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Homology search and DNA strand–exchange reactions are central to homologous recom-
bination in meiosis. During meiosis, these processes are regulated such that the probabilityof
choosing a homolog chromatid as recombination partner is enhanced relative to that of
choosing a sister chromatid. This regulatory process occurs as homologous chromosomes
pair in preparation for assembly of the synaptonemal complex. Two strand–exchange pro-
teins, Rad51 and Dmc1, cooperate in regulated homology search and strand exchange in
most organisms. Here, we summarize studies on the properties of these two proteins and their
accessory factors. In addition, we review current models for the assembly of meiotic strand–
exchange complexes and the possible mechanisms through which the interhomolog bias of
recombination partner choice is achieved.

Meiotic recombination creates genetic di-
versity and forms physical connections

between homologous chromosomes, called chi-
asmata, which allow proper bipolar spindle at-
tachment and thereby promote reductional
chromosome segregation. Like recombinational
repair in mitotic cells, the core of the meiotic
recombination pathway is the homology search
for a recombination partner that results in the
formation of heteroduplex DNA segments in
which bases from the Watson strand of one
chromatid are paired with bases from the Crick
strand of the other. Meiotic recombination fol-
lows premeiotic S phase such that the maternal
and paternal chromosomes are both present as a
pair of two identical sister chromatids. For re-
combination to execute its meiotic functions
(pairing and crossing over), a region of DNA

from one chromatid must form heteroduplex
with the corresponding allelic DNA sequence
on one of the two homolog chromatids, rather
than the corresponding sequence on the sister
chromatid.

Meiotic recombination is initiated by dou-
ble-strand breaks (DSBs) formed by the Spo11
transesterase and its many cofactors (Fig. 1) (see
Hunter 2007 and Daley et al. 2014 for overview
of meiotic recombination). The pair of DNA
ends formed by Spo11 are nucleolytically pro-
cessed, yielding 30 single-stranded tails. Recom-
binosomes assemble de novo by binding 30 sin-
gle-stranded tails and then carry out homology
search and DNA strand exchange. Initial ho-
mology recognition and strand exchange forms
a displacement loop (D-loop) that is inferred to
be unstable in vivo. D-loops can form by inva-
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sion of a homolog chromatid or a sister; how-
ever, although invasion of the sister can lead to
DSB repair, it cannot produce a chiasma—the
physical connection between homologs re-
quired for reductional segregation. The nascent
D-loop formed by strand exchange has one of
two fates. First, after extension of the invading
end by polymerase, a D-loop can be dismantled,
leading to DSB repair by the synthesis-depen-
dent strand-annealing mechanism (Fig. 1C,
Dii–Gii, and Div–Giv). In this case, the prod-
uct of the recombination event is a noncrossover
(NCO) recombinant, for instance, a product in
which the chromosome arms that flank the site
of recombination retain their starting configu-
ration. The second potential fate of a nascent
D-loop is stabilization to form a long-lived in-
termediate called a single-end invasion (SEI).
SEIs usually go on to engage or “capture” the
opposite or “second” DNA end from the same
DSB, either by single-strand annealing or an
independent strand invasion (Fig. 1C, Di–Gi,
and Diii–Giii). Capture of the opposite DSB
end then leads to formation of another metasta-
ble intermediate, the double Holliday junction
(dHJ). Most dHJs are resolved to form recipro-
cal crossover (CO) products leading to forma-
tion of chiasmata.

This review is focused on the activityof DNA
strand–exchange proteins in forming D-loops
and on factors that regulate that activity. Space
limitations prevent us from discussing every sig-
nificant finding. We, therefore, focus on studies
in budding yeast for which in vivo analysis of
recombination intermediates is most advanced,
although a number of important findings from
other organisms are discussed. We also recom-
mend previous reviews on this subject by Zickler
and Kleckner (1999) and Hunter (2007).

