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Meiotic recombination involves the formation and repair of programmed DNA double-strand
breaks (DSBs) catalyzed by the conserved Spo11 protein. This review summarizes recent
studies pertaining to the formation of meiotic DSBs, including the mechanism of DNA
cleavage by Spo11, proteins required for break formation, and mechanisms that control
the location, timing, and number of DSBs. Where appropriate, findings in different organisms
are discussed to highlight evolutionary conservation or divergence.

eiosis is a specialized cell division that
Mgenerates haploid cells—spores in yeasts,
gametes in multicellular organisms—from dip-
loid progenitors. Halving the genetic comple-
ment occurs through one round of replication
followed by two rounds of chromosome segre-
gation separating homologs (meiosis I), then
sister chromatids (meiosis II). A prominent fea-
ture of meiosis I is recombination, comprising
the formation and repair of programmed DNA
double-strand breaks (DSBs). Recombination
supports faithful homolog segregation and re-
shuffles maternal and paternal alleles, thereby
increasing genetic diversity in progeny (Handel
and Schimenti 2010; Székvolgyi and Nicolas
2010).
DSBs are formed in prophase I by the con-
served Spoll protein (Fig. 1) (Szostak et al.
1983; Sun et al. 1989; Cao et al. 1990; Bergerat

et al. 1997; Keeney et al. 1997). Spoll remains
covalently linked to the 5 terminus of each
broken DNA strand, but is eventually released
by nearby endonucleolytic cleavage, likely
Mrell endonuclease and/or Sae2, followed by
3’ to 5’ resection toward the DSB by Mrel1 exo-
nuclease activity (de Massy et al. 1995; Keeney
and Kleckner 1995; Liu et al. 1995; Neale et al.
2005; Zakharyevich et al. 2010; Garcia et al.
2011). DNA ends are then resected 5 to 3’ by
Exol exonuclease to expose 3’ single-stranded
tails (Sun et al. 1991; Zakharyevich et al. 2010).
Members of the RecA family of strand exchange
proteins (Dmcl, Rad51) bind these tails, form-
ing nucleoprotein filaments that catalyze strand
invasion into homologous duplex DNA (Chen
et al. 2008; San Filippo et al. 2008). In meiosis,
some DSBs are repaired via the sister chromatid
but recombination occurs most often between
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Figure 1. The meiotic recombination pathway. A seg-
ment of one sister chromatid from each homolog
(black, gray) is shown. Spoll (ovals) catalyzes DSB
formation, in association with partner proteins. En-
donucleolytic cleavage on either side of the DSB
(black arrowheads) releases Spoll covalently at-
tached to a short oligonucleotide. The DNA ends
undergo 5'-to-3' resection. A 3’ ssDNA tail invades
a homologous duplex DNA and initiates repair syn-
thesis. Repair can proceed by either a double Holliday
junction (dHJ) pathway, or synthesis-dependent
strand annealing (SDSA). In the dHJ pathway, the
second end of the DSB is captured to form a dHJ,
and its resolution primarily gives rise to crossover
recombinants. Only one cleavage pattern for dHJ res-
olution is shown (gray arrowheads). In SDSA, the
invading 3’ strand is displaced after DNA synthesis
and reanneals to the other 3’ end of the DSB, followed
by further DNA synthesis and nick ligation, ultimate-
ly giving rise to noncrossover recombinant products.

homologs, in keeping with the importance of
recombination for promoting homolog pairing
and segregation (Schwacha and Kleckner 1994;
Goldfarb and Lichten 2010).

Recombination can yield reciprocal ex-
change of chromosome arms flanking the DSB
site (crossovers, COs), or no exchange (non-
crossovers, NCO) (Hunter 2007; Serrentino
and Borde 2012). Most COs are thought to arise
through a double Holliday junction (dHJ) inter-
mediate, whereas most NCOs are formed pri-
marily by synthesis-dependent strand annealing
(SDSA) (Fig. 1) (Allers and Lichten 2001; Cro-
mie and Smith 2007b; McMabhill et al. 2007). In
the dH]J pathway, initial strand invasion is fol-
lowed by capture of the second DSB end, form-
ing a double Holliday junction that is resolved to
generate primarily COs. In SDSA, the invading
strand is extended by DNA synthesis, but is then
displaced and anneals to the other DSB end.

In many species, the homology search ac-
companying recombination promotes recogni-
tion and pairing of homologs (Burgess 2002;
Bhalla and Dernburg 2008). Those events that
become COs then provide physical linkages be-
tween homologs, which, combined with sister
chromatid cohesion, ensure correct homolog
orientation on the meiotic spindle and proper
segregation in meiosis I. Depending on the spe-
cies, absence of recombination or COs results in
randomized chromosome segregation, gamete
aneuploidy, meiotic arrest, and/or apoptosis
(Székvolgyi and Nicolas 2010).

DSB formation and recombination are
tightly integrated with higher-order chromo-
some structure. Pairs of sister chromatids are
organized into a series of loops (~10-20 kb
in budding yeast) anchored at their bases along
a structural axis called the axial element (Fig.
2A) (Kleckner 1996, 2006; Zickler and Kleck-
ner 1999). At the pachytene stage, homologous
chromosomes are held together along their
lengths by a tripartite structure called the syn-
aptonemal complex (SC) (Fig. 2B). The SC
comprises two lateral elements (formerly the
axial element of each homolog) held together
by transverse filaments (Zickler and Kleckner
1999). Axial elements are enriched with several
protein components, which in budding yeast
include Redl, Hopl, and cohesin complexes
(Smith and Roeder 1997; Klein et al. 1999; Pa-
nizza et al. 2011). Axis proteins are required for
normal levels of meiotic DSBs, with DSBs re-
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duced to ~5%—25% of wild-type levels in hop1
and red ] mutant Saccharomyces cerevisiae (Mao-
Draayer et al. 1996; Woltering et al. 2000; Blat
et al. 2002; Niu et al. 2005; Carballo et al. 2008).

MEIOTIC DSB FORMATION BY SPO11

DSB formation by Spoll orthologs appears to
be a universal feature of meiotic recombination
initiation in fungi, invertebrates, mammals,
and plants (Keeney 2001, 2007). A single gene
encodes Spoll in most organisms, but many
plants have multiple SPO11 homologs, of which
at least one functions in meiotic recombination
(Edlinger and Schlogelhofer 2011).
Biochemical studies of Spoll have been
hampered by difficulties in isolating soluble pro-
tein, and appropriate catalytic activity (trans-
esterase, not nuclease) was lacking in reported
instances of Spol1 purification (Wu et al. 2004;
Shingu et al. 2010). However, Spoll is homol-
ogous with Top6A, the catalytic subunit of ar-
chaeal topoisomerase VI, a type II DNA topo-
isomerase (Bergerat et al. 1997; Keeney et al.
1997). Two structural domains are presumed
to be part of the active site of type II topo-
isomerases: a 5Y-CAP motif containing the cat-
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Figure 2. Meiotic chromosome organization. (A) Meiotic chromosomes are organized into a series of chro-
matin loops anchored at their bases by proteinaceous axial elements. (B) At the zygotene stage of prophase I,
homologs start to synapse, with the homologous axial elements coming together to form the lateral elements
of the synaptonemal complex (SC). The lateral elements are held together by transverse filaments, which,
together with central element proteins, make up the central region of the SC. SC formation is completed by the

alytic tyrosine and a Toprim domain with a
metal-binding pocket (Berger et al. 1998; Nich-
ols et al. 1999; Keeney 2001, 2007). Top6A acts
as a dimer with two hybrid active sites for DNA
cleavage, each comprising the 5Y-CAP and Top-
rim domains of separate monomers (Nichols
et al. 1999; Keeney 2001).

