosis by macrophages (Lorenz et al.
2004). Following phagocytosis, C. albicans dis-
plays a starvation response, reprogramming
its metabolism to generate hexose sugars via
lipid catabolism, the glyoxylate cycle, and glu-
coneogenesis (Lorenz et al. 2004). This repro-
gramming is absent in the benign yeast S. cer-
evisiae, suggesting that C. albicans has evolved
transcriptional programs to match its patho-
genic lifestyle (Lorenz and Fink 2001; Lorenz
et al. 2004).

Intriguingly, both glycolytic genes (e.g.,
PFK2, ENO1, PYK1) and glyoxylate cycle genes
(e.g., ICL1, MLS1, MDH1) were shown to be
induced in C. albicans cells within 20 min of
exposure to human blood (Fradin and Hube
2003). At the time, this was surprising because
C. albicans was thought to follow the S. cerevi-
siae paradigm in which cells do not transcribe
glycolytic and gluconeogenic genes at the same
time (Yin et al. 2003; Lorenz et al. 2004; Rodaki
et al. 2009). Indeed, both species strongly
down-regulate gluconeogenic and glyoxylate
cycle genes in response to glucose concentra-
tions lower than those found in the bloodstream
(about 0.07%) (Yin et al. 2003; Rodaki et al.
2009). Yet the C. albicans glyoxylate cycle is re-
quired for virulence during systemic infection
(Lorenz and Fink 2001). The paradoxical acti-
vation of competing carbon metabolism path-
ways was further complicated by analyses of fun-
gal cells from different infection models. Both
mucosal and intraperitoneal infection models
were characterized by the simultaneous induc-
tion of glycolytic, gluconeogenic, and TCA cycle
genes (Thewes et al. 2007; Wilson et al. 2007;
Zakikhany et al. 2007). These observations were
thought to reflect the heterogeneous nature of
fungal populations in complex host microenvi-
ronments. For example, phagocytosed cells that
are exposed to carbon starvation activate the
glyoxylate cycle, whereas nonphagocytosed cells
retain access to glucose and activate glycolysis
(Brown et al. 2007; Wilson et al. 2007).

To address this paradox regarding the con-
comitant roles of opposing central metabolic
pathways during C. albicans pathogenesis, sin-
gle cell profiling was performed with specific
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GFP (green fluorescent protein) fusions to mon-
itor the activation of the relevant metabolic
pathways (PCK1, a gluconeogenic-specific en-
zyme; ICL1, a glyoxylate cycle enzyme; PFK2
and PYK1, two glycolysis-specific enzymes)
(Barelle et al. 2006; Miramon et al. 2012). These
studies confirmed that gluconeogenesis and
glyoxylate cycle were up-regulated in C. albicans
following phagocytosis by macrophages or neu-
trophils, and that these pathways are indeed re-
pressed by physiologically relevant concentra-
tions of glucose in the majority of fungal cells
infecting the kidney. These studies also con-
firmed the heterogeneity of C. albicans cell pop-
ulations in the kidneyand, hence, the complexity
of these microenvironments. However, many of
these C. albicans cells expressed both glycolytic
and gluconeogenic genes. Subsequently, this ap-
parent paradox was resolved with the discovery
that the rewiring of ubiquitin targets in central
metabolism permits the relaxation of catabolite
repression in C. albicans (Sandai et al. 2012).

In A. fumigatus, the isocitrate lyase Icl1,
which is part of the glyoxylate cycle, is not re-
quired for full virulence (Schobel et al. 2007;
Olivas et al. 2008), although this enzyme is con-
stitutively expressed in conidia during germina-
tion within macrophages and not in resting
conidia (Ebel et al. 2006). C. neoformans also
up-regulates Icl1 after phagocytosis by macro-
phages, although the ICL1 gene is not necessary
for full virulence or growth within macrophages
(Rude et al. 2002). In these species, Icl1 has been
regarded as a marker for lipid utilization, and,
hence, these observations suggest that lipid uti-
lization is not required for infection. Similarly,
the C. neoformans malate synthase (Mls1) is
dispensable for pathogenicity despite its up-
regulation during infection (Idnurm et al.
2007; Kronstad et al. 2012). Nevertheless, per-
oxisomal and mitochondrial fatty acid b-oxida-
tion affects capsule production and is required
for the virulence of C. neoformans (Kretschmer
et al. 2012). In contrast, fatty acid catabolism
does not appear to be required for the virulence
of C. albicans as a fox2D mutant, which lacks a
key enzyme of fatty acid b-oxidation, displays
only a minor defect in virulence in the murine
model of systemic candidiasis (Piekarska et al.