MEIOTIC STRAND–EXCHANGE PROTEINS

Most eukaryotic organisms possess two struc-
tural and functional homologs of the bacterial
strand–exchange protein RecA, Rad51 and
Dmc1, which cooperate during meiotic recom-
bination. Although Rad51 is the only RecA-like
strand-exchange protein that contributes to mi-
totic recombination, it also functions during

meiotic recombination. Dmc1’s function is
meiosis-specific. The RAD51 and DMC1 genes
diverged following a gene duplication that oc-
curred around the time of divergence of the pro-
and eukaryotic kingdoms (Stassen et al. 1997;
Ramesh et al. 2005). Most organisms that un-
dergo meiosis fall into one of two categories
with respect to Rad51 and Dmc1. The first cat-
egory has orthologs of both Rad51 and Dmc1;
in these organisms, both proteins are involved
in meiotic recombination and required for
the pairing and synapsis of homologs. The sec-
ond category of organisms has Rad51, but lacks
Dmc1. Organisms that possess both Rad51 and
Dmc1 include budding and fission yeast, plants,
and mammals. The “Rad51-only” group of or-
ganisms includes Drosophila melanogaster, Cae-
norhabditis elegans, and the fungus Sordaria
macrospora. D. melanogaster and C. elegans are
both capable of pairing and synapsing homo-
logs in the absence of recombination (Dernburg
et al. 1998; McKim et al. 1998; Villeneuve and
Hillers 2001). S. macrospora is a counterexample
in that it lacks Dmc1, but depends on Rad51 for
homolog alignment and synapsis (Storlazzi
et al. 2003). Phylogenetic studies show that
“Rad51-only” organisms arose relatively recent-
ly by loss of the DMC1 gene rather than by
divergence before the duplication from which
it arose (Ramesh et al. 2005). Genes coding
for key Dmc1 accessory factors, including the
HOP2 and MND1 genes, are also absent in the
lineages that have lost Dmc1, suggesting that
the function of the three proteins is interdepen-
dent (Villeneuve and Hillers 2001; Ramesh et al.
2005). Keeping this history in mind may be use-
ful in understanding the functional specializa-
tion of the two proteins and the mechanism(s)
through which Dmc1-specific functions have
been bypassed in “Rad51-only” species.

Rad51 and Dmc1 were first identified in
budding yeast. The DMC1 gene was discovered
on the basis of its meiosis-specific expression
(Bishop et al. 1992). (Dmc1 officially stands
for disrupted meiotic cDNA but the name was
also intended as a homage to the rap group
RUN DMC.) Sequencing of a DMC1 cDNA re-
vealed 26% amino acid identity with RecA.
Dmc1 is called Lim15 in Lilium longiflorum

M.S. Brown and D.K. Bishop

2 Cite this article as Cold Spring Harb Perspect Biol 2015;7:a016659



A DSB formation

Homologs

B Nucleolytic end processing

Di) D-loop stabilization

Ei) End extension
and second end
annealing

Fi) Repair synthesis
and ligation

Gi) Junction resolution Gii) Repair synthesis and ligation

Fii) End annealing

Eii) D-loop disruption

Dii) End extension Diii Div

Eiii Eiv

Fiii Fiv

Giii

∗Intermediates and products detectable by gel assay

IS dHJ∗

IH dHJ∗

IS SEI∗
IH SEI∗

∗

∗

Giv

CO path NCO path

IH CO IH NCO IS CO IS NCO

CO path NCO path

IH IS

Sisters

Sisters

∗
∗
∗

C RecA homolog-mediated nascent D-loop formation

Figure 1. Meiotic recombination pathways. Four distinct recombination pathways can repair a meiotic DSB.
Both strands of all four sister chromatids are shown with black and gray lines representing the two homologous
chromosomes. Red asterisks indicate recombination intermediates and products that can be observed by
Southern blots. (A) Meiotic recombination is initiated by the programmed introduction of DSBs. (B) 50 to 30

nucleolytic resection generates 30 single-strand DNA (ssDNA) tails on both sides of the DSB. (C) RecA homo-
logs locate an intact repair template on a homologous chromatid or the sister chromatid and catalyze strand
exchange, generating a nascent D-loop intermediate. This D-loop structure is not stable enough to be observed
in physical assays. (Di) Interhomolog (IH) crossover (CO) intermediates are formed when the nascent strand
invasion of a homologous chromatid is stabilized. The resulting joint molecule (JM) is called an IH SEI. (Ei)
Restorative DNA synthesis from the invading 30 end (shown in green) extends the D-loop, allowing annealing of
the second end of the DSB. (Fi) Further DNA synthesis and ligation of the remaining nicks generates an IH
double Holliday junction (dHJ). (Gi) Resolution of the IH dHJ generates an IH CO in which the flanking DNA
sequences are reciprocally exchanged. (Dii–Gii) IH NCOs are formed by a synthesis-dependent strand-anneal-
ing (SDSA) mechanism when an IH nascent JM is not stabilized. (Dii) DNA synthesis extends the 30 end of a
nascent D-loop. (Eii) The D-loop is disrupted. (Fii) This extended 30 end anneals to the ssDNA tract on the
opposite end. (Gii) Following further DNA synthesis and ligation, an IH NCO is formed. There is no reciprocal
exchange of flanking regions in this recombination product. (Diii–Giii) Beside the choice of repair template, an
IS CO is formed through the same biochemical steps as an IH CO. (Div–Giv) Similarly, an IS NCO forms
through the same SDSA steps as an IH NCO. DSB, double-strand break; IS, intersister; NCO, noncrossover.