Structure—function analyses in S. cerevisiae,
Schizosaccharomyces pombe (Rec12), and Arabi-
dopsis thaliana (SPO11-1), motivated by the
crystal structure of Top6A from Methanococcus
jannaschii, strongly support the hypothesis that
Spoll catalyzes meiotic DSB formation via a
topoisomerase II-like mechanism (Nichols et
al. 1999; Diaz et al. 2002; Kan et al. 2010; Shingu
et al. 2010). Thus, Spoll likely dimerizes and
cleaves DNA in a transesterification reaction,
resulting in phosphodiester links between the
active site tyrosines of the Spoll protomers
with the 5 DSB ends. DNA cleavage yields a
two-nucleotide 5" overhang (Liu et al. 1995).

OTHER PROTEINS REQUIRED FOR DSB
FORMATION

Spoll is not sufficient for DSB formation in
vivo, as essential partners (referred to as DSB
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proteins) have been identified in many organ-
isms (Table 1). In S. cerevisiae, this cast includes
nine proteins that interact directly or indirect-
ly with Spoll (Keeney 2001, 2007). Null mu-
tants in any of these fail to form DSBs and
show reduced sporulation and severely reduced
spore viability as a consequence of chromosome
missegregation. Some DSB proteins are con-
served across phyla, whereas others appear to
be unique to species within a narrowly defined
clade, or their sequences have diverged to the
point of concealing obvious homology. Most
meiotic proteins undergo rapid evolutionary
divergence (Richard et al. 2005; Keeney 2007);
this hinders homology detection, exemplified
by Mei4 and Rec114 orthologs not being recog-
nized outside of ascomycetes until two decades
after their initial discovery in S. cerevisiae (Ku-
mar et al. 2010).

In other instances, homologs of S. cerevisiae
DSB proteins in other species are not func-
tionally conserved. For example, the Mrell—
Rad50-Xrs2 (MRX) complex is required for
DSB formation in S. cerevisiae, butnot S. pombe,
Coprinus cinereus, Drosophila melanogaster, or
A. thaliana, although its role in meiotic DSB
repair is conserved (Borde 2007; Keeney 2007).
In Caenorhabditis elegans, the MRX complex is
needed for DSB formation in otherwise wild-
type backgrounds, as in yeast (Chin and Ville-
neuve 2001; Alpi et al. 2003; Goodyer et al.
2008), but not in a rec-8 or smc-3 mutant back-
ground (Hayashi et al. 2007; Baudrimont et al.
2011). In a similar vein, Ski8 is essential for DSB
formation in S. cerevisiae, S. pombe, and Sorda-
ria macrospora, but not A. thaliana (Evans et al.
1997; Gardiner et al. 1997; Tessé et al. 2003;
Arora et al. 2004; Jolivet et al. 2006).

Table 1. List of proteins required for meiotic DSB formation in different organisms

S. cerevisiae  S. pombe  Mus musculus  C. elegans  D. melanogaster A. thaliana
Mei4 Rec24 MEI4 PRD2
Mer2 Recl5
Mrell Rad32*  MREII® MRE-11 MRE11*
Rad50 Rad50°  RAD50" RAD-50° RAD50°
Rec102
Rec104
Recl14 Rec7 REC114 PHS1?
Ski8 Recl4 WDR61® SKIS/VIP3a
Spoll Recl12 SPO11 SPO11 Mei-W68 SPO11-1, SPO11-2, SPO11-3*
Xrs2 Nbs1? NBS1®
Mde2
Rec6
MEI1 PRD1
DSB-1
DSB-2*
Mei-P22
Trem
PRD3
SWI1
DFO
Red1? Recl10
Hop1?® Hop1? HORMADI1* HIM-3* ASY1?
HTP-1*
HTP-2?
HTP-3*

“Not essential for meiotic DSB formation.
"Role in DSB formation is not known.
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Thus, although the catalytic entity initiating
meiotic recombination is highly conserved, the
other proteins involved and/or the molecular
processes that lead to break formation may be
more diverged. The precise molecular function
of DSB proteins has been a longstanding ques-
tion, but recent findings are providing a clearer
understanding. Most DSB proteins have been
extensively reviewed elsewhere (Keeney 2001,
2007; Hunter 2007; Cole et al. 2010; Edlinger
and Schlogelhofer 2011), so we emphasize new-
er findings below.

DSB Proteins in S. cerevisiae

The 10 proteins required for DSB formation in
S. cerevisiae behave functionally as four inter-
acting subgroups or subcomplexes (Spoll-—
Ski8, Recl102—Recl104, Recll4—Mei4—Mer2,
and Mrell—Rad50—Xrs2) (Fig. 3A) (Keeney
2007; Maleki et al. 2007). Besides the catalytic
role of Spo11 and the post-DSB role of the MRX
complex in DNA resection and repair, the bio-
chemical roles of DSB proteins are not clear.
Why does the absence of any one of them prevent
Spol1 from forming DSBs? Proposed functions
include recruiting Spoll to specific sites, acti-
vating Spo11 catalytic activity, and coordinating
DSB formation with chromatin and higher-or-
der chromosome structure (Keeney 2007). Re-
cent findings support the latter, and point to-
ward temporal and spatial regulation of Spoll
cleavage by coordinating DSB formation with
replication.

Ski8 is involved in RNA metabolism in veg-
etative cells but, during meiosis, it relocalizes to
the nucleus where it stabilizes the nuclear lo-
calization and chromatin association of Spoll
and, to alesser extent, of Rec102—Rec104 (Arora
et al. 2004; Kee et al. 2004; Prieler et al. 2005).
Ski8 appears to interact directly with a surface
of Spoll whose amino acid sequence closely
matches a motif (Q—R—x—x—®) in Ski3, a di-
rect binding partner of Ski8 in mRNA decay
(Arora et al. 2004; Halbach et al. 2013). The WD
propeller motif in Ski8 is speculated to function
as a scaffold for DSB protein complex assem-
bly, but it is not known whether Ski8 contributes
in other ways to DSB formation (Keeney 2007).

Meiotic DSB Formation

Rec102 and Rec104 interact with Spo11 and
Ski8, and also with Mei4 and Recl14, so one
possible role for the Rec102—Rec104 subcom-
plex is to bridge the Rec114—Mei4d—Mer2 sub-
complex with the Spo11-Ski8 subcomplex (Fig.
3A) (Arora et al. 2004; Maleki et al. 2007).
Rec102 and Rec104 behave as a functional unit,
and are required for Spol1 nuclear localization,
chromatin association, and binding to hot spots
(Kee et al. 2004; Prieler et al. 2005; Sasanuma
et al. 2007). Rec102 and Rec104 show a prefer-
ence for localizing to axis sites, but less promi-
nently than Rec114, Mei4, or Mer2, suggesting
a more even distribution genome-wide and
possibly association with both loop and axis
sequence (Kee et al. 2004; Panizza et al. 2011).
Rec104 is phosphorylated, but the function of
this modification is unknown (Kee et al. 2004).

Rec114, Mei4, and Mer2 behave as a sub-
complex based on two-hybrid, coimmuno-
precipitation, and cytological studies (Fig. 3A)
(Arora et al. 2004; Henderson et al. 2006; Li
et al. 2006; Maleki et al. 2007). Recl14, Mei4,
and Mer2 chromosomal-binding sites correlate
with axial sites, and exhibit a local anticorrela-
tion with DSB sites (Panizza et al. 2011). Mer2 is
recruited to axial sites by axis proteins (Red1,
Hop1), but it is not known whether this occurs
through direct physical interaction (Panizza
et al. 2011).