2006; Ramirez and Lorenz 2007). Although the
glyoxylate cycle and fatty acid catabolism might
not be virulence determinants for some species,
the gluconeogenic pathway might be crucial
during the latter stages of infection and for per-
sistence within infected tissues. Indeed, C. neo-
formans cells recovered from mouse lungs in
the later stages of infection displayed increased
levels of enzymes involved in gluconeogenesis,
glyoxylate cycle, and b-oxidation, indicative of
a glucose-limited environment (Hu et al. 2008).
Moreover, a C. neoformans pck1D mutant,
which has a block in gluconeogenesis, displays
a virulence defect (Panepinto et al. 2005).

Impact of Carbon Metabolism on Fungal
Virulence Factors

As well as being essential for proliferation in
the host, the assimilation of alternative carbon
sources can profoundly influence the fitness,
physiology, and pathogenicity of fungal patho-
gens. For example, glucose represses C. neofor-
mans melanization (Zhu and Williamson 2004),
and growth on mannitol increases capsule size
both in vitro and in vivo, relative to growth on
glucose (Guimaraes et al. 2010). Both the cap-
sule and melanization represent important vir-
ulence factors in C. neoformans. For C. albicans,
growth on lactate rather than glucose modifies
the composition and architecture of the cell wall,
and, hence, the interaction of C. albicans cells
with innate immune cells and host recognition
(Ene et al. 2012a,c, 2013). This cell wall remod-
eling also impacts on adherence, biofilm forma-
tion, stress, and drug resistance (Ene et al.
2012a,c). On the other hand, for C. albicans cells
grown on lactate, transient exposure to glucose
leads to the activation of stress-responsive path-
ways, increasing their resistance to reactive oxy-
gen species and to an azole antifungal agent (Ro-
daki et al. 2009). Therefore, changes in carbon
source affect many aspects of host–pathogen in-
teractions, and can dramatically impact the vir-
ulence of C. albicans and its susceptibility to
therapeutic intervention (Fig. 2) (Ene et al.
2012c).

An early indication of the intimate links be-
tween the regulation of carbon metabolism and
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virulence was provided by the observation that
glycolytic transcript levels are modulated in
C. albicans cells undergoing the yeast-hyphal
transition, a morphogenetic program that is
crucial for the virulence of C. albicans (Swoboda
et al. 1994). Also, this morphogenetic transition
is influenced by nutritional cues such as glucose
and amino acids (Hudson et al. 2004; Maidan
et al. 2005; Vylkova et al. 2011). Furthermore,
transcript-profiling studies have revealed that,
in addition to blocking morphogenesis, the in-
activation of the morphogenetic regulator Efg1
has a significant impact on the expression of
metabolic genes (Nantel et al. 2002; Doedt
et al. 2004). Efg1 induces glycolytic genes while
repressing gluconeogenic, TCA cycle, and respi-
ratory functions (Doedt et al. 2004), thereby
stimulating fermentative metabolism and re-
pressing respiratory metabolism. Furthermore,
a recent report has highlighted the importance

of Efg1 during gastrointestinal colonization
(Pierce et al. 2013). C. albicans cells that lack
Efg1 induce metabolic pathways (carnitine and
fatty acid metabolism) that promote hypercolo-
nization of the GI tract in mice (Pierce et al.
2013). Indeed, there is now considerable evi-
dence to suggest that metabolic reprogramming
and virulence attributes are integrated by key
regulators such as Efg1, Tup1, and Gcn4, which
are at the intersections of these regulatory net-
works (Braun and Johnson 1997; Murad et al.
2001a,b; Tripathi et al. 2002; Doedt et al. 2004).

