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Currently, the best scenario for earliest forms of life is based on RNA molecules as they have
the proven ability to catalyze enzymatic reactions and harbor genetic information. Evolu-
tionary principles valid today become apparent in such models already. Furthermore, many
features of eukaryotic genome architecture might have their origins in an RNA or RNA/
protein (RNP) world, including the onset of a further transition, when DNA replaced RNA
as the genetic bookkeeper of the cell. Chromosome maintenance, splicing, and regulatory
function via RNA may be deeply rooted in the RNA/RNP worlds. Mostly in eukaryotes,
conversion from RNA to DNA is still ongoing, which greatly impacts the plasticity of extant
genomes. Raw material for novel genes encoding protein or RNA, or parts of genes including
regulatory elements that selection can act on, continues to enter the evolutionary lottery.

Everything has been said already, but not yet by every-
one.

—Karl Valentin

Sturgeon’s Revelation: Ninety percent of science fiction
is crud, but then, ninety percent of everything is crud.

—Theodore Sturgeon

They think that intelligence is about noticing things
that are relevant (detecting patterns); in a complex
world, intelligence consists in ignoring things that are
irrelevant (avoiding false patterns).

—Nassim Nicholas Taleb (Taleb 2010)

Of all extant cellular macromolecules, RNA
is the most ancient, persisting as much as 4

� 109 years in our planet’s life-forms. The abil-
ity to combine genotype with phenotype such
as catalytic activity (Noller and Chaires 1972;

Kruger et al. 1982; Guerrier-Takada et al. 1983;
Noller et al. 1992) leveled a major hurdle in
understanding the origin of life. The salient
discoveries eliminated the virtually impossible
prerequisite for two to three different classes of
macromolecules to converge as an evolving unit.
At the same time, RNA provides a required con-
tinuity in the path of evolution (Yarus 2011)
during various genetic takeovers or evolution-
ary transitions (Cairns-Smith 1982; Szathmáry
and Smith 1995). In a remarkably insightful ar-
ticle dating back half a century, Alex Rich fore-
saw much of what now is becoming main-
stream, for example, that RNA was ancestral to
protein and DNA (Rich 1962). This landmark
publication received little attention over the
years; even early proponents of an RNA world
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did not refer to this article (Woese 1967; Crick
1968; Orgel 1968; Gilbert 1986), although at
least one of the investigators must have had
knowledge about the article, as it was cited in
a different context concerning the stereochem-
ical possibility of six distinct base pairs (Crick
1968). The origin of the DNA genome from
RNA and that “DNA may be regarded as a de-
rivative molecule which has evolved in the form
that it only carries out part of the primitive nu-
cleic acid function” is another correct prediction
(Rich 1962). Furthermore, the investigator pre-
saged mechanisms such as antisense RNA con-
trol of gene expression, short interfering RNAs
(siRNAs), and perhaps microRNAs (miRNAs):
“If both strands are active, then the DNAwould
produce two RNA strands which are comple-
mentary to each other. Only one of these might
be active in protein synthesis, and the other
strand might be a component of the control or
regulatory signal” (Rich 1962).

In this article, I shall present the rise and
persistence of RNA from the dawn of an RNA
world and discuss current evolutionary princi-
ples already apparent in an RNAworld. In com-
parison to Archaea and Bacteria, the eukaryotic
genome is a better vantage point, as archaeal and
bacterial genomes are more derived and, thus,
lost many of the RNA signatures that eukaryotes
still show. It is likely that eukaryotic DNA ge-
nomes not only kept much more of their RNA/
RNP world heritage than previously anticipat-
ed, but also continue to evolve novel RNAs in
various functional roles.

WHEN DOES LIFE BEGIN?

An excellent treatise of possible scenarios lead-
ing to and continuing in an RNA world to the
last universal common ancestor (LUCA) is
available (Atkins et al. 2011). Can the beginning
of life be defined along the transitions from
physicochemical to biological reactions? Like
almost everything in biology, clear boundaries
are difficult to demarcate and thus the defini-
tion of the first life-form rather occupies a
bandwidth on a continuum. One of several pos-
sible thresholds to consider would be the fortu-
itous generation of one or two molecules that

could replicate themselves or each other. Should
the threshold be set at the transition when the
molecules involved could change during repli-
cation and the variants are subjected to selec-
tion—the initial Darwinian ancestor (IDA)
(Szathmáry 2006; Yarus 2011)? The first self-
replicating macromolecules must not necessar-
ily have been RNA. Derivatives of RNA, espe-
cially with altered backbones, have been sug-
gested as predecessors of RNA owing to more
favorable chemistries/stabilities for spontane-
ous generation and persistence of oligomeriza-
tion at the presumed planetary conditions
(Joyce et al. 1987; Schöning et al. 2000; Zhang
et al. 2005; Powner et al. 2009; Robertson and
Joyce 2012; Neveu et al. 2013).

An interesting question is, if it is that “sim-
ple,” why did life not evolve multiple times?
There are a number of explanations. The early
environment of the planet with conditions fa-
voring the necessary chemical reactions differed
from the more temperate conditions now (Rob-
ertson and Joyce 2012). Perhaps life did evolve
before LUCA numerous times independently,
but the descendants of LUCA are the only sur-
vivors. Perhaps primitive forms of life, for ex-
ample, in the form of IDAs, still do arise, but we
are not aware of them, in part, because we have
not searched for such simple and different life-
forms. Another reason is that a nascent form of
life would easily be outcompeted by the estab-
lished ones, as the latter had a great chronolog-
ical advantage adapting to current conditions.
New forms of life might have a chance only if
their metabolism is sufficiently different and,
thus, not useful prey to LUCA-related life-forms
or if they happened to evolve in an unoccupied
niche so as not to succumb to immediate pre-
dation by the fitter “incumbents.”1

RETRACING THE PATH

In any event, by applying in vitro synthesis and
selection procedures (Ellington and Szostak

1An afterthought worthy of note is the dichotomy with re-
spect to life’s fragility considering individuals, even species
versus the resilience of life as a whole, over an �4-billion-
year timescale.
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1990; Tuerk and Gold 1990; Gold et al. 2012),
several laboratories are making great strides to-
ward generating RNA molecules with the ability
to self-replicate (Doudna and Szostak 1989;
Johnston et al. 2001; Zaher and Unrau 2007;
Lincoln and Joyce 2009; Shechner et al. 2009;
Wochner et al. 2011; Attwater et al. 2013; Mast
et al. 2013), although these RNA polymerase
ribozymes still fail to completely self-replicate
(Deamer 2005). Cooperation of two or more
RNA enzymes in hypercycles (Eigen and Schus-
ter 1977) may be a solution to this problem
(Vaidya et al. 2012) (see also below).

Once a self-replicating ribozyme (mono- or
multimeric) arose with the further potential to
evolve into a replicator not restricted to only
self-copy but to copy other RNA templates as
well, a prerequisite for a metabolically self-suf-
ficient RNA conglomerate, further challenges
are apparent. First, the replicator indiscrimi-
nately copying any “junk RNA” in the mix hard-
ly would be able to persist. Second, if further
RNA molecules would arise by copying with
errors—just like in extant organisms, new genes
still arise by duplication and variation—to
eventually take over metabolic functions other
than replication (e.g., activated compounds, in-
cluding nucleotides), these associations would
be fleeting, at best, because of diffusion.

SEQUESTRA, AMPLIFICA, DIVIDE
ET IMPERA!