Mer2 is phosphorylated by the S-phase cy-
clin-dependent kinase (Cdc28-CIb5/ClIb6, also
referred to as CDK-S) and the Dbf4-dependent
kinase Cdc7 (DDK) (Henderson et al. 2006;
Murakami and Keeney 2008; Sasanuma et al.
2008; Wan et al. 2008). CDK-S phosphorylation
of Mer2 at S30 primes subsequent phosphory-
lation on S29 by DDK, with both modifications
essential for DSB formation. DDK also inde-
pendently phosphorylates other Mer2 amino-
terminal residues (S11, 15, 19, 22) important
for normal DSB levels (Henderson et al. 2006;
Sasanuma et al. 2008; Wan et al. 2008). CDK-S
also phosphorylates Mer2 at S271, but this is not
required for DSB formation (Henderson et al.
2006). Mer2 phosphorylation leads to further
enrichment at axes and recruitment of Rec114,
Mei4, and Xrs2 (Henderson et al. 2006; Sasa-
numa et al. 2008; Panizza et al. 2011). Mer2
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Figure 3. Interaction maps of DSB proteins in S. cerevisiae and S. pombe, and models for roles of DSB proteins in
S. cerevisiae. (A) In S. cerevisiae (left), the 10 proteins required for DSB formation form four interacting
subcomplexes (see text for details). Mer2 also interacts with Spp1, which recognizes and binds to H3K4me2/
me3 marks on chromatin loops. Mer2 and other DSB proteins localize to the chromosome axes, but it is not
known whether this is via interaction with the axial element protein Red1 (dashed arrows and question mark),
analogous to the interaction of their homologous proteins in S. pombe. In S. pombe (right), the seven proteins
required for DSB formation form two subcomplexes (DSBC and SFT) that interact via Mde2. Rec15 interacts
with Recl0, a component of linear elements (LinEs) similar to axial elements in S. cerevisiae. Homologous
proteins are shown in the same color for the two species; proteins with no known homologs in the other species
are shown in white (except for Spp1, whose homologin S. pombe is not shown, and whose role in DSB formation
is not known). (B) Model for DSB regulation via Mer2 phosphorylation (based on data in Henderson et al. 2006;
Sasanuma et al. 2008; Wan et al. 2008; Panizza et al. 2011). Mer2 phosphorylation by the replication-associated
kinases CDK-S and DDK leads to recruitment of DSB proteins that directly interact with Mer2 (Rec114, Mei4,
Xrs2), and perhaps subsequently also other DSB proteins (Rec102, Rec104, Ski8, Spoll, Mrell, and Rad50).
Mer?2 (purple) islocalized at chromosome axes, along with axial element proteins Red1, Hop1, and cohesin Rec8
(red and gray ovals), but is further enriched at axes on phosphorylation by CDK-S. CDK-S primes Mer2 for
further phosphorylation by DDK. Arrows on the chromatin loop represent gene open reading frames. Red squares
represent H3K4me3 marks. Only one sister chromatid is shown for clarity. (C) Model integrating DSB formation
with loop-axis chromosome structure (based on data in Acquaviva et al. 2012; Sommermeyer et al. 2013). Axis-
associated Mer2 interacts with Spp1, which binds H3K4me2/me3 marks and thereby tethers a chromatin loop to
the axis. The nucleosome-depleted promoter near the tethered loop segment becomes accessible to Spoll,
allowing DSB formation. The precise order of events (Mer2 phosphorylation, loop tethering to the axis) is not
known. Spp1 interacts with Mer2 independent of Mer2 phosphorylation, so the potential interactions indicated
in the left-most panel (H3K4me2/me3—Sppl-Mer2) could also occur in B, but are not shown.
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phosphorylation by replication-associated ki-
nases is thus a critical regulatory step and has
been proposed to coordinate premeiotic repli-
cation with DSB formation (Fig. 3B) (Mura-
kami and Keeney 2008). A function for Mer2
in coordinating DSB formation with higher-or-
der chromosome structure has recently been
identified (see the section Regulation of DSB
Timing).

Recl114 phosphorylation is dependent on
DSBs and on the DNA damage signal transduc-
tion kinases Tell and/or Mec1 (Sasanuma et al.
2008; Carballo et al. 2013). Recl114 has eight
[S/T]Q motifs, and seven of these are located
within two [S/T]Q cluster domains found
in many known targets of Tell and Mec1 (Car-
ballo et al. 2013). Replacing these eight serines/
threonines with nonphosphorylatable alanines
(rec114-8A) results in a subtle increase in DSB
levels (although not detectable at all sites that
were assayed), whereas a phosphomimetic allele
(rec114-8D) exhibits reduced DSB levels. The
role of Rec114 phosphorylation is not altogether
clear, but it has been proposed to mediate a
negative feedback loop to inhibit DSB forma-
tion (see Concluding Remarks) (Carballo et al.
2013).

Mrell requires all the other DSB proteins
(except Rad50) for association with DSB sites,
suggesting the MRX complex is recruited last,
once Spoll is poised to make DSBs (Borde
et al. 2004). Recruitment of MRX might occur
through Xrs2 interaction with Mer2, dependent
on Mer2 phosphorylation by CDK-S (Arora
et al. 2004; Henderson et al. 2006). It is specu-
lated that requiring MRX for DSB formation
facilitates rapid coordination with repair, en-
suring that all breaks are efficiently processed
(Borde et al. 2004).

S. pombe

There are six known Recl2 partners (Rec6,
Rec7, Recl4, Recl5, Rec24, and Mde2), and a
chromosome structure component (Recl0) es-
sential for DSB formation (Fig. 3A) (Cromie
and Smith 2007a; Keeney 2007). Other chromo-
some structure proteins (Rec25, Rec27, and
Mug20) are not essential for DSB formation,

Meiotic DSB Formation

but determine DSB hot spot location (Fowler
et al. 2013). MRX orthologs (Rad32—Rad50—
Nbsl) are required for repair of meiotic DSBs
but not their formation (Young et al. 2004).

S. pombe does not form synaptonemal com-
plexes, but instead forms structures called linear
elements (LinEs) similar to the axial element
precursors of the synaptonemal complex in
S. cerevisiae (Loidl 2006). Proper LinE forma-
tion is dependent on meiotic cohesin subunits
Rec8 and Recll (Molnar et al. 1995, 2003; Lo-
renz et al. 2004; Davis et al. 2008; Fowler et al.
2013). The LinE protein Rec10, homologous
to S. cerevisiae Red1, is required for DSB forma-
tion in S. pombe (Ellermeier and Smith 2005;
Lorenz et al. 2006; Bonfils et al. 2011). Recl0
physically interacts with and colocalizes by cy-
tology with the LinE proteins Rec25, Rec27, and
Mug?20, and these four proteins are interdepen-
dent for chromosomal association into cytolog-
ically detectable foci (Davis et al. 2008; Spirek
et al. 2010; Estreicher et al. 2012; Fowler et al.
2013). Colocalization among LinE proteins is
also detected on a population basis by chro-
matin immunoprecipitation (ChIP), although
Rec10 binds uniformly across the genome with
only modest enrichment at sites of colocali-
zation (Fowler et al. 2013). Rec25, Rec27, and
Mug20 specifically bind to sites of DSB hot
spots, even in the absence of DSB formation
(Fowler et al. 2013). Moreover, DSBs are signi-
ficantly reduced at >80% of hot spots in the
absence of Rec27, so Rec25, Rec27, and Mug20
are proposed to be determinants of DSB hot
spots (discussed below) (Fowler et al. 2013).
Unlike for Recl0, mutants lacking Rec25,
Rec27, and Mug20 show region-specific reduc-
tion in DSB and recombination levels, so these
proteins are not essential for DSB formation per
se (Davis et al. 2008; Estreicher et al. 2012).

Rec7, Recl5, and Rec24 are orthologs of
S. cerevisiae Recl14, Mer2, and Mei4, respec-
tively, and form the SFT (seven-fifteen-twen-
ty-four) subcomplex (Fig. 3A) (Malone et al.
1997; Molnar et al. 2001; Kumar et al. 2010;
Miyoshi et al. 2012). As in budding yeast
and mouse, Rec7 and Rec24 physically interact
and colocalize with LinEs (Steiner et al. 2010;
Bonfils et al. 2011; Miyoshi et al. 2012). Rec24
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recruits Rec7 to LinEs, and colocalization with
LinEs depends on Rec10 but is independent of
Rec12 and, thus, DSBs (Lorenz et al. 2006; Bon-
fils et al. 2011).