The white-opaque switch, a developmental
program that regulates sexual reproduction in
C. albicans, is also accompanied by extensive
metabolic rewiring. Glycolytic genes are down-
regulated in opaque cells, the mating-competent
form of C. albicans, whereas TCA cycle and fatty
acid b-oxidation genes are up-regulated (Lan
et al. 2002; Tuch et al. 2010). White cells ap-
pear to favor fermentative metabolism, whereas
opaque cells favor respiratory metabolism, and
these programs are presumably associated with
their preference for different anatomical niches
in the host.

MICRONUTRIENT ASSIMILATION

Microbial survival, persistence, and growth
within the host are not only dependent on
macronutrients, such as nitrogen and carbon,
but also on micronutrients such as trace metals.
Among the most important metals are iron,
zinc, manganese, and copper, all of which are
required for the functionality of many proteins
and enzymes. Fungal pathogens must have suf-
ficient access to these essential metals to achieve
host colonization, and yet all sterile extracellular
niches in humans are essentially devoid of un-
bound metals. Fungal infections disturb glob-
al metal homeostasis in the mammalian host
(Potrykus et al. 2013). However, the host has
evolved sophisticated mechanisms that restrict
microbial access to these metals via a process
called “nutritional immunity” (Ganz 2009;
Weinberg 2009; Hood and Skaar 2012). Mean-
while, fungal pathogens have evolved elaborate
strategies to circumvent this immunity. For ex-
ample, all studied fungal pathogens can scav-

Alternative
C sourcesSugars

(phagocytes,
tissues)

Stress
adaptation

Cell wallMorphogenesis

Metabolic
adaptation

Pathogenesis

Antifungal drug
resistance

(blood,
GI tract)

Carbon source

Figure 2. Candida albicans adapts to changes in car-
bon sources (C sources) via a complex regulatory
network involving sugar signaling and other regula-
tory modules to tune its metabolism, cell wall archi-
tecture, morphology, and stress resistance to the
available nutrients (Nantel et al. 2002; Doedt et al.
2004; Hudson et al. 2004; Maidan et al. 2005; Rodaki
et al. 2009; Sabina and Brown 2009; Ene et al. 2012c).
These changes affect the antifungal drug susceptibil-
ity of C. albicans cells and strongly influence their
virulence (Ene et al. 2012c) (see text).
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enge iron from the host, and this process is es-
sential for their virulence (Almeida et al. 2009;
Schrettl and Haas 2011; Kronstad et al. 2012).

The battle over iron during systemic C. albi-
cans infections provides an excellent example of
this interplay between pathogen and host (Po-
trykus et al. 2013). Red blood cell recycling in
the spleen is inhibited during systemic candidi-
asis, leading to the accumulation of heme-asso-
ciated iron in the kidney. Meanwhile, at a local
level, the immune infiltrates surrounding the
fungal lesions in the renal cortex impose nutri-
tional immunity thereby limiting the availabil-
ity of iron to the invading fungus. C. albicans
then responds to this host restriction by up-reg-
ulating its heme-iron-acquisition mechanisms
(Potrykus et al. 2013).

Iron Assimilation

Free iron in human blood is limited to low con-
centrations (10224

M), thereby restricting its
availability to invading microbes. C. albicans
has evolved three main iron-acquisition systems
to counteract this restriction (Fig. 3) (Almeida
et al. 2009). First, C. albicans does not synthesize
siderophores (low molecular mass ferric iron-
specific chelators) but it can exploit sidero-
phores synthesized by other microorganisms
(xenosiderophores) via the Sit1 transporter—a
microbial strategy also described as “iron para-
sitism”(Heymannet al.2002). Sit-mediated iron
uptake appears universally conserved in the fun-
gal kingdom, having been described in S. cerevi-
siae, Candida species, Aspergillus species, and
C. neoformans (Schrettl and Haas 2011). Second,
C. albicans can bind two of the major iron trans-
port and storage proteins of humans: transferrin
and ferritin. Transferrin is bound via an un-
known receptor (Knight et al. 2005), whereas
ferritin is bound via the hypha-associated adhe-
sin and invasin Als3 during invasion into host
cells (Almeida et al. 2009). Fungal iron acquisi-
tion from host transferrin and ferritin requires
the reductive pathway, which is also the main
pathway for the uptake of free iron, if available,
for example, following host-cell lysis. The reduc-
tive pathway requires reductases, oxidases, and
iron permeases, each encoded by large gene