A compartmentalization of cellular constituents
in droplets, as suggested by Carl Woese (1979),
stabilized by simple fatty acids (Szostak et al.
2001) was an early evolutionary transition
(Maynard Smith and Szathmáry 1995) crucial
for the continuation of life. Recent experiments
showed that such bilayered partitions were suf-
ficiently permeable for uptake of small mole-
cules from the environment and copying nucle-
ic acids in such vesicles is possible (Sacerdote
and Szostak 2005; Mansy et al. 2008; Adamala
and Szostak 2013). This sequestration was a pre-
requisite for cellular life and evolution as we
know it today, with many evolutionary princi-
ples in place already (Brosius 2003c). Vesicles
could grow along with their RNA contents, di-

vide, fuse while shuffling their contents and di-
vide again, in other words, performing sexual
acts. Another “forecast” of the mechanisms gen-
erating genomic diversity would be recombina-
tion not only between cells, but also between
different RNA molecules, a mechanism that ac-
tually had been observed in a two-component
ribozyme system (Lincoln and Joyce 2009). The
origin of viruses could date to this early stage of
cellular evolution as well. RNA molecules could,
perhaps protected by a lipid envelope, move
from cell to cell, blurring the line between infec-
tion and horizontal transfer.

MOST EVOLUTIONARY PRINCIPLES ARE AT
LEAST AS ANCIENT AS THE RNA WORLD

Lessons from the RNA world apply remarkably
well to extant organisms and their genomes.
In a primitive RNA cell, conflict and coopera-
tion, selfishness and altruism had to coexist and
establish a fine balance. Importantly, the suc-
cess of individual ribozymes also depended to
a large degree on functional interactions with
other cellular RNAs (today: gene products),
namely, the (genetic) background of the proto-
cell (Brosius 2003c). In contemporary biology
and medicine, considerations of interactions of
various alleles within the genomic background,
as well as individual variability of gene expres-
sion levels including complete gene depletions,
are beginning to gain wider acceptance (Wil-
liams and Nesse 1991; Sibilia and Wagner 1995;
Brosius 2003b; Ganten and Nesse 2012; Nesse
et al. 2012).

Balances between selfishness and cooper-
ation had to evolve early; this is recently docu-
mented by in vitro selection research that
revealed in an experiment to generate Tetrahy-
mena group I ribozymes with improved DNA
cleavage capability that one of the two RNA
aptamers, itself being catalytically inactive, par-
ticipated in a productive intermolecular in-
teraction with an active ribozyme evolving in
parallel, thus, ensuring the survival of both
RNAs in the nucleic acid population (Hanczyc
and Dorit 1998). Other studies also show that
parasites can cause the evolution of further
complexity (Takeuchi and Hogeweg 2008). In
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the case of the bacterially derived AzoD ri-
bozyme, a clonal preparation showed no activ-
ity toward the phosphorothioate substrate. Pre-
sumably, this sequence alone fails to show a
functional fold, but could form an active com-
plex in an intermolecular partnership with
other RNA molecules (Hayden et al. 2011). Re-
cently, it was shown that cooperative cycles of
replication involving three or four participating
RNAs have a selective advantage over selfish
replication cycles (Vaidya et al. 2012), as for-
mulated earlier in the hypercycle principle of
natural self-organization (Eigen and Schuster
1978) and placed into context with extant or-
ganisms (Brosius 2003c). The participation of
several small RNAs also has the potential to sig-
nificantly increase the complexity of ribozymes.

CHROMOSOMAL RNA

The dispensation of essential RNA molecules
between daughter cells was initially stochastic,
probably facilitated by the availability of suffi-
cient copies of each RNA species in the parent
cell, such that each daughter would have a rea-
sonable chance to end up with at least one
complete set of RNAs. If initially a few dif-
ferent RNAs were strung together as “mini
RNA chromosomes,” the advantage would be
achievement of a more balanced distribution
of RNAs. Perhaps they were distributed and
replicated as such, with some of them cut up
into functional RNAs, conceivably the birth of
RNA processing. Processing signals might have
been placed, in part, between the fragments
corresponding to mature RNAs, presumably
the origin of intergenic or even intronic space
(Brosius 2003c). With the advent of templated
protein biosynthesis, a major evolutionary tran-
sition included co-option of existing functional
RNAs as well as longer “chromosomal RNAs”
by RNA cutting and pasting to stitch together
messenger RNAs (mRNAs) with open and in-
creasingly longer reading frames, which might
suggest a very early origin of RNA splicing in a
ribonucleoprotein world (RNP world) (Rean-
ney 1974; Darnell and Doolittle 1986). Alterna-
tive splicing and other rearrangements would
be one of the mechanisms to enhance variation

for generating translation products out of a
limited repertoire of functional RNAs also
doubling as templates for translation (Brosius
2001).

RNA SIGNATURES WRITTEN ALL OVER
EXTANT DNA GENOMES

Linear arrangement of RNA genes, as well as the
transition to the RNP world evolving an ances-
tor of the reverse transcriptase enzyme, hap-
pened to constitute a useful precondition for a
next major evolutionary transition, namely, the
conversion of RNA to DNA, the latter merely
serving as bookkeeper (Darnell and Doolittle
1986; Gould 2002). For this and other reasons,
the central dogma of biology could be revisited
or supplemented by a different graphic account,
both in appreciation of the major significance of
RNA in the cell and the chronological order of
the major transitions (Fig. 1) (Maizels and Wei-
ner 1987; Brosius 2003a; Cech 2012). Remark-
ably, the process of reverse transcription of any
RNA (Brosius 1999b) and more or less random
integration into DNA genomes still persists and
contributes much to their landscapes in a num-
ber of ways. The modular arrangement of func-
tional with nonfunctional DNA and its plastic-
ity in extant eukaryotic genomes might be a
vestige of early evolutionary transitions (Bro-
sius 2009).

Reverse transcriptase not only played an im-
portant role in generating the DNA genome
but continues to be essential for chromosome
maintenance via the action of telomerase. The
extant enzyme synthesizes telomeres that serve
as protective caps of chromosome ends, thus
counteracting their shortening during replica-
tion cycles. Telomerase is a complex between
RNA and protein in which the RNA serves as
template and protein as reverse transcriptase
(Greider and Blackburn 1989; Blackburn et al.
2006; Blackburn and Collins 2011). Group II
introns, when transcribed as RNA are self-splic-
ing with the activity residing on the RNA at high
salt conditions in vitro (van der Veen et al. 1986).
For in vivo activity and integration at new ge-
nomic sites in a process termed reverse splicing,
a reverse transcriptase encoded in the intron
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is necessary (Lambowitz and Zimmerly 2011).
The ribozyme has been proposed to be ancestral
to non-LTR (long terminal repeat) retroposons
as well as the spliceosome attributable to simi-
larities of their reverse transcriptase and some
small nuclear RNA (snRNA) components of
the spliceosome, including aspects of the splice
mechanism itself, respectively (Xiong and Eick-
bush 1990; Guthrie 1991; Sharp 1991; Fica et al.
2013). The rapid spread of introns in eukaryotes
has been ascribed to group II introns after they
were imported by endosymbionts (Cavalier-
Smith 1991), perhaps necessitating the separa-
tion of slow mRNA production in the nucleus
from the fast translation in the cytoplasm, one of
the hallmarks of the eukaryotic cell (Martin and
Koonin 2006).2

Importantly, the process of continuously
converting RNA to DNA and its genomic inte-
gration has the potential to grossly inflate ge-
nomes with neutrally evolving material and, in
conjunction with larger deletion of segments by
recombination, leads to a high turnover rate of
sequences on an evolutionary time scale, once
more calling into question the ENCODE claim
that �80% of the human genome is functional
(Doolittle 2013; Graur et al. 2013; Niu and Jiang
2013). Generally, specific retroposons3 become
active in certain lineages, and reverse transcripts
from one or several master gene transcripts,
such as LINEs (long interspersed elements), au-
tonomous as they harbor gene encoding the
retroposition machinery such as reverse tran-
scriptase and nonautonomous SINEs (short in-
terspersed elements), such as Alu or B1 ele-
ments. Nonautonomous retroposons rely on
the machinery of the autonomous retroposons.