Recl5 interacts with both Rec24 and Rec7,
and also with itself, Rec10, and Mde2 (Fig. 3A)
(Miyoshi et al. 2012). No other Recl2 partner
detectably interacts with linear element com-
ponents, so Recl5 likely recruits Rec24 and
Rec7 to LinEs via its interaction with Recl0
(Miyoshi et al. 2012). Rec15 binds to two classes
of LinE sites with different genetic dependen-
cies: LinE sites that overlap DSB hot spots (hot-
LinE; thought to represent sites of chromatin
loops tethered to the axis [see the section Reg-
ulation of DSB Timing]), and LinE sites out-
side of DSB hot spots (Miyoshi et al. 2012).
Recl5 binding to hot-LinEs largely depends
on Rec24 and Mde2, whereas binding to LinE
sites outside of hot spots requires Rec10 (Miyo-
shi et al. 2012). Rec7 is phosphorylated in-
dependently of DSB formation, but the kinase
responsible and the role for the modification are
unknown (Miyoshi et al. 2012).

Rec6 and Rec14, along with Rec12, form the
DSBC (DSB catalytic core) subcomplex (Fig.
3A) (Miyoshi et al. 2012). Rec12—Rec14 inter-
action can be detected by yeast two-hybrid, but
interaction with Rec6 is only detectable in the
presence of both Rec12 and Rec14 (Steiner et al.
2010; Miyoshi et al. 2012). Rec14 interacts with
Mde2 (Miyoshi et al. 2012). Rec6 has no known
ortholog in other organisms, whereas Rec14 is
the ortholog of S. cerevisiae Ski8 (Evans et al.
1997).

Mde2 was identified in a screen for genes
up-regulated in meiosis, and no orthologs are
known (Gregan et al. 2005). Mde2 localizes pre-
dominantly to DSB sites, dependent on Recl5,
and is required for Rec12 binding to the mbsl
hot spot, suggesting Mde2 recruits Rec12 and
the DSBC subcomplex to hot spots (Miyoshi et
al. 2012). Mde2 interacts with SFT via Recl5,
and with DSBC via Rec14, possibly bridging the
two subcomplexes (see the section Regulation
of DSB Timing) (Fig. 3A) (Miyoshi et al. 2012).
Mde?2 expression is regulated by the Rad3—Cds1
meiotic replication checkpoint (Rad3 is the ho-
molog of S. cerevisiae Mec1 and vertebrate ATR

kinases), thereby providing a potential mecha-
nism to coordinate replication with DSB for-
mation (Ogino and Masai 2006; Miyoshi et al.
2012).

Taken together, DSB proteins may play a
role in recruiting Recl12 to chromatin and/or
activating Rec12, whereas hot spot determi-
nants (Rec25, Rec27, and Mug?20) likely stabilize
or activate Rec12 already bound to chromatin
(Miyoshi et al. 2012; Fowler et al. 2013).

M. musculus

Three mouse proteins are known or hypothe-
sized to be required along with SPO11 to gener-
ate DSBs (MEI1, MEI4, and RECI114). It is
not known whether mouse MRX orthologs
(MRE11, RAD50, and NBS1) are required for
meiotic DSB formation because they are essen-
tial for viability (Xiao and Weaver 1997; Luo etal.
1999; Zhu et al. 2001), but their role in repair of
meiotic DSBs appears to be conserved (Borde
2007; Cherry et al. 2007; Kumar and de Massy
2010). WDR61 is the Ski8 /Rec14 homolog, but
whether its meiotic function is conserved is not
known (Kumar and de Massy 2010).

Meil was identified in an embryonic stem
cell-based ethyl methane sulfonate (EMS)
chemical mutagenesis screen for fertility mu-
tants (Munroe et al. 2000; Ward et al. 2003).
Meil mutants display reduced staining for
yYH2AX (a phosphorylated form of histone
H2AX that is a marker of DSBs) and absence
of RAD51 foci that can be restored by cisplatin-
induced DNA damage (Libby et al. 2002, 2003;
Reinholdt and Schimenti 2005). Similar to
Spo]l_/_ mutants (Baudat et al. 2000; Roma-
nienko and Camerini-Otero 2000; Di Giacomo
etal. 2005), Meil ~/~ mutant spermatocytes ex-
hibit defective chromosome synapsis and pro-
phase I arrest, and epistasis analysis shows that
MEI1 acts upstream of DMC1 (Libby et al. 2002;
Reinholdt and Schimenti 2005). The biochemi-
cal function of MEI1 is unknown. No orthologs
have been found in invertebrates (Libby et al.
2003), but MEI1 shares modest homology with
plant PRDI (see the section A. thaliana). It is
unknown whether MEI1 physically interacts
with SPO11 as for PRD1 (De Muyt et al. 2007).
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Mei4 and Recl 14 were identified by a phylo-
genomic approach through conservation of
short signature sequence motifs found in their
hemiascomycetal orthologs (Maleki et al. 2007;
Kumaretal.2010). MEI4localizes to discrete foci
on chromosome axes independent of SPO11,
with focus numbers highest at leptonema and
low at pachynema, similar to the spatial organi-
zation and kinetics of S. cerevisiae Mei4 and S.
pombe Rec24 (Maleki et al. 2007; Kumar et al.
2010; Bonfils et al. 2011). Diagnostic of failure
to make DSBs, Meid ~/ ~ spermatocytes exhibit
greatly reduced yYH2AX; lack of RAD51, DMCI,
and RPA foci; synapsis defects; and meiotic pro-
phase arrest (Kumar et al. 2010). MEI4 inter-
acts with REC114 via conserved motifs in the
amino-terminal region (Kumar et al. 2010), as
also seen in S. cerevisiae and S. pombe orthologs
(Maleki et al. 2007; Steiner et al. 2010). It re-
mains to be determined how MEI4 is recruited
to the chromosome axes (via a Mer2 ortholog?),
whether REC114 function is conserved, and
whether orthologs or functional equivalents of
other DSB proteins (e.g., Rec102, Rec104, Mer2,
Rec6, and Mde2) exist in mouse.

A. thaliana

Several A. thaliana genes required for DSB for-
mation have been identified through genetic
screens (PRDI1, PRD2, PRD3, SWI1, and DFO)
(Edlinger and Schlogelhofer 2011). Some are
homologs of DSB proteins in yeasts or mammals
(PRD1, PRD2), whereas others have no clear
homologs outside the plant kingdom (PRD3,
SWI1, and DFO) (Table 1). Besides PRDI, it is
not known whether these DSB proteins interact
with SPO11 or among themselves in an interac-
tion network similar to those in yeasts. MRX and
Ski8 homologs in plants are dispensable for DSB
formation (Bleuyard et al. 2004; Pawlowski et al.
2004; Puizina et al. 2004; Jolivet et al. 2006).
PRD1 has modest sequence similarity with
human MEI1 and may thus be its functional
equivalent (De Muyt et al. 2007). prd]l mutants
are asynaptic, exhibit reduced meiotic recombi-
nation rates comparable to a strong spol1-2 al-
lele, lack detectable DMC1 foci, and can sup-
press the chromosome fragmentation defect in

Meiotic DSB Formation

DSB repair mutants rad51, scc3, and rec8 (De
Muyt et al. 2007). These phenotypes are consis-
tent with a failure to make DSBs. PRD1 interacts
with itself and SPO11-1, but whether these in-
teractions are essential for DSB formation is
unknown (De Muyt et al. 2007).

PRD2 and PRD3 were identified in a screen
for early meiotic recombination defects (De
Muyt et al. 2009). prd2 and prd3 mutants lack
DMCI1 foci; are sterile, asynaptic, and achias-
mate; and suppress rad51 or mrell chromo-
some fragmentation defects. It is thus conclud-
ed that they do not form DSBs (De Muyt et al.
2009). PRD2 is the ortholog of Mei4/Rec24,
and PRD3 is the ortholog of PAIRI in rice,
which is required for homolog pairing in mei-
osis (Nonomura et al. 2004; De Muyt et al. 2009;
Kumar et al. 2010).