families (Almeida et al. 2009). These include
the high-affinity iron permease gene Ftr1, and
the oxidase Fet3. Third, C. albicans can exploit
the iron in hemoglobin and other heme proteins.
The fungus expresses hemolysins that disrupt
red blood cells (Watanabe et al. 1999) and then
binds and uses the resultant hemoglobin and
heme proteins via the Rbt5/Hmx1 system (Pen-
drak et al. 2004; Weissman and Kornitzer 2004).

C. glabrata expresses a reductive iron-up-
take pathway but is not known to use host fer-
ritin or transferrin as iron sources. Unlike C.
albicans, C. glabrata cannot use bacterial side-
rophores as an iron source (Nevitt and Thiele
2011). However, C. glabrata can use hydroxa-
mate-type xenosiderophores of fungal origin
(ferrichrome, ferrirubin, or coprogen) via a
Sit1 homolog, and this significantly increases
fungal fitness and survival after phagocytosis
by macrophages (Nevitt and Thiele 2011).

The macrophage phagosome is character-
ized by low iron concentrations, and therefore,
phagocytosed microbes must rely on internal

Iron limitation
(blood)

Iron sufficiency
(GI tract)

Sfu1

Sef1

Hap43

Iron
utilization

Iron
assimilation

Reductive
pathway

(Fet3, Ftr1)

Siderophore
uptake
(Sit1)

Heme protein
pathway

(Rbt5, Hmx1)

Iron–sulfur
proteins

(Isa1, Isu1)

Respiration
(Cyc1)

Heme
synthesis
(Heme3)

Nutritional
immunity

Figure 3. Candida albicans regulates iron assimilation
and iron utilization pathways in response to iron
availability within host niches via a regulatory net-
work involving Sfu1, Sef1, and Hap43 (Chen et al.
2011). Host niches differ markedly with respect to
iron availability, the local concentrations of free
iron within host tissues being reduced by nutritional
immunity (Potrykus et al. 2013). The fungus differ-
entially exploits three main iron assimilation path-
ways depending on the nature of the available iron
(Almeida et al. 2009; Potrykus et al. 2013) (see text).
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iron reserves or exploit alternative strategies to
scavenge iron and survive within macrophages.
H. capsulatum, for example, gains iron via at
least three different strategies. First, the fungus
inhibits phagosomal acidification thereby pro-
moting the gradual release of iron from trans-
ferrin (Eissenberg et al. 1993). Second, H. cap-
sulatum synthesizes and secretes siderophores
within macrophages, in contrast to the iron par-
asitism displayed by C. albicans and C. glabrata
(Hwang et al. 2008). Third, H. capsulatum pro-
duces surface-bound and secreted enzymes with
iron-reducing activity (for example, a secreted
g-glutamyltransferase, Ggt1), which generates
an efficient ferric reductant (Zarnowski et al.
2008).

In contrast to the species discussed above,
A. fumigatus seems unable to scavenge iron
from host proteins. Instead, to acquire iron,
this pathogen depends on a low-affinity ferrous
iron acquisition system (which exists in other
fungi and can also transport zinc) as well as
two high-affinity iron uptake systems that in-
volve reductive iron assimilation and sidero-
phore-assisted iron uptake (reviewed in Schrettl
and Haas 2011). A. fumigatus excretes two dif-
ferent siderophores, fusarinine C (FsC) and tri-
acetylfusarinine C (TAFC), to mobilize extracel-
lular iron. This pathogen also synthesizes two
intracellular siderophores, hyphal ferricrocin
(FC) and conidial hydroxyferricrocin (HFC),
for the distribution and storage of iron inside
the cell (Schrettl et al. 2007; Wallner et al.
2009). In addition, like other fungi, A. fumigatus
probably uses vacuolar iron storage, as suggest-
ed by the iron-inducible expression of CccA
(Schrettl et al. 2008), which is an ortholog of
the vacuolar iron importer Ccc1p in S. cerevisiae
(Kaplan and Kaplan 2009).