Central dogma of molecular biology Revisited 

DNA Causality 

RNA Mediating 

Protein Execution 

RNA Causality,
execution 

(Protein) 

DNA
Bookkeeping 

(Protein) 

Protein 
Execution 

(Protein) (Protein) 

(Protein) 
(RNA) 

(Protein) 
(RNA) 

(Protein) 

(Protein) 

Figure 1. Alternative to the central dogma of molecular biology. The left part depicts the original central dogma
of molecular biology with several adjustments incorporated, for example, the discovery of reverse transcription
(thin upward arrow) (Crick 1958, 1970). The grouping on the right better reflects the evolutionary transitions
and primacy of RNA. RNA could be replicated directly (semicircular arrow), albeit in extant organisms (e.g.,
plants, viruses) only with the catalytic activity of protein (RNA-dependent RNA polymerase). In this scheme,
catalysis is indicated by (RNA) and or (protein) in parentheses. The major significance of RNAs for peptidyl
transferase activity during translation (Noller 2012) is represented by the larger font for (RNA) compared to
(Protein). Execution includes structural, catalytic, and regulatory tasks in the cell. The evolutionary develop-
ments underscore Stephen Jay Gould’s view that DNA merely is the agent of bookkeeping (Gould 2002). RNAs
used to be bookkeepers as well, but remained agents of causality (Brosius 2005a).

2As mentioned above, some of the intron gain could date
back as far as the RNA world, or at least back to LUCA,
because type II introns are present in bacteria (Ferat and
Michel 1993) and in the more derived bacterial and archaeal
genomes, introns could have been lost (Poole et al. 1999).
Massive intron loss would be reminiscent of a relatively
recent purge of most introns in the yeast S. cerevisiae via
retroposition (Fink 1987).

3A general term for retroposed sequences as well as DNA
transposons is “transposable” elements (TEs). However, be-
cause following retroposition most elements are not able to
transpose any longer attributable to truncations, lack of
transcription, etc., the writer prefers “transposed” elements.
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Most retrocopies are not active as they are tran-
scriptionally silent because of the lack of inter-
nal (e.g., truncation of LINEs) or external pro-
moters in SINEs. Intact and transcribed master
genes can spawn, over a few tens or hundreds of
million years, more than one million copies, as
is the case for Alu elements (Weiner 2006). With
a few exceptions (see below), there is no selective
pressure on such elements and, accordingly,
they deviate over time from the consensus se-
quence. The human genome has been estimated
to contain �43% retroposons, a relatively small
amount of DNA transposons (�3%), and as
little as 5% conserved sequences (Lindblad-
Toh et al. 2011; Ward and Kellis 2012) that po-
tentially have function (Fig. 2).4 As argued be-
fore, conversion of RNA to DNA is an ancient
process and it has been suggested that most
DNA in the human genome has been derived

by a virtually unabated bombardment of retro-
posons (Brosius 1999a). Over time, these ele-
ments are blurring into oblivion as randomized
sequences by incessant changes, such as point
mutations and small indels. Recently, it was
confirmed by more sensitive computational
strategies involving P-clouds, that almost 70%
of the human genome may harbor repetitive
elements (de Koning et al. 2011). Extrapolating
back to or forward from the origin of RNA !
DNA genome transition, there is no reason why
this figure, except for the generally lesser con-
tributions of DNA transposons, should not
approach almost 100% (Brosius 1999a). The
fact that essential sequences are interspersed
with nonessential sequences as landing pads
for transposed elements lessening their detri-
mental impact genome-wide could be chalked
up to the ENCODE project (Bernstein et al.
2012), as well as adherents to intelligent design,
creationists, and the like as “functional,” which
would cleanse our species from the blemish of
living with �80%–90% junk DNA in our ge-

or

or

or

or

Figure 2. Exaptation of a new gene module at any stage of transposed element (TE) deterioration. In this
example, a SINE, such as Alu, B1, identifier (ID), or mammalian-wide interspersed repeat (MIR), is retroposed
into the first intron of a gene (introns depicted by thin black lines and the SINE as wide yellow bar). The gene
harbors three exons (in blue). Open reading frames (ORFs) are shown as wide bars, whereas the 50-UTR
(untranslated region) and 30-UTR are shown as narrower blue bars, in the terminal exons, respectively. The
transcription promoter is depicted in red. The four top representations indicate the gradual decay of the SINE
element by continuous mutation fading from yellow to white; thus, blending into the other anonymous sequence
of the intron. At any of those stages, part of the TE can be exapted as novel exon (framed in black). Sometimes
part of a discernible TE and adjacent anonymous intron can be exapted as novel gene module (bottom).

4See discussion points below that absence or low levels of
conservation must not necessarily rule out function and vice
versa.
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nomes (Doolittle 2013; Graur et al. 2013; Niu
and Jiang 2013).

YESTERDAY’S JUNK COULD BECOME
TOMORROW’S NOVEL GENE MODULE,
IF ONLY TEMPORARILY SO

The lack of purifying selection concerning non-
harmful TEs, including mRNA-derived retro-
copies, should not divert from the fact that,
occasionally, such sequences can be exapted
as genetic novelties (Brosius 1991; Brosius and
Gould 1992). Gene duplication as a means of
generating novel genes has been realized for a
long time (Haldane 1933; Muller 1935; Bridges
1936; Lewis 1951; Stephens 1951; Nei 1969).
Gradual change from a duplicated gene, via
those encoding isoforms, up to the acquisition
of novel functions including subfunctionali-
zation (Lynch and Force 2000) is now well doc-
umented (Roth et al. 2007; Kaessmann 2010;
Chen et al. 2013). Gene amplification can occur
via segmental duplication (Bailey and Eichler
2006) or retroposition (Brosius 1999a; Ba-
bushok et al. 2007) with a lower “success rate”
for the latter. Retroposition of a copy of the
mature mRNA requires the fortuitous presence
of a promoter element upstream, which, as a
potential benefit, could immediately alter regu-
lation of the retrogene in comparison to the par-
ent gene (Brosius 1999b). Genes, chiefly those
encoded by endogenous retroviruses, were inde-
pendently exapted or domesticated numerous
times into novel functions, some of them are
meanwhile essential for procreation or survival
(Volff 2006, 2009). Also, DNA copies of nonret-
roviral RNA genomes, or parts thereof, can be
integrated into genomes (Koonin 2010). In fun-
gi, exaptations of such genes were reported (Tay-
lor and Bruenn 2009), underscoring once more
the notion that any RNA can be a template for
the retroposition machinery (Brosius 1999b).

Can novel genes arise de novo from previ-
ously gene-free neutrally evolving genome re-
gions? Despite some false positives (Monte et
al. 1997; Kriegs et al. 2005), recruitment of entire
protein-coding genes out of neutrally evolving
sequences does occur (Long et al. 2003, 2013;
Heinen et al. 2009; Kaessmann 2010; Carvunis

et al. 2012; Murphy and McLysaght 2012; Neme
and Tautz 2013). Recently, it has been empha-
sized that many long non-protein-coding RNAs
originated from TEs (Kapusta et al. 2013). This
RNA class is discussed in more detail below. In
any event, it is much more common that novel
gene modules are being added to existing genes.
Such co-opted or exapted modules can be de-
rived from inter- or intragenic space and consti-
tute novel protein-coding exons and regulatory
regions such as promoters and enhancers (Bro-
sius 2005b, 2009; Baertsch et al. 2008; Rebollo
et al. 2012).5 A prominent case is the exonization
of parts of Alu elements, usually as alternatively
spliced exons (Makalowski et al. 1994; Nekru-
tenko and Li 2001; Sorek et al. 2002; Lev-Maor
et al. 2003; Krull et al. 2005; Shen et al. 2011).
Many such events are, over evolutionary time,
not stable. That is, they persist for a certain time
if they are not or only slightly detrimental,
especially when the novel splice product only
constitutes a fraction of the functional RNA.
Should, over time, the novel splice variant hap-
pen to become beneficial, it will be under puri-
fying selection and, by point mutations in and
around splice signals, its ratio, in comparison to
the canonical splice form, might change in its
favor. In a phylogenetic study on primates, it has
been shown that such exons derived from Alu
elements are lost at a high rate in the trial and
error mode, typical for the evolution of novelties
(Krull et al. 2005). A similar study involving
all mammals and the older MIRs revealed that
many of the events were already fixed and cur-
rently are under negative selection. The study
also shows, in the case of a relatively recent exo-
nization of an ancient MIR element, that exap-
tation can occur at any stage of TE decay (Fig. 3),
and consequently alsowith any nondescript ran-
domized DNA (Krull et al. 2007). Recently, a
mechanism was described by which a snoRNA