SWI1/DYAD is involved in sister chromatid
cohesion, axial element formation, homolog
pairing and synapsis, recombination, and prop-
er histone modification during prophase I (H3
deacetylation and H3K4 dimethylation) (Mer-
cier et al. 2001, 2003; Agashe et al. 2002; Ham-
ant et al. 2006; Boateng et al. 2008). swil mu-
tants fail to form DSBs, as seen by the lack of
RADS51 foci and suppression of the chromo-
some fragmentation phenotype of the recombi-
nation-defective difl-1 mutant (Mercier et al.
2003). It is not clear whether SWI1 has separate
functions in different meiotic events, or wheth-
er a cohesion or axial element defect is respon-
sible for the later meiotic defects.

DFO was identified in a T-DNA insertion
mutagenesis screen for sterile mutants (Mercier
et al. 2003; Boateng et al. 2008). dfo mutants
exhibit asynapsis, severely reduced recombina-
tion rates, and impaired DSB formation as
shown by the ability to suppress mrell chromo-
some fragmentation defects (Zhang et al. 2012).
AtDFO is predicted to have three coiled-coil mo-
tifs and a helix-turn-helix motif, which might
mediate protein—protein interactions and
DNA binding, respectively (Zhang et al. 2012).

D. melanogaster

In Drosophila, only two proteins (Mei-P22 and
Trem) are currently known to be required for
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DSB formation besides Mei-W68, the Spoll
ortholog. Mei-P22 was identified as a recom-
bination-defective mutant in a P-element in-
sertion mutagenesis screen for meiotic chromo-
some missegregation (Sekelsky et al. 1999).
mei-P22 mutants are defective for meiotic
DSB formation as indicated by the absence
of yHis2Av foci (the Drosophila version of
yYH2AX), and the ability of X-ray treatment to
partially rescue defects in crossing over and X
chromosome disjunction (Liu et al. 2002; Me-
hrotra and McKim 2006). No homologs have
been identified in other eukaryotes. Mei-P22
forms discrete foci on meiotic chromosomes
that partially overlap with yHis2Av foci, and
focus formation is dependent on Trem (Mehro-
tra and McKim 2006; Lake et al. 2011).

Trem (Trade embargo) is a C2H2 zinc finger
protein identified in a germline clone screen for
mutants with high levels of meiotic nondisjunc-
tion (Page etal. 2007). Null tremn mutants do not
make DSBs and are semisterile; hypomorphic
trem alleles yield elevated MI nondisjunction,
greatly reduced meiotic recombination frequen-
cy, loss of crossover homeostasis, and absence of
Mei-P22 foci (Page et al. 2007; Lake et al. 2011).
His2Av phosphorylation and MI disjunction,
but not the sterility defect, can be partially res-
cued by X-ray-induced DSBs, suggesting that
Trem has a separate role in fertility (Lake et al.
2011). Hawley and colleagues hypothesize that
the failure to form DSBs in trem mutants is
caused by the failure in Mei-P22 foci formation
(Lake et al. 2011). It is not known whether Trem
physically interacts with Mei-P22, thereby pro-
moting loading to specific sites, or whether it
affects Mei-P22 loading and DSB formation in-
directly by altering chromatin structure.

C. elegans

Several C. elegans proteins besides SPO-11 are
involved in meiotic recombination initiation
(MRE-11, RAD-50, DSB-1, DSB-2, HIM-17,
HIM-5, and HTP-3), but it is not yet clear
whether their roles are direct or indirect.
DSB-1 is essential for DSB formation, as
shown by the absence of RAD-51 foci and chi-
asmata in dsb-1 germ lines, which can be re-

stored by exogenous DSBs (Stamper et al.
2013). On the other hand, its paralog DSB-2 is
not essential but is required for efficient DSB
formation (Rosu et al. 2013). DSB-1 and DSB-
2 showa similar localization pattern, associating
with chromatin from early meiotic prophase to
mid-pachytene, which corresponds to the stage
of DSB formation (Rosu et al. 2013; Stamper
et al. 2013). Chromatin association is indepen-
dent of DSBs, but dependent on CHK-2 kinase
(Rosu et al. 2013; Stamper et al. 2013). DSB-2
chromosome localization and protein levels de-
pend on DSB-1, and DSB-1 localization is par-
tially dependent on DSB-2, yet the two proteins
do not colocalize extensively (Rosu et al. 2013;
Stamper et al. 2013).

The association of DSB-1 and DSB-2 with
chromatin is extended in mutants with CO de-
fects, but not in axial element mutants (despite
their CO defect), suggesting that persistence of
DSB-1 or DSB-2 requires proper axis organiza-
tion (Rosu et al. 2013; Stamper et al. 2013). The
investigators propose that chromatin associa-
tion of DSB-1 and DSB-2 indicate a DSB-per-
missive state, and formation of CO recombin-
ation intermediates triggers the removal of DSB-
1 and DSB-2 from chromatin, which presum-
ably inactivates DSB formation, thus invoking
an obligate CO checkpoint or a negative feed-
back mechanism (Rosu et al. 2013; Stamper
et al. 2013). No homologs of DSB-1 or DSB-2
have been found outside the genus Caenorhab-
ditis. Both DSB-1 and DSB-2 have potential tar-
get sites for ATM /ATR family of protein kinases,
but it is not known whether they are phosphor-
ylated (Rosu et al. 2013; Stamper et al. 2013).

HIM-17 is required for meiotic DSB forma-
tion and proper accumulation of H3K9 meth-
ylation on prophase chromosomes (Reddy and
Villeneuve 2004). HIM-17 has six C2CH repeat
modules seen in zinc-finger DNA-binding mo-
tifs (Reddy and Villeneuve 2004). Absence of
HIM-17 recapitulates many of the spo-11 mu-
tant phenotypes, such as abolished RAD-51
foci, chromosome missegregation, and defec-
tive chiasma formation that can be restored by
ionizing radiation-induced DSBs (Reddy and
Villeneuve 2004). H3K9me is not a consequence
of DSB formation, but it is not known whether
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the modification is a prerequisite for SPO-11 to
cleave DNA, or whether these are two separate
roles of HIM-17. Thus, it is possible that the
effect of HIM-17 on DSB formation is indirect
through histone modifications that alter chro-
mosome structure and make it amenable for
SPO-11 catalytic activity.

HIM-5 promotes DSBs specifically on the X
chromosome, as seen by severely reduced re-
combination and elevated frequency of nondis-
junction in the X chromosome of him-5 mu-
tants (Broverman and Meneely 1994; Meneely
et al. 2012). In him-5 mutants, RAD-51 foci are
not detectable on the X chromosome, and ex-
ogenous radiation-induced DSBs rescue the X
chromosome nondisjunction, premature chro-
mosome desynapsis, and delayed pachytene
progression phenotypes (Meneely et al. 2012).
On autosomes, him-5 mutants exhibit a redis-
tribution of COs from telomere-proximal re-
gions to chromosome centers, without altering
CO levels (Meneely et al. 2012). It has been pro-
posed that HIM-5 targets SPO-11 activity to the
X chromosome, either directly as a partner pro-
tein, or indirectly by modifying the heterochro-
matin on the X and distal autosome regions
(Meneely et al. 2012).