C. neoformans also possesses several com-
plementary iron acquisition strategies. C. neo-
formans expresses cell surface reductases that re-
duce ferric iron to its ferrous state, and also
exports reductants such as 3-hydroxyanthranilic
acid (Nyhus et al. 1997; Jacobson et al. 1998;
Nyhus and Jacobson 1999; Kronstad et al.
2012). Cfo1 and Cft1, which are orthologs of
Fet3 and Ftr1, are essential for ferric iron uptake
and iron acquisition from transferrin. However,

they are not required for iron acquisition from
heme or the siderophore ferrioxamine. Like
C. albicans and C. glabrata, C. neoformans does
not produce its own siderophores but expresses
a Sit1 transporter that facilitates ferrioxamine
B uptake (Tangen et al. 2007). Inactivation of
Sit1 does not attenuate the virulence of C. neo-
formans but inhibits growth under iron-limiting
conditions.

Regulation of Fungal Iron Homeostasis

Clearly, evolutionarily diverse fungal patho-
gens exploit common strategies to scavenge
iron from their hosts via parallel pathways that
include high-affinity ferroxidase/permease com-
plexes, heme protein utilization, and sidero-
phore uptake systems. However, iron uptake
and storage must be tightly regulated because
iron is an essential element but excess iron is
toxic, generating reactive oxygen species. This
is beautifully illustrated by the Sef1-Sfu1 tran-
scriptional circuitry in C. albicans, which differ-
entially controls iron sequestration and iron
toxicity in host niches with contrasting iron
availabilities. The levels of available iron in the
gastrointestinal tract are much higher than in
the bloodstream, in which free iron is limited
by the host (Martin et al. 1987; Miret et al.
2003). Under iron-limiting conditions (e.g.,
in the bloodstream), the zinc finger transcrip-
tion factor Sef1 activates iron assimilation func-
tions and down-regulates the transcriptional
repressor Sfu1 (Fig. 3) (Chen et al. 2011).
When iron is abundant (e.g., in the gastrointes-
tinal tract), Sfu1 strongly down-regulates Sef1
activity. Sfu1 represses SEF1 expression and in-
hibits Sef1 functionality by regulating its cellu-
lar localization, as well as by promoting Sef1
phosphorylation and destabilization (Chen and
Noble 2012). Consequently, Sef1 promotes sys-
temic candidiasis, whereas Sfu1 enhances gas-
trointestinal commensalism (Chen et al. 2011;
Chen and Noble 2012).

An analogous negative-feedback loop regu-
lates iron homeostasis in A. fumigatus. Iron star-
vation triggers a transcriptional response that is
regulated by two interconnected transcription
factors, SreA and HapX (Schrettl and Haas
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2011). Under conditions of iron sufficiency,
SreA represses iron acquisition pathways to lim-
it iron toxicity, and represses the expression of
HapX to derepress iron-consuming pathways
such as heme biosynthesis, the TCA cycle, and
respiration. During iron starvation, HapX re-
presses SreA to up-regulate iron acquisition,
and down-regulates iron-consuming pathways
such that the available iron is used sparingly. A
deficiency in HapX (but not SreA) attenuates
the virulence of A. fumigatus, reinforcing the
crucial role of iron adaptation mechanisms in
the host (Schrettl et al. 2010).