5Even modules that reduce or destroy the activity of a tar-
geted gene and/or its product can be beneficial to the host.
Xmrk is an epidermal growth factor receptor-related onco-
gene in certain Xiphophorus fish hybrids and, when overex-
pressed, leads to melanoma. Insertion of an autonomous
non-LTR retrotransposon disrupted and deactivated Xmrk.
As a consequence, the individuals harboring this insertion
do not develop tumors (Schartl et al. 1999).
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(small nucleolar RNA) extended its RNA-cod-
ing region by alternative processing of its 30 end
by introducing a single-point mutation near the
site important for processing, generating both
the canonical snoRNA and an extended variant
(Mo et al. 2013). This event, detected in a cluster
of rat Snord115 snoRNA genes in the imprinted
Prader-Willi syndrome locus, but not in mouse,
must be relatively recent. The additional gene
product, L-Snord115, has most likely not yet
acquired a function. The odds are that this
snoRNA variant will not survive another dozen
or so million years.

ALL WIRED UP ON REWIRING

Examples for TE contributions to gene expres-
sion by providing promoter or enhancer mod-
ules have been known for some time and are
ample (Jordan et al. 2003; van de Lagemaat
et al. 2003; Medstrand et al. 2005). Interestingly,
TEs that were conserved at unusually high levels
over hundreds of millions of years were reported
to act as enhancers (Bejerano et al. 2006; San-
tangelo et al. 2007; Sasaki et al. 2008; Lindblad-
Toh et al. 2011; Lowe and Haussler 2012). Re-
cently, a number of publications proposed that
the spreading of copies from active TE classes

can lead to rapid rewiring, affecting hundreds of
genes whose expression is being altered as a con-
sequence, and is caused by the action of addi-
tional transcription factors binding to those en-
hancers (Wang et al. 2007; Bourque et al. 2008;
Feschotte 2008; Xie et al. 2010; Lynch et al. 2011;
Rebollo et al. 2012). This might even involve Alu
elements in the form of Alu-derived miRNAs or
non-miRNAs (Du et al. 2013; Hoffman et al.
2013; Liang and Yeh 2013; Mandal et al. 2013;
Spengler et al. 2014).

Nevertheless, caution should be applied for
the following reasons:

(1) Four ultraconserved elements were de-
leted in mice. Although there is no indication
that these elements show immediate ancestry
to TEs, the lesson equally applies to TE-derived
enhancers. In this study, enhancer elements
adjacent to genes whose protein-coding exons,
when deleted, showed clear phenotypes in
mice were chosen for deletion and the elements
also were known to function as enhancers. In
all four cases, the mice were not only viable
and fertile, but also failed to reveal any obvious
phenotype among the many parameters tested
in the laboratory (Ahituv et al. 2007). Experi-
mentally, it appears to be much easier to obtain
a positive expression result with reporter con-

mRNAs (including UTRs)
RNA genes
CNEs
Other regulatory elements
Retroderived TEs
Anonymous
DNA TEs

mRNAs (including UTRs)
RNA genes
CNEs
Other regulatory elements
Retroderived TEs
Anonymous
DNA TEs

Figure 3. The functional versus nonfunctional human genome. The pies represent the various segments of the
genome applying more conservative estimates. mRNAs (�1.3% accounting for ORFs) including their 50- and
30-UTRs (�0.8%) occupy slightly .2% of the human genome. All other RNAs (non-protein-coding RNAs) are
estimated to cover about 5% (green), maximally 10%. This figure is under debate. Likewise, there is a conser-
vative estimate for regulatory elements of �8%. Other sources argue up to 20% (Bernstein et al. 2012; Shen et al.
2012). Because conserved non-protein-coding DNA elements (CNEs, �2%, purple) often encode cis-regulatory
elements (Hiller et al. 2012), the other regulatory elements are shown as 6% only (blue). TEs derived from RNA
intermediates contribute �43% (yellow) and DNA transposons only 3% (brown). The remainder (39%)
corresponds to anonymous, scrambled sequences (white). The estimated 26% introns (Bernstein et al. 2012)
occupy mostly the yellow and white segments; intronic regulatory elements and encoded RNAs (e.g., snoRNAs,
miRNAs) are accounted for in the respective segments. The pie on the right is identical, except that the
retroposons (yellow) and, to a lesser extent, the DNA transposons (brown), blend into the anonymous sequence
(white) to reflect TE ancestry of the nondescript sequences as well.
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structs than a phenotype by enhancer ablation
(Nelson and Wardle 2013).

(2) Should a newly acquired or activated TE
class with “ready-to-use” enhancer activity pop-
ulate a genome in high numbers, it might not
smoothly rewire expression of a set of genes in
a functionally viable manner, but simply wreak
havoc in a genome by juxtaposition of new
enhancers to resident genes. Such eruptions of
TEs would be expected to have at least as many
detrimental effects than beneficial ones. A less
radical scenario would be the following: TEs
carry sequences resembling transcription factor
binding sites (TFBS) or other regulatory regions
that pending minor mutations have the poten-
tial to become functional.

(3) Enhancers usually harbor clusters of ho-
motypic or heterotypic TFBS and therefore it is
less likely that most TEs are instantly functional.
Enhancers usually act in a modular fashion and
rather than changing expression patterns, they
add a cell-type/tissue or a developmental win-
dow to existing expression patterns. After a pe-
riod of testing ( just as in the case of exonization;
see above), this or other modules might get lost
(adding orexchanging afew mains, yes; rewiring,
hardly). For a recent comprehensive assessment
of these problems, see de Souza et al. (2013).

TE FUNCTIONS: TO THE MOON!

TEs are insertional mutagens and often enough,
integration near or into functional modules of
the genome is disadvantageous and, for exam-
ple, can cause disease (Chen et al. 2005; Callinan
and Batzer 2006; Iskow et al. 2010; Hancks and
Kazazian 2012). Because of affordable high-
throughput sequencing technologies, the search
for somatic de novo insertions of TEs becomes
feasible. Numerous such events could be detect-
ed in tumor tissues and cells (Miki et al. 1992;
Lee et al. 2012), some of which might be caus-
al. Somatic integration even was proposed to
contribute to neuropsychiatric disease, such as
schizophrenia (Bundo et al. 2014). Apart from
being detrimental or neutral, a minority of
events has the potential to turn out beneficial.

TEs of a certain class might harbor not only
TFBS, but also numerous other functional se-

quences in their consensus sequences, and, per-
haps, mainly because these elements are defined
by their designation, proposals with highly di-
verse functions are being published, even in-
volving TEs with very narrow phylogenetic dis-
tributions (Allen et al. 2004; Espinoza et al. 2004,
2007; Lunyak et al. 2007; Mariner et al. 2008;
Gong and Maquat 2011; Yakovchuk et al. 2011;
Carrieri et al. 2012; Jady et al. 2012; Holdt et al.
2013; Ponicsan et al. 2013; Wang et al. 2013).
Somatic LINE element integrations even have
been implied in the development of the brain
(Muotri et al. 2005; Coufal et al. 2009; Faulkner
et al. 2009; Singer et al. 2010; Baillie et al. 2011;
Upton et al. 2011; Perrat et al. 2013; Reilly et al.
2013). Either TEs are chock full of regulatory
motifs and control elements, which can be ar-
gued in case of promoters, for example, LTRs
(Feuchter and Mager 1990), or it is the fact
that TEs are defined and designated nucleic
acid sequences (nuons) (Brosius and Gould
1992) and, therefore, receive more attention in-
stead of randomized and anonymous sequences
in attempts to investigate their functions. Per-
haps one or the other of these exhilarating find-
ings will share the fate of ID repetitive elements
and TEs of the SINE class, in a development that
unfolded about three decades ago. A lot of ex-
citement was generated by reports that ID ele-
ments regulate brain-specific gene expression
(Milner et al. 1984; Sutcliffe et al. 1984a,b;
McKinnon et al. 1986). Unfortunately, these
claims did not stand the test of time (Owens
et al. 1985; Sapienza and St-Jacques 1986; Gold-
man et al. 2014).6 For sure, any seemingly insig-