HTP-3isa paralog of the axis protein HIM-3
(homolog of S. cerevisiae Hopl) and forms
complexes with MRE-11/RAD-50 and HIM-3
(Goodyer et al. 2008). Association of HTP-3
with both MRE-11/RAD-50 and HIM-3 is pro-
posed to link DSB formation with homolog
alignment and synapsis, because MRE-11/
RAD-50 has been implicated in DSB formation,
and HIM-3 functions in homolog alignment,
synapsis, and partner choice in recombination
(Zetka et al. 1999; Chin and Villeneuve 2001;
Alpi et al. 2003; Couteau et al. 2004; Goodyer
et al. 2008). HTP-3 associates with chromatin
in premeiotic nuclei, is a component of meiotic
axes, and is required for HIM-3 localization to
axes, homolog alignment, synapsis, and crossing
over. RNAi silencing of HTP-3 eliminates RAD-
51 and RPA-1 foci formation, and rescues the
DSB-dependent diakinesis defects of rad-51
and brc-2 mutants, suggesting that HTP-3 is re-
quired for DSB formation (Goodyer et al. 2008).
Unlike yeast or mouse, meiotic recombination is

Meiotic DSB Formation

not necessary for homolog recognition, presyn-
aptic alignment, and synapsis in C. elegans;
therefore, the role of HTP-3 in DSB formation
and downstream recombination events likely
reflect separate functions in recombination
(Dernburgetal. 1998; McKim et al. 1998; Good-
yer et al. 2008). It is notable that HORMA do-
main-containing proteins related to Hop! pro-
mote DSB formation in almost all organisms
examined (e.g., budding and fission yeasts
Hopl, C. elegans HTP-1 and HTP-3, and mouse
HORMADI; but not A. thaliana ASY1) (Mao-
Draayer et al. 1996; Couteau and Zetka 2005;
Martinez-Perez and Villeneuve 2005; Sanchez-
Moran et al. 2007; Goodyer et al. 2008; Latypov
etal. 2010).

SPATIAL DISTRIBUTION OF DSBs

The location of DSBs and subsequent recombi-
nation is important for genome integrity. DSBs
in repetitive DNA sequence (e.g., rDNA, trans-
posable elements) are at risk of genome re-
arrangement if repaired using nonallelic homol-
ogous sequences as template (Sasaki et al. 2010).
Crossovers near centromeres cause an elevated
frequency of precocious separation of sister
chromatids at meiosis I, resulting in aneuploidy
and spore inviability in yeast (Rockmill et al.
2006). Nonetheless, where Spoll generates a
DSB (ornot) is not determined by a single factor,
but rather by a combination of factors operating
over different size scales. This will be discussed in
more detail for S. cerevisiae, in which it is best
understood, but emerging evidence suggests
that multiple layers govern the spatial distribu-
tion of DSBs in other organisms as well.

S. cerevisiae

Meiotic DSBs are not randomly distributed
along chromosomes, but instead display multi-
ple levels of spatial organization that interact
hierarchically with one another (Lichten and
Goldman 1995; Petes 2001; Kauppi et al. 2004;
Lichten and de Massy 2011; Pan et al. 2011).
At the chromosome level, DSBs form prefer-
entially on chromosome arms, and are less fre-
quent within pericentric and subtelomeric
zones (two- to threefold below genome average
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at ~5-10 kb around centromeres and 3.5-fold
~20 kb from telomeres) (Blitzblau et al. 2007;
Buhler et al. 2007; Pan et al. 2011). Within in-
terstitial regions there are DSB-rich and DSB-
poor domains on the order of ~100 kb (Baudat
and Nicolas 1997; Borde et al. 1999). Within
these domains, DSBs preferentially form in
GC-rich chromatin loop regions rather than
AT-rich axis-associated DNA (Fig. 2) (Blat et
al. 2002; Kleckner 2006). Locally, there are nar-
row regions (typically ~200 bp) in which Spo11
cleaves preferentially, referred to as DSB hot
spots. Most hot spots in S. cerevisiae are influ-
enced by chromatin accessibility, and 88% are
within nucleosome-depleted regions (NDRs)
in gene promoters (Ohta et al. 1994; Wu and
Lichten 1994; Berchowitz et al. 2009; Pan et al.
2011). However, chromatin accessibility is not
sufficient, that is, not all nucleosome-depleted
regions are DSB hot spots. Moreover, a substan-
tial fraction of DSBs (>10%) forms outside of
hot spots (Pan et al. 2011).

Posttranslational histone modification, in
the form of H3K4 methylation, influences
DSB sites. H3K4 trimethylation (H3K4me3) is
enriched at the 5" end of genes, and is a his-
tone mark associated with active transcription
(Pokholok et al. 2005; Dehé and Géli 2006).
In S. cerevisiae, Setl is the catalytic subunit
of the COMPASS complex responsible for all
H3K4me, and DSB levels are reduced in the
set]A mutant, with sites of high H3K4me3 af-
fected the most, and some novel DSB hot spots
arising (Sollier et al. 2004; Dehé and Géli 2006;
Borde et al. 2009; Acquaviva et al. 2012; Som-
mermeyer et al. 2013). However, the spatial cor-
relation between H3K4me3 and DSB levels is
weak genome-wide, and H3K4me3 abundance
is a poor predictor of DSB hot spot location or
heat (Tischfield and Keeney 2012). Recent find-
ings (discussed in the section Regulation of DSB
Timing) provide a clearer explanation for the
role of H3K4me3 in DSB site selection (Acqua-
viva et al. 2012; Sommermeyer et al. 2013).

S. pombe

Prominent hotpots in S. pombe are usually
widely separated (~50-100 kb apart) and

tend to localize in large intergenic regions
(IGR) (Cromie et al. 2007). Large IGRs often
include clusters of closely spaced NDRs (de Cas-
tro et al. 2012), but NDRs are not as predictive
of DSB hot spots in S. pombe as they are in
S. cerevisiae (Fowler et al. 2014). Some hot spots
are dependent on transcription factor binding
(e.g., ade6-M26 hot spot bound by Atfl-Pcrl
transcription factor), whereas others are inde-
pendent of known transcription factors (e.g.,
mbsl) (Wahls and Smith 1994; Kon et al. 1997;
Cromie et al. 2005; Hirota et al. 2007). Recent
work implicates linear element components
(Rec25, Rec27, and Mug20) as hot spot deter-
minants (see the section Regulation of DSB
Timing) (Fowler et al. 2013).

Unlike S. cerevisiae or mouse, the distri-
bution of DSB hot spots differs from the dis-
tribution of crossovers (Young et al. 2002; Cro-
mie and Smith 2007b). Regions with few DSBs
have crossover frequencies similar to regions
with prominent DSB hot spots, a phenomenon
known as crossover invariance (Hyppa and
Smith 2010; Fowler et al. 2014). At the heart of
crossover invariance is variation in the choice of
preferred recombination partner; at DSB hot
spots, DSB repair is biased toward the sister
chromatid, whereas at DSB cold regions, DSB
repair is biased toward the homolog. The mech-
anism behind this phenomenon is not currently
understood.

Mouse and Human

Mouse and human recombination hot spots
overlap both genic and intergenic regions, al-
though human recombination rates are on av-
erage lower within transcribed regions of genes
(McVean et al. 2004; Myers et al. 2005; Arnheim
et al. 2007; Frazer et al. 2007; Coop et al. 2008;
Kong et al. 2010; Smagulova et al. 2011; Lu et al.
2012). In mouse, DSB hot spots overlap a subset
of H3K4me3-enriched sites, but unlike bud-
ding yeast, this overlap does not generally in-
clude the strong H3K4me3-enriched regions
around promoters (Buard et al. 2009; Smagu-
lova et al. 2011). Instead, DSB hot spots in
mouse and humans are determined by the
DNA-binding specificity of PRDM9 methyl-
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transferase, discussed below (Baudat et al. 2010;
Myers et al. 2010; Parvanov et al. 2010; Grey
et al. 2011; Brick et al. 2012).

INTEGRATING DSB FORMATION WITH
THE LOOP-AXIS STRUCTURE OF
CHROMOSOMES

Spp1-Mer2 Interactions Influence DSB
Locations in S. cerevisiae

DSBs form preferentially in chromatin loops,
not the DNA embedded in axes as defined by
ChIP enrichment for Rec8 and other axis com-
ponents (Blat et al. 2002; Glynn et al. 2004;
Kugou et al. 2009; Pan et al. 2011; Panizza et
al. 2011). However, cytologically detectable
recombination complexes containing Rad51
and/or Dmcl are associated with axial elements
and the synaptonemal complex in various or-
ganisms examined, so recombination takes
place in the context of chromosome axes (Ash-
ley et al. 1995; Anderson et al. 1997; Barlow et al.
1997; Moens et al. 1998; Tarsounas et al. 1999;
Blat et al. 2002; Panizza et al. 2011). This appar-
ent paradox—DSBs are in loops but recombi-
nation occurs on axes—can be resolved by the
“tethered loop—axis complex” (TLAC) model
of Kleckner and colleagues, in which DSB sites
in loop DNA are recruited to the proximity of
the axes (Blat et al. 2002; Kleckner 2006; Panizza
et al. 2011). In principle, tethering could occur
before or after DSB formation, but the observa-
tion that many DSB proteins are themselves en-
riched at axes supports a pre-DSB tethering
model (Kleckner 2006; Panizza et al. 2011).
TLAC structures may help ensure that DSBs
form in the context of chromosome axes, there-
by promoting interhomolog repair and thus
accurate segregation of homologous chromo-
somes (Kim et al. 2010; Panizza et al. 2011).
As discussed below, most available data can be
interpreted in light of this model, but it is im-
portant to note that there is as yet no direct
demonstration of TLACs.