Hap proteins (HapX, Hap3, and Hap5)
combine with the Cir1 transcription factor to
regulate the response to changing iron levels in
C. neoformans (Jung et al. 2006, 2010; Jung and
Kronstad 2011). Cir1 is related to C. albicans
Sfu1, H. capsulatum Sre1, and Blastomyces der-
matitidis SREB (Lan et al. 2004; Chao et al.
2008; Gauthier et al. 2010; Kronstad et al.
2012). Cir1 up-regulates siderophore transport
genes via HapX, and down-regulates reductive
iron uptake genes. C. neoformans hapX mutants
display a minor virulence defect, whereas cir1D
cells are avirulent (Jung et al. 2006, 2010). The
strong virulence defect of C. neoformans cir1D
mutants could also reflect the roles of Cir1 in
the expression of key virulence factors that in-
clude growth at 37˚C, melanin production,
and capsule formation. Cir1 represents a key
node in the complex regulatory network, in-
volving HapX, Sre1, Cir1, Tup1, and Gat1,
which integrate iron acquisition with critical
virulence factors in C. neoformans (Jacobson
and Hong 1997; Kronstad et al. 2012). This is
further complicated by the influence of ambient
pH, which modulates iron homeostasis via the
transcriptional regulator Rim101 (Kronstad
et al. 2012).

Zinc Assimilation

Zinc is the second most abundant metal in most
living organisms and a critical cofactor for
many proteins. The mammalian host actively
limits zinc availability during bacterial infec-
tions via nutritional immunity (Corbin et al.
2008), and the same is probably true during

systemic fungal infections. To successfully colo-
nize the host, the fungus must counter this zinc
restriction.

C. albicans sequesters host zinc by a “zinco-
phore” system (Citiulo et al. 2012). Analogous
to siderophore-mediated iron acquisition, the
fungus secretes the zinc-binding protein Pra1
(the “zincophore”), which sequesters the metal
from host cells. Pra1 then binds to Zrt1 at the
fungal cell surface. Zrt1 is a plasma membrane
zinc transporter that mediates the uptake of
zinc into the fungal cell. The PRA1 and ZRT1
genes are coregulated in response to zinc avail-
ability through their divergent transcription
from a common promoter region (Citiulo et
al. 2012). The components of this zincophore
system, which are essential for C. albicans zinc
scavenging during host-cell invasion, are con-
served across the fungal kingdom (Wilson et al.
2012). For example, PRA1 and ZRT1 orthologs
exist in A. fumigatus (Aspf2 and ZrfC, re-
spectively), and these are organized in an anal-
ogous syntenic arrangement, are regulated by
environmental zinc levels, and are required for
growth under zinc starvation (Amich et al.
2010). However, some fungal pathogens appear
to lack a Pra1 orthlog. These species must
rely on alternative zinc acquisition systems or
rely solely on transporters for zinc uptake (Wil-
son et al. 2012). For example, C. glabrata appar-
ently lacks both Pra1 and Zrt1. Instead,
C. glabrata could acquire zinc via two homologs
of the low-affinity S. cerevisiae zinc transporter
Zrt2 (Brunke and Hube 2013). Alternatively,
other convergently evolved, secreted zinc-bind-
ing protein(s) may be deployed. Some fungi
may secrete small molecule zinc chelators to
sequester this essential metal (Wilson et al.
2012).

Other essential metals such as manganese
(Kehl-Fie and Skaar 2010) and copper (Hodg-
kinson and Petris 2012) may play important
roles in host–pathogen interactions. However,
their uptake systems in pathogenic fungi remain
largely uncharacterized. A putative manganese
transporter (Ccc1) and a copper transporter
(Ctr1) have been identified in C. albicans (Inglis
et al. 2012) but their roles in virulence have
not yet been experimentally defined.
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CONCLUDING REMARKS