6Ironically, the presence of a brain-specific RNA (BC1 RNA)
with similarity to the consensus sequence of ID elements
had been noticed in early publications, but dismissed as by-
product of a functional act of transcription (Sutcliffe et al.
1984a). This activity by RNA polymerase III had been sug-
gested to open the chromatin structure of brain-specific
genes to allow transcription by RNA polymerase II (Sutcliffe
et al. 1984b). It turned out, however, that BC1 RNA is en-
coded by a single active gene, is a master gene for the ID
repetitive SINEs, and is functional (DeChiara and Brosius
1987; Martignetti and Brosius 1993; Kim et al. 1994; Wang
et al. 2002; Lewejohann et al. 2004; Iacoangeli and Tiedge
2013). This perfectly reflects the “Zeitgeist” of the era and is
in stark contrast to the current situation in which almost
anything that features a ribogroup is being considered func-
tional (see below).

RNA and Eukaryotic Gene/Genome Architecture

Cite this article as Cold Spring Harb Perspect Biol 2014;6:a016089 9



nificant novelty could have far-reaching conse-
quences for future lineages (Martignetti and
Brosius 1993; Kapitonov and Jurka 2005), but
in their infancy, the functional significance, if
not potential of novelties, is not easy to assess
and often might be transitory. And what is true
for regulatory elements and protein-coding
genes and their exonic modules should also ap-
ply to functions of non-protein-coding RNAs.

FUNCTIONAL RNA: ALIVE AND KICKING

Despite the growing recognition of RNA’s func-
tional significance and versatility, as well as
its preeminence in the evolution of life, up to
�15 years ago, most scholars in the life sciences
still deemed RNA molecules as fossils or rem-
nants from bygone eras. The most complex cy-
toplasmic RNA class, messengers between the
genetic information on DNA and ribosomes,
organelles in which structural and functional
macromolecules (proteins) of a cell are being
assembled, did not generate much excitement
any longer after the genetic code had been
cracked (Nirenberg et al. 1965; Söll et al. 1965).

A minority of investigators sensed that the
previously known and rather abundant non-
protein-coding RNAs, such as transfer and ri-
bosomal RNAs, were only the tip of the iceberg
(Prestayko and Busch 1968; Zieve and Penman
1976; Lerner et al. 1980; Brown and Fournier
1984; Lee et al. 1985; Erdmann and Wolters
1987; Mattick 1994; Brosius 1996) and that
even novel functional RNAs could evolve (De-
Chiara and Brosius 1987; Brosius 1991). The
floodgates began to open when sequencing of
copy DNA generated from non-mRNA fractions
revealed a plethora of novel RNAs and RNA
classes including miRNAs (Filipowicz 2000;
Huttenhofer et al. 2001; Lagos-Quintana et al.
2001; Couzin 2002). The development of deep
and ultradeep sequencing methods for cellu-
lar, organ-specific, and whole transcriptomes
of organisms greatly accelerated the deluge of
data (Wang et al. 2009). The past 15 years have
surprised most of the scientific community
with the incessant discovery of thousands of no-
vel RNAs, some extending RNA species from
already known classes such as snoRNAs, some

establishing novel RNA classes (e.g., miRNAs
and siRNAs), and some unclassified (Fire et
al. 1998; Ambros 2001; Lagos-Quintana et al.
2001; Lau et al. 2001; Moss 2001; Ruvkun
2001; Couzin 2002; Carninci et al. 2005; Derrien
et al. 2012; Djebali et al. 2012; Kapranov et al.
2012; Ross et al. 2014). Even extracellular RNAs
are receiving renewed attention (Benner 1988;
Wu et al. 2002; Dunoyer et al. 2007; Leslie
2013a). Major RNA classes are summarized in
Table 1.7

It appears that the mining of novel tiny and
small RNAs is reaching a point of deceleration
(Saxena and Carninci 2011b) and, as a result,
long RNAs are receiving more attention (Jacqu-
ier 2009; Ponting et al. 2009; Carninci 2010;
Derrien et al. 2012; Hu et al. 2012; St Laurent
et al. 2012; Cloutier et al. 2013; Di Ruscio et al.
2013; Geisler and Coller 2013; Kung et al. 2013;
Orom and Shiekhattar 2013; Sabin et al. 2013;
Ulitsky and Bartel 2013; Fatica and Bozzoni
2014; Yang et al. 2014). Oligonucleotide array
sequence analysis, conventional RNA sequenc-
ing, and RNA-sequencing technologies (FAN-
TOM) (Carninci et al. 2005; Cheng et al. 2005;
Birney et al. 2007; Mercer et al. 2012), even in
combination with biocomputation, taking phy-
logenetic considerations and/or the potential
for forming secondary structures into account,
mostly come up with at least ten thousand long
non-protein-coding RNA candidates (Washietl
et al. 2007; Managadze et al. 2013; Necsulea et
al. 2014; Nielsen et al. 2014).

DID RNA ENTER BUBBLE TERRITORY?

The percentage of the human genome that is
being transcribed appears to be approaching
the maximum asymptotically. A simple expla-
nation is the increased coverage with ultradeep
sequencing methods and coverage of any cell
type including tumors, many developmental
stages, as well as (tumor) cell lines numerous

7Detailed descriptions of the RNA classes and their (poten-
tial) functions can readily be found in reviews and the vast
original literature cited therein, for example, Prasanth and
Spector 2007; Costa 2010; Aalto and Pasquinelli 2012; Dje-
bali et al. 2012; Kapranov et al. 2012; Dieci et al. 2013;
Gomes et al. 2013; Leslie 2013b.
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Table 1. RNA classification

RNA class

Approximate

size (nt) Function

Tiny RNAs, <50 nt
microRNA, miRNA 21–24 Gene regulation, for example, fine-tuning at the

translational level
Short interfering RNA, siRNA 20–25 RNA interference, defense
PIWI-interacting RNA, piRNA 26–31 Epigenetic and posttranscriptional gene silencing

of TEs
Small RNAs, ∼50 – 500 nt
Extracellular RNA, exRNA Wide range Intercellular communication

Small nuclear RNA (snRNA)
Spliceosomal RNAs, U1, U2, U4, U5, etc.

RNAs
100–200 Splicing of mRNA out of primary transcripts

U7 RNA 50 30 processing of histone mRNA precursors
Ribonuclease P RNA, RNase P RNA or H1

RNA
340 tRNA processing

7SK RNA 330 Regulation of transcription
Y RNA 90–100 DNA replication
Telomerase RNA component, TERC 450 Maintenance of telomeres

Small nucleolar RNA, snoRNA 60–300 Guide RNAs for nucleotide modification
C/D box snoRNA 20 O-methylation of the ribose moiety of rRNA
H/ACA box snoRNA rRNA pseudouridinylation
Cajal body–specific RNA, scaRNA Composite C/D and H/ACA guide RNA,

modification of snRNAs
U3, U8, U14, U17, and U22 snoRNAs Regulation of preribosomal RNA (pre-rRNA)

folding, mediation of correct nucleolytic
processing (maturation)

“Orphan” snoRNAs Target of modification (if any) and function
unknown, examples are SNORD115 and
SNORD116 in the PWS (Prader-Willi
syndrome) locus

Small cytoplasmic RNA, scRNA
5S and 5.8S small ribosomal RNAs 120, 150 Translation
Transfer RNAs, tRNAs 73–94 Adapter molecules in translation
Signal recognition particle RNA, 7SL RNA

or SRP RNA
300 Targets protein to the endoplasmic reticulum

Vault RNAs 90–100 Components of the vault organelle, function not
clear yet

Ribonuclease MRP, mitochondrial RNA
processing RNA

290 Mitochondrial DNA replication and rRNA
processing in the nucleus

BC1 RNA 150 Neuronal cytoplasmic RNA (some expression in
testes) in soma, but also transported to
dendrites, possibly involved in regulation of
translation; phylogenetically restricted to
rodents, originated from tRNA retroposition