Recent findings provide a mechanism for
loop tethering through a recently described
physical interaction between Mer2 and Sppl
(Acquaviva et al. 2012; Sommermeyer et al.

Meiotic DSB Formation

2013). Sppl is part of the COMPASS complex
(Setl is the catalytic subunit) and has a PHD
finger motif that binds H3K4me2/me3 marks
(Dehé et al. 2006; Shi et al. 2007; Murton et al.
2010). Simultaneous interaction of Sppl with
H3K4me2/me3 and with Mer2 via its carboxyl
terminus is proposed to tether chromatin loops
to DSB proteins localized on the chromosome
axes, thereby activating DSB formation in the
nucleosome-depleted regions near the tethered
portion of the chromatin loop (Fig. 3C).

Consistent with this model, artificially teth-
ering Sppl to recombination-cold UASg,; re-
gions using a Gal4 DNA-binding domain fusion
is sufficient to induce DSB formation in the
nearby NDR (Acquaviva et al. 2012). In this
scenario, DSB formation now targeted to a nor-
mally cold region did not require H3K4me3,
but was still dependent on Mer2 and Spoll.
In the absence of normal function of this teth-
ering mechanism (e.g., in set1A or H3K4R mu-
tants in which there is no H3K4me), novel DSB
hot spots appear, mostly at promoters of genes
transcriptionally induced in set1A or in chro-
matin loop regions closest to the axes (Sollier
et al. 2004; Borde et al. 2009; Acquaviva et al.
2012; Sommermeyer et al. 2013). Thus, the
Mer2-Sppl-H3K4me2/3 interaction influ-
ences the location of DSBs.

Targeting DSBs in S. pombe

Ohta and colleagues have proposed a different
mechanism for TLAC formation in S. pombe
(Miyoshi et al. 2012, 2013). As noted above,
the SFT complex localizes to LinEs, presumably
through Recl5 interaction with Rec10 (Lorenz
et al. 2006; Bonfils et al. 2011; Miyoshi et al.
2012). Mde2 localizes preferentially to DSB
hot spots and interacts with both SFT and
DSBC (Fig. 3A) (Miyoshi et al. 2012). Through
these physical interactions and Recl15 self-inter-
action, Mde2 at potential DSB sites ( proposed
to be on loop sequence) could connect with
LinEs and recruit DSBC, thereby tethering
DSB sites to LinEs and bringing DSB protein
subcomplexes together. The model proposes
that tethering of the loop to LinEs occurs before
DSB formation. It is not known whether these
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proposed tethering interactions involve histone
modifications analogous to S. cerevisiae, but
S. pombe hot spots are enriched for H3K9 acet-
ylation, and absence of this histone mark results
in partially reduced DSB and Rec12-binding
levels (Yamada et al. 2013). In contrast, hot
spots are not associated with H3K4me3, al-
though absence of Setl results in more Recl2
binding, and reduced DSB and recombination
activity at some hot spots (Yamada et al. 2013).
It is possible that multiple chromatin-related
factors influence DSB formation in S. pombe.

Smith and colleagues proposed an alterna-
tive scenario that does not invoke TLAC for-
mation (Fowler et al. 2013; Martin-Castellanos
et al. 2013). In this model, Rec12 binds both to
hot spots and to DSB-cold regions, but only
those binding events that occur in proximity
to linear element proteins Rec25, Rec27, and
Mug20 result in high-frequency DNA cleavage.
Rec25, Rec27, and Mug20 are not absolutely re-
quired for DSBs, but they bind all hot spots with
great specificity and are essential for DSBs at
most hot spots (Martin-Castellanos et al. 2005;
Davis et al. 2008; Fowler et al. 2013). Interesting-
ly, Rec12 binding (as assessed in a catalytic-dead
mutant) is higher within transcription start
sites, but DSB frequency is higher between
genes, suggesting that Rec12 binding to DNA
is not enough to initiate DSB formation, but
rather its activation is controlled separately,
most likely mediated by Rec25, Rec27, and
Mug20 (Fowler et al. 2013). According to Smith
and colleagues, the high correlation between
DSB hot spots and binding sites for a subset of
LinE proteins, in addition to the absence of any
significant anticorrelation between Rec8 bind-
ing and DSB hot spots, argues against a TLAC-
based model (Fowler et al. 2013).

Further investigation should shed light on
the mechanism for targeting DSBs in S.
pombe—whether it involves a TLAC mecha-
nism, or is determined by a set of hot spot de-
terminants, or a combination of both models.

Targeting DSBs in Mouse and Human

PRDM9 has a PR/SET domain at the amino
terminus with histone H3K4 trimethyltransfer-

ase activity, and multiple C2H2-type zinc-fin-
ger DNA-binding motifs at the carboxyl termi-
nus (Hayashi et al. 2005). The zinc-finger array
evolves rapidly, such that numerous alleles with
distinct DNA-binding specificities are present
in populations of humans, mice, and other
mammalian species (Oliver et al. 2009; Thomas
et al. 2009; Baudat et al. 2010; Berg et al. 2010;
Parvanov et al. 2010). At least 73% of hot spots
in mouse contain a consensus motif that match-
es the predicted binding site of PRDM9 (Sma-
gulova et al. 2011), but this is likely an underes-
timate of PRDM9-binding sites in vivo because
of current limitations on deducing PRDM9
binding from DNA sequence alone. Mouse
strains with different Prdm9 alleles exhibit wide-
ly different hot spot distributions with only
1.1% overlap in DSB hot spot locations (Brick
et al. 2012). In humans, a partially degenerate
13-bp motif is associated with at least 40% of
human hot spots (Myers et al. 2008, 2010; Bau-
dat et al. 2010), but this motif is specifically
recognized by two PRDM9 variants frequent-
ly found in individuals of European descent,
whereas variants common to other populations
recognize different binding sites and, hence, are
associated with different hot spots (Baudat et al.
2010; Berg et al. 2010; Kong et al. 2010; Hinch
etal. 2011). These findings show that PRDM9 is
responsible for defining most DSB hot spot lo-
cations in mouse and human.

Interestingly, PRDM9 is not required for
DSB formation, but instead targets the DSB ma-
chinery. DSB hot spots occur in different loca-
tions in the Prdm9 '~ mouse frequently, but
not exclusively, located at H3K4me3-enriched
sites associated with promoters, more reminis-
cent of the distribution in wild-type yeast,
which has no PRDM9 ortholog (Brick et al.
2012). It is not known how PRDM9 recruits
SPO11 to generate breaks, for example, whether
its methyltransferase activity is necessary or suf-
ficient for DSB targeting. Many genomic re-
gions, such as promoters, are enriched for
H3K4me3 that is placed by non-PRDM9-de-
pendent mechanisms (Ruthenburg et al. 2007;
Shilatifard 2008). SPO11 rarely cuts in these
regions in wild-type mice, but does so frequent-
ly when PRDM? is missing (Brick et al. 2012).
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The preferential targeting of SPO11 activity to
PRDMO9-binding sites despite presence of many
other sources of H3K4me3 suggests that this
histone modification by itself is not sufficient
for targeting. Perhaps PRDMO recruits the DSB
machinery directly through physical interaction
with a DSB protein in addition to providing
H3K4me3.