In conclusion, our review has highlighted the
fundamental importance of nitrogen, carbon,
and micronutrient assimilation for fungal path-
ogenicity. Clearly fungal pathogens must assim-
ilate the available nutrients within host niches
to colonize them. These niches are dynamic,
complex, and varied, including the skin, muco-
sal surfaces, the urogenital and gastrointestinal
tracts, the bloodstream, and internal organs.
These niches differ with respect to the types
and concentrations of available carbon and ni-
trogen sources, and with regard to micronutri-
ent levels. Fungal pathogens respond by tuning
their nutrient acquisition and assimilation
mechanisms accordingly (Steen et al. 2003; Lo-
renz et al. 2004; Fan et al. 2005; Fradin et al.
2005; Kaur et al. 2007; Thewes et al. 2007; Za-
kikhany et al. 2007; McDonagh et al. 2008;
Walker et al. 2009; Wilson et al. 2009; Cairns
et al. 2010; Staib et al. 2010; Cheng et al. 2013).
In some instances, the host actively reduces the
availability of essential nutrients in an attempt
to limit fungal colonization. For example, nu-
tritional immunity limits iron availability in the
renal cortex during systemic candidiasis, and C.
albicans responds by up-regulating its heme-as-
similation mechanisms (Potrykus et al. 2013).

Fungal pathogens have evolved to address
these metabolic challenges but the evolutionary
outcomes often differ for several reasons. First,
pathogenicity has evolved independently in
different phylogenetic branches of the fungal
kingdom. Second, fungal pathogens have been
subject to differing evolutionary pressures, pos-
sibly over different periods of evolutionary time.
Some pathogens, such as A. fumigatus, C. neo-
formans, and H. capsulatum, have retained sig-
nificant environmental niches, whereas others,
such as C. albicans and Pneumocystis jirovecii,
appear to be obligately associated with the
host. Third, pathogens differ with respect to
their routes of infection. Environmental patho-
gens such as A. fumigatus, C. neoformans, and
H. capsulatum are often inhaled and initially
establish pulmonary infections. In contrast,
commensal organisms such as C. albicans cause
systemic infections when mucosal or gastroin-

testinal barriers and host immune defenses are
compromised. Despite these differences, fungal
pathogens display common, evolutionarily an-
cient strategies to address certain metabolic
challenges. These include the tight coordina-
tion of iron acquisition and iron-consuming
pathways via transcriptional circuitry involving
multiple negative-feedback loops, and the glob-
al activation of amino acid biosynthesis in
response to amino acid starvation via a central
transcriptional regulator (Gcn4/CpcA). On the
other hand, some conserved metabolic path-
ways have undergone significant evolutionary
rewiring at both transcriptional and posttran-
scriptional levels during the evolution of fungal
pathogens (Ihmels et al. 2005; Martchenko et al.
2007; Askew et al. 2009; Lavoie et al. 2009; San-
dai et al. 2012).

The essentiality of nutrient assimilation for
fungal pathogenicity represents an opportunity
for the development of novel antifungal thera-
pies. Large-scale screens have revealed metabol-
ic targets that might be amenable to pharma-
ceutical intervention (Roemer et al. 2003), and
in some cases, significant differences in assimi-
lation pathways or the catalytic mechanisms of
essential mammalian and fungal enzymes en-
hance their attractiveness as potential antifun-
gal targets (Rodaki et al. 2006; Schrettl and Haas
2011). Recent data have revealed that the sus-
ceptibility of fungal pathogens to the currently
available antifungal drugs is strongly influenced
by nutrient availability. In particular, changes in
carbon source affected the resistance of C. albi-
cans cells to azole, polyene, and echinocandin
antifungals (Ene et al. 2012c), suggesting that
fungal adaptation to different nutrients in host
niches affects their susceptibility to therapeutic
intervention. Changes in carbon source also af-
fect the stress resistance of C. albicans and exert
major effects on the architecture and content of
the cell wall, thereby affecting the recognition
and killing of C. albicans cells by innate immune
cells and the virulence of this pathogen (Rodaki
et al. 2009; Ene et al. 2012b,c, 2013).

Although the study of metabolic flexibility
and reprogramming has set new paradigms for
how microbes adapt to their environment, these
processes are fundamental for fungi as they
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drive both commensalism and infection. These
observations highlight the need to investigate
the impact of fungal nutrient adaptation on im-
mune recognition and pathogenicity and might
help the design of more effective therapeutic
strategies.
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