BC200 RNA 200 Neuronal cytoplasmic RNA (some expression in
testes) in soma, but also transported to
dendrites, possibly involved in regulation of
translation; phylogenetically restricted to
anthropoid primates; not homologous to BC1
RNA, originated from a monomeric Alu element

Continued
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times over (Carninci 2009; Ritz et al. 2011; Haas
et al. 2012; Ho et al. 2012; Shah et al. 2012; An
et al. 2013; Eswaran et al. 2013; Hu et al. 2013;
Schonberg et al. 2013; Yoshihara et al. 2013).
With all this overabundance, there is a debate
raging between those that claim almost any
identified transcript and snippet of RNA to be
functional (Mattick 2003; Lee et al. 2009; Car-
ninci 2010; Kishore et al. 2010; Clark et al. 2011;
Bernstein et al. 2012; Kapranov and St Laurent
2012; Khayrullina et al. 2012; Gebetsberger and
Polacek 2013; Mattick and Dinger 2013) and
more conservative voices (Brosius 2005c; Hut-
tenhofer et al. 2005; Robinson 2010; van Bakel
et al. 2010; Graur et al. 2013). The writer con-
curs with the argumentation for spurious and
stochastic transcripts (Kowalczyk et al. 2012;
Jensen et al. 2013; Mudge et al. 2013), especially
as many transcription promoters are bidirec-

tional (Seila et al. 2008; Neil et al. 2009; Xu
et al. 2009; Wei et al. 2011; Uesaka et al. 2014).
Even the yeast Saccharomyces cerevisiae featur-
ing a compact genome abounds with transcrip-
tional noise and erroneous initiation of tran-
scription by RNA polymerase II (Struhl 2007).
Furthermore, some transcription might be in-
volved in gene regulation without the tran-
scribed RNA being functional (Tisseur et al.
2011). Examples include regulation of tran-
scription by upstream promoters, previously
known as promoter occlusion or transcriptional
interference (Adhya and Gottesman 1982; Cul-
len et al. 1984). In yeast, for example, it has been
shown that the SER3 gene is repressed by the act
of transcription from the upstream SRG1 gene
(Martens et al. 2004). In contrast, the PHO5
gene is activated by intergenic transcription in
the opposite orientation presumably influenc-

Table 1. Continued

RNA class

Approximate

size (nt) Function

Long RNAs, >500 nt
18S and 28S large ribosomal RNA, rRNA 1900, 5000 Translation
Messenger RNAs, mRNAs Various Templates for protein biosynthesis
Long intervening non-protein-coding

RNAs, lincRNAs
Various Various suggested functions, not many are certain;

regulation of gene expression; gene/
chromosome silencing/imprinting by
interaction with chromatin

Enhancer RNA, eRNA .1000
Multiexonic poly(A)þ RNA, meRNA Various
Long antisense RNAs, asRNA, or aRNA or

natural antisense RNA, NAS RNA
Various Possibly regulation of gene expression

Pseudogene transcripts Various Decoy or sink for sequestration of RNA or protein
Circular RNA Decoy or sink for sequestration of RNA or protein

It is difficult to classify RNAs because they are so diverse. This table attempts to categorize according to size; other groupings

take their subcellular locations or functions into account. In any event, the distinctions are blurry and apply only to one species

or lineage. In yeast, for example, the U-type snRNAs are significantly larger than in vertebrates. More recently, an arbitrary line

between large and small RNAs is being drawn at 200 nt, the latter including tiny RNAs, such as miRNAs. The three size classes

here reflect the historical division between small and large RNA at �500 nt to accommodate SRP RNA, 7SK RNA, or

mitochondrial RNA processing (MRP) RNA that are well .200 nt in length, but have been known since their discoveries

as small RNAs. Large or long RNAs are defined as being in the size range of mRNAs, sometimes even displaying mRNA-like

attributes (e.g., processing, polyadenylation), but devoid of a functional open reading frame. Initially, miRNAs were

designated as tiny RNAs to distinguish them from conventional small RNAs (Ruvkun 2001). This tripartite categorization

is kept in the table. There is a flurry of attempts to identify additional RNA classes. Their functions are mostly unknown and the

RNAs might correspond to spurious or aborted transcription or other by-products of gene expression (see the text). These

include promoter-associated short and long RNA (PASR, PALR), termini-associated RNA (TASR), promoter upstream RNA

(PROMPT) transcription initiated RNA (tiRNA), transcription start site antisense RNA (TSSa), antisense termini-associated

short RNA (aTASR), retrotransposon derived RNA, satellite region RNA, telomere repeat region antisense RNA (TERRA), etc.

For further information and original references see Saxena and Carninci (2011a). PIWI, P-element-induced wimpy testis.

J. Brosius

12 Cite this article as Cold Spring Harb Perspect Biol 2014;6:a016089



ing chromatin remodeling (Uhler et al. 2007).
In other words, the act of transcription exerts
the function whereas the RNA is merely a by-
product, and this mechanism regulates gene
expression in multicellular eukaryotes as well
(Kornienko et al. 2013). Another relatively pas-
sive role for some RNAs could be the following:
Many proteins can bind RNA and proteins can
associate with each other. Perhaps an RNA mol-
ecule could have the sole function to broker the
interaction of two or more proteins that other-
wise would not be able to interact with each
other. However, if the proteins bind directly or
even via other RNA binding proteins to the
RNA, close proximity might facilitate function-
al or structural interactions. In addition, such
an RNP complex might even serve as a shuttle
into subcellular domains or environments that
one or the other component, for lack of the
appropriate signals, would not be able to reach
by itself (Brosius 2005b).

It has been argued that many of the newly
discovered long RNAs represent 30-UTRs ex-
tending beyond the annotated 30-ends of the
mRNAs by using alternative distal poly(A) ad-
dition signals. If there are large introns, 50-UTRs
with alternative upstream promoters also can be
located far from the ORF. For that reason, some
investigators took measures to stay clear of tran-
scripts that are located in a certain proximity
to annotated protein-coding genes (Managadze
et al. 2013). Nevertheless, splicing does occur
in 30-UTRs as well (Bicknell et al. 2012; Cama-
cho-Vanegas et al. 2012; Zhernakova et al. 2013)
and, hence, the corresponding exons could
map to corresponding protein-coding genes at
a much greater distance to the ORFs. Further-
more, apart from spurious initiation of tran-
scription anywhere in the genome, a certain
level of readthrough into gene distal regions
could account for a significant portion of these
long RNA candidates (Finta and Zaphiropoulos
2000; Akiva et al. 2006; Parra et al. 2006; Rich-
ard and Manley 2009).

RNAs overlapping with annotated genes
or transcribed in antisense orientation, albeit
showing regulatory potential, are generally be-
ing avoided for now as their structures, regula-
tion, and functions are more difficult to inves-

tigate (Ulitsky and Bartel 2013). Hence, the
focus has narrowed to investigating long inter-
genic noncoding RNAs (lincRNAs).8 Another
point is being overlooked frequently. For the
most part, the arbitrary cutoff for an open read-
ing frame is at 100 amino acids in length. If
humans were not pentadactyls, but hexa- or tet-
radactyls, the cutoff would probably have been
chosen at 144 or 64 amino acids, respectively.
There are numerous mRNAs that have even
shorter ORFs, namely, those encoding peptides
(Rudd et al. 1998; Sousa et al. 2001; Frith et al.
2006a; Kastenmayer et al. 2006; Savard et al.
2006; Galindo et al. 2007; Ghabrial 2007; Ha-
nada et al. 2007; Hashimoto et al. 2008; Magny
et al. 2013). Perhaps a significant fraction of
mRNA-like long intervening non-protein-cod-
ing RNAs are mRNAs after all, encoding pep-
tides and short proteins. The question on how
many of the non-protein-coding RNAs are as-
sociated with polysomes for productive transla-
tion is currently under debate (Ingolia et al.
2011; Guttman et al. 2013; Ingolia et al. 2013;
Ulitsky and Bartel 2013; van Heesch et al. 2014).