Itis also not yet clear whether DSB locations
in mammals also involves coordination of local
(hot-spot-level) features with higher-order chro-
mosome structure, but several lines of evidence
suggest that it does. The HORMADI structural
component of axes (ortholog of yeast Hop1) is
required for normal DSB levels, reminiscent of
Hopl requirement for normal DSB levels in
S. cerevisiae (Mao-Draayer et al. 1996; Wolter-
ing et al. 2000; Pecina et al. 2002; Niu et al. 2005;
Carballo et al. 2008; Shin et al. 2010; Daniel et
al. 2011). In addition, DSB proteins REC114
and MEI4 localize to chromosome axes in
mouse (Kumar et al. 2010), so it is possible
that breaks form in the context of axial struc-
tures (as opposed to broken segments being re-
cruited to axes after DSB formation), as has
been proposed for S. cerevisiae and S. pombe
(see above). Last, in mouse, DNA in the pseu-
doautosomal region (PAR, the only region of
homology shared between the X and Y chromo-
somes) is organized on a longer axis with short-
er chromatin loops compared to autosomes
(Kauppi et al. 2011). DNA organized as short
loops means more loops along the axis; thus,
more potential DSB sites, and consistent with
the TLAC model, PARs exhibit higher DSB den-
sity (Kauppi et al. 2011).

REGULATION OF DSB TIMING

DSBs are tightly controlled so that they occur at
the right time and place. Meiotic DSB forma-
tion appears to be universally restricted to a
narrow window of time within prophase I (Pad-
more et al. 1991; Cervantes et al. 2000; Maha-
devaiah et al. 2001; Colaidcovo et al. 2003; Jang
et al. 2003; Mehrotra and McKim 2006). In
yeasts, DSBs occur ~1-1.5 h after premeiotic
DNA replication (Borde et al. 2000; Cervantes
et al. 2000; Murakami et al. 2003).

Meiotic DSB Formation

One way cells control when DSBs start to
form is through gene expression, for instance,
regulated meiosis-specific transcription of
SPO11 and other genes required for meiotic
DSBs, such as REC102, REC104, RECI114, and
MEI4 in S. cerevisiae, or by meiosis-specific
splicing (e.g., MER2) (Keeney 2001, 2007). An-
other level of control is through coordination
with premeiotic replication. In S. cerevisiae,
DSB formation follows premeiotic replication
through the dual roles of CDK-S and DDK in
replication origin firing and DSB formation
(Schild and Byers 1978; Sclafani 2000; Smith
et al. 2001; Masai and Arai 2002; Benjamin et
al. 2003), but premeiotic replication is not a
prerequisite for DSB formation (Hochwagen
et al. 2005; Blitzblau et al. 2012). The coordinate
timing between replication and DSB forma-
tion is speculated to arise from competition
for CDK-S and DDK kinase activities, whereby
lower levels are sufficient for replication origin
firing, but onset of DSB formation occurs only
after increased levels of kinase activity are avail-
able (Murakami and Keeney 2008). Recent stud-
ies support this hypothesis (Murakami and
Keeney 2014).

Cells also regulate the termination of DSB
activity, but how this is controlled is less clear
(Padmore et al. 1991; Keeney 2001; Henderson
et al. 2006). In S. cerevisiae, Spoll and other
DSB proteins persist on chromosomes past the
time of DSB formation, and this is also observed
for mouse SPO11 (Romanienko and Camerini-
Otero 2000; Arora et al. 2004; Kee et al. 2004;
Prieler et al. 2005; Henderson et al. 2006; Li et al.
2006; Maleki et al. 2007). This suggests DSB
formation is not simply regulated by eliminating
the participating proteins. Instead, restriction of
DSB formation to a narrow window of time
may be under more direct cell cycle control. S.
cerevisiae mutants that arrest in pachytene (such
as ndt80, cdc28, cdc36, and cdc39) exhibit in-
creased recombination frequencyand detectable
DSBs at later meiotic time points (Shuster and
Byers 1989; Xu et al. 1995; Allers and Lichten
2001), suggesting that DSBs continue to form
in pachytene-arrested cells and further implying
that progression past pachytene and/or pro-
phase terminates the window of opportunity
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for break formation (Allers and Lichten 2001;
Keeney 2001; Henderson et al. 2006).

REGULATION OF DSB NUMBERS VIA
FEEDBACK CONTROL

Mechanisms for regulating DSB numbers have
been described in different species. In S. cerevi-
siae, a DSB on one chromosome decreases the
frequency of DSB formation on its homolog at
the same and nearby positions (Xu and Kleck-
ner 1995; Rocco and Nicolas 1996; Fukuda et al.
2008). This phenomenon, known as trans inhi-
bition, is proposed to be dependent on the DNA
damage signal transduction kinases Tell and
Mecl, and tends to constrain DSBs to one per
pair of homologs (Zhang et al. 2011). Inhibition
in cis in which a strong DSB hot spot suppresses
DSB formation on the same chromatid has also
been reported, but the mechanism for this is not
known (Wu and Lichten 1995; Xu and Kleckner
1995; Fan et al. 1997; Fukuda et al. 2008). Mice
and flies appear to have a negative feedback
loop, whereby DSBs catalyzed by SPO11 acti-
vate the Tell homolog ATM, which inhibits fur-
ther DSB formation (Joyce et al. 2011; Lange
et al. 2011). It is not clear how DSB inhibition
is mediated in mice and flies. In S. cerevisiae, the
negative feedback loop may involve phosphor-
ylation of Rec114 by Tell and/or Mecl (Car-
ballo et al. 2013).

DSB numbers are also regulated through a
feedback mechanism mediated by homolog en-
gagement. In mouse, unsynapsed chromosome
regions continue to form DSBs, suggesting exis-
tence of a mechanism by which DSB formation
ceases once interhomolog interactions have
been achieved, or by which unsynapsed regions
are actively targeted for de novo DSB forma-
tion (Kauppi et al. 2013). A similar conclusion
is suggested by the occurrence of elevated DSB
numbers in S. cerevisiae mutants defective
for engagement of homologous chromosomes
(Thacker et al. 2014). A similar mechanism has
been proposed in worms (Hayashi et al. 2010;
Henzel et al. 2011), based on elevated levels and
presence of RAD-51 foci at later stages in mu-
tants with synapsis defects (him-3, him-8, rec-8,
and syp-1), or with chromosomal translocations

that prevent homologous synapsis (Alpi et al.
2003; Nabeshima et al. 2004; Carlton et al.
2006; Hayashi et al. 2007). CO precursors have
also been proposed in worms to regulate the
DSB-permissive state via chromatin association
of DSB-1 and DSB-2, potentially either as a neg-
ative feedback loop, or an obligate CO check-
point (Rosu et al. 2013; Stamper et al. 2013).

CONCLUDING REMARKS

Findings in recent years from studies of mei-
otic recombination initiation in different or-
ganisms are providing a better understanding
of the mechanism of meiotic DSB formation
by Spoll, particularly of the cast of players re-
quired for Spo11-mediated break formation, the
spatial distribution of DSBs and how Spol1 ac-
tivity is targeted to these sites, as well as regula-
tion of DSB timing, and feedback control of DSB
numbers. However, many questions remain un-
answered. For example, DSB proteins appear to
function in controlling Spol1 activity through
various levels of regulation (coordination with
replication, formation, and recruitment of DSB
protein subcomplexes and coordination with
higher-order chromosome structure) to ensure
that DSBs occur in the proper spatial and tem-
poral contexts. Nonetheless, the precise molec-
ular functions of many of the DSB proteins, and
their absolute requirement for break formation
are still not completely understood. Further
questions remain on the relationship between
DSB proteins and hot spot determinants in
S. pombe (Rec25, Rec27, and Mug20) and mam-
mals (PRDM9), as well as the molecular details
of mechanisms regulating the timing of Spoll
activity. It will be interesting to see what future
research uncovers with respect to Spol1-medi-
ated meiotic DSBs.
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