NOVEL RNAs OUT OF THE BLUE

De novo arisen long (intergenic or better inter-
vening) non-protein-coding RNA genes out of
neutrally evolving DNA including transposed
elements also are receiving increased attention
(Guttman et al. 2009; Marques and Ponting
2009; Esteller 2011; Hadjiargyrou and Delihas
2013; Kapusta et al. 2013; Managadze et al.
2013; Ulitsky and Bartel 2013). Their abun-
dance as a class is not surprising, however, be-
cause parts of TEs, especially LINEs and lone
LTRs, can harbor active transcription promot-
ers. As a consequence, a large proportion of
long intervening non-protein-coding RNAs
show sequence similarities to TEs.

8This is a double blunder in the troubled RNA nomencla-
ture. First, there hardly is a bona fide noncoding RNA (ex-
cept, of course, for the nonfunctional noise) and most RNAs
carry a code (Trifonov 1989; Barbieri 2003), and, second, if
the locus encodes an RNA, it is a gene itself and not some-
thing intergenic. At least one laboratory has begun to ad-
dress these macromolecules as long “intervening” non-
[protein]-coding RNAs (Ulitsky and Bartel 2013).
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Most investigators agree that among the tens
of thousands of long RNA candidates, there will
be hundreds if not thousands of bona fide func-
tional RNAs. One article estimates the number
to be �10% of all suggested candidates (Ulit-
sky and Bartel 2013). In addition, quite a few
of these spurious and currently nonfunctional
RNAs might one day be exapted into novel func-
tions and, as discussed above, as protein-coding
exons or regulatory regions. The majority will
be rendered inactive again and a few, if benefi-
cial, will eventually persist under selective pres-
sure (Brosius 2005c; Siepel 2009; Polev 2012).
In an analogy to Alex Rich’s predictions with
respect to an RNA world and the persisting sig-
nificance of RNA, Henry Harris envisaged the
potential of spurious transcripts as raw material
for evolution about half a century ago: “Only a
small proportion of the RNA made in the nu-
cleus of animal and higher plant cells serves as a
template for the synthesis of protein. . . . Most
of the nuclear RNA, however, is made on parts
of the DNA, which do not contain information
for the synthesis of specific proteins. . . . It plays
no role in the synthesis of a cell protein, but
serves as a background on which mutation and
selection may operate to produce new templates
for protein synthesis” (Harris 1965, 2013). This
also applies to new genes encoding functional
RNAs.

The process of new genes arising out of non-
genic regions might not appear as extraordinary
if one considers the presumably more trivial
reverse process, namely, formation and gradual
decay of pseudogenes. A single-point mutation
or small deletion can turn an mRNA into a non-
protein-coding RNA. Further mutations can si-
lence its transcription and, after enough time,
the remnants of a gene cannot be recognized as
such any longer.

COMPETITIVE RNAs

Interestingly, transcribed pseudogenes, includ-
ing those that arose via retroposition, reported-
ly can be functional as RNAs or mRNAs encod-
ing truncated proteins (Balakirev and Ayala
2003; Duret et al. 2006; Frith et al. 2006b;
Pink et al. 2011; Wen et al. 2012; Sen and Ghosh

2013). For example, retropseudogene PTENP1
derived from tumor suppressor gene PTEN is
transcribed. Like the canonical mRNA ex-
pressed from the parent gene, it harbors binding
sites for several miRNAs in what used to be the
30-UTR. These miRNA target sites are compet-
ing for the corresponding miRNAs, thus, ame-
liorating their inhibitory effect on the intact
mRNA, resulting in higher levels of the tumor
suppressor protein PTEN (Poliseno et al. 2010).
Even two isoforms of an antisense RNA gener-
ated from the PTENP1 pseudogene have been
reported to be involved in gene regulation
(Johnsson et al. 2013). In addition, a plethora
of naturally occurring circular RNAs have been
discovered, which may regulate gene expression
by sponging up complementary RNAs, such as
miRNAs (Salzman et al. 2012; Hansen et al.
2013; Memczak et al. 2013; Tay et al. 2014).
RNAs not only can be decoys or sinks for other
RNAs but also for proteins. A long RNA pro-
cessing product located between two snoRNAs
has been reported to act as a sink for Fox2 splic-
ing factor and, as a consequence, alter the rela-
tive abundance of alternative splice products of
a number of genes (Yin et al. 2012).

THE (NUCLEIC) ACID TEST
FOR FUNCTION

As one of the early advocates of a vibrant RNA
componentry in extant organisms (DeChiara
and Brosius 1987; Brosius 1991, 1996; Petherick
2008), the writer never doubted that the num-
ber of functional non-protein-coding RNAs
could easily match those for mRNAs in line
with more conservative estimates being in the
3% range (Clamp et al. 2007; Church et al. 2009;
Cabili et al. 2011; Managadze et al. 2013).9 Con-
sidering genes encoding RNAs smaller than

9ORFs amount to �1.3% in the mouse and human ge-
nomes and an additional �0.8% serve as 50- and 30-UTRs
at their extremities (International Human Genome Se-
quencing Consortium 2004; Church et al. 2009; Managadze
et al. 2013). Accordingly, all sequences that end up in mature
mRNAs cover somewhat .2% of their respective genomes.
Strictly speaking, mRNAs are chimera between templates
for translation and non-protein-coding RNAs and many
long (intervening) non-protein-coding RNAs are quite sim-
ilar, except for the lack of (long) ORFs.
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long RNAs as well and leaving generous space
for potentially functional RNAs overlapping
other genes in sense or antisense orientation,
the figure might top 5%. It does not matter
whether the numbers will end up even at 10%
of the total genome, they will not be in the range
of 75% (Djebali et al. 2012). There is a tremen-
dous task ahead of us to determine which of the
detected transcripts are bona fide RNAs, and
what their individual functions and contribu-
tions to the cell are. Phylogenetic conservation
helps, but its absence is not a perfect criterion
for lack of function. Not many investigators
would deny the functional significance of the
UTRs of mRNAs. These regions, flanking
ORFs, can encode other, for example, regulato-
ry functions such as structures to modulate
turnover or translation efficiencies, including
sequence complementarities to regulatory miR-
NAs. Yet, for the most part, these sequences
show much less phylogenetic conservation in
comparison to ORFs. This agrees with findings
about Xist, an �17-kb-long non-protein-cod-
ing RNA in humans that, at best, is conserved
only in small patches between mammals (Duret
et al. 2006). Inactivation of Xist RNA expression
on the paternal X chromosome leads to early
embryonic death in a mouse knockout model
(Marahrens et al. 1997). Even the best test for
functional significance, gene inactivation in
knockout model systems, does not always pro-
vide immediate and simple answers. In yeast,
very few knockouts of snoRNAs showed a clear
phenotype as was the case for U14 (Li et al.
1990), but not, for example, snR189 (Thomp-
son et al. 1988), or only over time or under
certain conditions with respect to other snoR-
NAs (Badis et al. 2003; King et al. 2003; Esguerra
et al. 2008). Bacterial genomes like those of Es-
cherichia coli do not have much space to waste
and everything without a selective advantage
would not remain in the genome for long. In
agreement, the knockout of the 4.5S RNA gene
had been shown to be essential (Brown and
Fournier 1984). Surprisingly, ablation of the
gene encoding 6S RNAwith a wide phylogenetic
distribution and structural conservation in bac-
teria (Barrick et al. 2005) had no effect on im-
mediate viability (Lee et al. 1985). Later, 6S

RNA was shown to regulate transcription and
enhance long-term survival (Wassarman and
Storz 2000; Trotochaud and Wassarman 2004).

In mammalian genomes, not every inacti-
vation of a protein-coding gene results in a dis-
cernible phenotype. The same is to be expected
from genes encoding RNA. Snora35 is located
within the second intron (almost 100 kb in
length) of the serotonin 2c receptor gene
(Htr2c) and is highly conserved between placen-
tal mammals. As a consequence, the brain-spe-
cific Snora35 (earlier termed MBI-36 snoRNA)
is cotranscribed with and processed out of the
primary Htr2c heterogeneous nuclear RNA
(hnRNA), for example, in the choroid plexus
(Cavaille et al. 2000). Snora35 gene-depleted
mice do not appear to display a phenotype dif-
ferent from their wild-type siblings, thus far
(BV Skryabin and J Brosius, unpubl.). In anoth-
er example of an RNA knockout, it took several
years of work to tease out a reduced explora-
tory behavior in mice when small cytoplas-
mic BC1 RNA, phylogenetically restricted to
rodents and expressed in neurons where it is
delivered to dendritic processes, was deleted
(Tiedge et al. 1991; Martignetti and Brosius
1993; Lewejohann et al. 2004). In a further
mouse snoRNA knockout, the entire cluster en-
coding Snord116 RNA isoforms (earlier termed
MBII-85 snoRNA) was deleted from a locus as-
sociated with Prader-Willi syndrome, a neuro-
developmental disorder in humans. Two inde-
pendent studies revealed that the mice showed
failure to thrive and growth retardation, but
not all symptoms described for humans (Skrya-
bin et al. 2007; Ding et al. 2008). In many multi-
cellular organisms, snoRNAs are cotranscribed
with introns of protein-coding genes or non-
protein-coding genes. Snord116 is paternally
imprinted and expressed in the brain. The host
RNA is processed into a set of abundant long
non-protein-coding RNAs by splicing out the
introns (Runte et al. 2001). Attempts to com-
pensate for the loss of Snord116 with constructs
coexpressing some copies of the respective
snoRNA in introns of a different host transgene
independently failed thus far (Ding et al. 2008;
BV Skryabin and J Brosius, unpubl.). The fol-
lowing could explain the findings: (1) The num-
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ber of Snord116 RNA isoforms from the origi-
nal transcription unit is not sufficient in the
transgenic construct; (2) spatial, temporal ex-
pression and/or its levels are not appropriate;
and (3) truncation of the long host hnRNA-
derived, processed non-protein-coding RNA is
the underlying cause for the mouse phenotype
and, by extension, human disease.

An interesting case involves the Hotair long
RNA that had been shown ex vivo to regulate
HoxD genes (Rinn et al. 2007); deletion of the
HoxC cluster harboring the Hotair gene was de-
void of a phenotype (Schorderet and Duboule
2011), whereas targeted disruption of the
Hotair locus alone led to homeotic transforma-
tion of the spine and malformation of metacar-
pal and carpal bones (Li et al. 2013).

A great stride forward has been made
through a comprehensive gene knockout proj-
ect involving 18 large RNA candidates (Sauva-
geau et al. 2013). The corresponding genes were
selected not to overlap with any other gene or
gene module, and their coding regions were re-
placed with the lacZ and neoR marker genes.
At the current level of investigation, five of the
18 mouse lines revealed a phenotype. In three
lines peri- and postnatal lethality was reported,
two of which had some survivors, but they had
growth defects. For the two remaining lines with
a phenotype, growth defects were also reported.
The most lethal knockout involved Fendrr, a
gene with six exons encoding a nuclear RNA
of about 2.4 kb in length. An independent
knockout only involving the first exon by insert-
ing a transcriptional stop cassette was lethal as
well, albeit showing different organ defects
(Grote et al. 2013). The ,30%, but .10% “suc-
cess” rate of 18 knockouts could mean a number
of things, for example, that the RNA gene can-
didates were carefully selected in favor of poten-
tial functionality and phenotypic consequences
(Sauvageau et al. 2013). Still, two-thirds of the
gene ablations did not show a noticeable impact
under the laboratory conditions tested, but,
nevertheless, could be beneficial for the long-
term survival of mice in natural, ever-changing
environments or that some of the RNAs have no
function per se. Also, it remains valid that, in
exceptional cases, such transitory “protogenes”

could become exaptations encoding novel func-
tional RNAs, even proteins, or predominantly
disappear again into the noise of the neutrally
evolving genomic mass. In any event, major
points in an article written to balance some of
the extreme views are confirmed: “[t]here is no
doubt that a number of these non-protein-cod-
ing RNAs have important regulatory functions
in the cell” and “. . . aberrant transcripts or pro-
cessing products embody evolutionary poten-
tial and provide novel RNAs that natural selec-
tion can act on” (Brosius 2005c).

CONCLUDING REMARKS

All scenarios for the beginning of life are far
from perfect. The most plausible hypothesis is
based on RNA as a primordial (auto)catalytic
macromolecule, leading over a variety of tran-
sitions (Cairns-Smith 1982; Szathmáry and
Smith 1995), of which one of the first was ac-
quisition of a simple lipid enclosure (Szostak
et al. 2001; Mansy et al. 2008) to extant forms
of life. In the RNA world, pheno- and genotype
were united in the same macromolecule. This
union began to separate during the major tran-
sition to the RNP world with a “division of
labor” between RNA and protein. Even before,
linkage of RNA molecules, confinement (of sets
of RNAs), and discrimination, on one hand,
versus escape (reminiscent of viruses and hori-
zontal gene transfer) and more expansive ex-
change by reshuffling of the RNA componentry
(sex), are apparent. This resembles a tug of war,
constantly in need of balancing the forces and
not allowing for a victory of either side. Up to
this day, at the cellular, organismal, and societal
level, the predicament of discrimination and
exchange as well as the quandary of selfishness
and cooperation remains an essence of evolu-
tion and life.10

Perhaps the modular arrangement of genes
and chromosomal DNA has its origins in the

10“Without Contraries is no progression. Attraction and
Repulsion [. . .] are necessary to [. . .] existence.” The orig-
inal William Blake quote, not shortened by the writer is
given as: “Without Contraries is no progression. Attraction
and Repulsion, Reason and Energy, Love and Hate, are nec-
essary to Human existence” (Blake 1975).
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RNA or RNP worlds as well, reflecting the hy-
pothetical structure of several linked RNA mol-
ecules. This also would mean that RNA pro-
cessing and trimming had very early origins.
Components of the extant telomerase as well
as group II introns, ancestral to the spliceosome
and non-LTR retroposons, might date back as
far as the RNP or RNA worlds. The continued
assault of extant eukaryotic genomes with ret-
roposons (somewhat countered and alleviated
by deletions via recombination) clearly had its
origin in the transition period when RNA was
replaced by DNA for the task of storing and
replicating genetic material. This process still
can shape genomes quite drastically in relatively
short evolutionary time frames. Importantly,
out of this sea of change with islands of rather
conserved and fixed gene modules, new mod-
ules can be generated fortuitously and “tested”
for added or modified function by the forces of
selection. Most disappear again with a few even-
tually exapted as novel gene modules and, oc-
casionally, even as novel genes encoding protein
or functional RNA.

After a long lag phase on the sidelines, func-
tional RNA currently is in the spotlight of biol-
ogy, even medicine, as RNomics shows promise
to detect additional disease genes, greatly de-
velop the diagnostic toolbox, and revolutionize
therapeutic possibilities (Esteller 2011; Cech
2012; Erdmann and Barciszewski 2012; Gold
et al. 2012). However, the development from
only two decades ago when the mere mention
of RNA generally exposed grant proposals to
monkey hammering resulting in poorer scores
and the current situation in which a feeding
frenzy of RNA discovery fueled by ultradeep
RNA-sequencing technologies endorses almost
any detected transcript or degradation product
as functional RNA borders on the grotesque.
Clearly, the pendulum has swung to the other
extreme.11 In any event, the renewed interest in
RNA and advances in understanding its evolu-
tion and biology will continue to fascinate us.
RNA, this ancient macromolecule, will grant us

exciting new insights into the works of life past,
present, and possibly future.
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