and Coprinus cinereus (Kobayashi et al. 1994;
Hotta et al. 1995).

The RAD51 gene was discovered, along with
the other members of the RAD50–57 series of
genes, on the basis of its role in repairing DNA
damage caused by ionizing radiation (Game and
Mortimer 1974; Game et al. 1980). These genes
were also shown to be required for production of
viable spores. The structural similarity between
Rad51 and RecA was discovered by cloning and
sequencing members of the RAD52 epistasis
group of recombination genes. This directed ef-
fort was based on the assumption that RecA’s
structure and function would be conserved in
evolution (Shinohara et al. 1992). The “core”
domain of Rad51 was found to be 30% identical
to RecA. Budding yeast Rad51 and Dmc1 are
45% identical to one another; however, the ami-
no and carboxyl termini of the three proteins are
unrelated. The name Rad51 is used to refer to
orthologs in most species but the Drosophila
protein is called SpnA and the Schizosaccharo-
myces pombe protein, Rhp51 (Jang et al. 1994;
Staeva-Vieira et al. 2003).

Budding yeast dmc1 mutants are blocked at
the strand-exchange step of recombination and
accumulate processed DSBs (Bishop et al. 1992;
Schwacha and Kleckner 1997). Homolog pair-
ing and assembly of synaptonemal complexes
are both partially defective. Most dmc1 mutant
cells arrest in meiotic prophase owing to check-
point activation. Budding yeast rad51 mutants
also accumulate DSBs, although the amount of
residual recombination is greater in rad51 than
in dmc1 mutants and a subset of cells progress
through meiosis and form spores (Bishop et al.
1992; Shinohara et al. 1992, 1997). However, the
spores produced by rad51 mutants are dead be-
cause of inefficient DSB repair. If the check-
point mechanism that causes prophase arrest
in dmc1 mutants is inactivated, dmc1 mutant
cells execute meiotic divisions in the presence
of unrepaired DSBs and form dead spores (Ly-
dall et al. 1996).

Either Rad51 or Dmc1 alone is capable of
repairing meiotic DSBs; however, both RecA ho-
mologs are required to efficiently produce viable
spores (Bishop et al. 1992; Shinohara et al. 1992;
Tsubouchi and Roeder 2006). A recent study has

clarified these roles by demonstrating that, al-
though Rad51 is essential for efficient meiotic
recombination, its strand-exchange activity is
dispensable (Cloud et al. 2012). In accord with
the dispensability of Rad51’s strand-exchange
activity, this function is specifically inhibited
during meiosis by direct binding of a protein
called Hed1 (Tsubouchi and Roeder 2006; Busy-
gina et al. 2008). Therefore, Dmc1 is the essen-
tial DNA strand–exchange factor for meiotic
interhomolog recombination, whereas Rad51
performs a critical regulatory role (discussed
below).

BIOCHEMICAL COMPARISON OF RAD51
AND DMC1 ACTIVITY

The biochemical properties of Rad51 are re-
viewed in detail in Morrical (2014); we will,
therefore, limit this discussion to biochemical
studies of Dmc1’s properties and compare them
with those of Rad51.

Biochemical studies of Dmc1 have, by and
large, revealed striking similarities between its
activity and that of Rad51 (Sung 1994; Baumann
et al. 1996; Li et al. 1997; Hong et al. 2001). Both
proteins have the ability to promote homology
search and strand invasion/assimilation in the
displacement loop (D-loop) assay. Both bind
adenosine triphosphate (ATP) via a Walker box
motif and are weak DNA-dependent ATPases,
with kcat’s of �1.0 min21 or less. Both pro-
teins oligomerize on both single-strand DNA
(ssDNA) and double-strand DNA (dsDNA)
forming right-handed nucleoprotein filaments
(Ogawa et al. 1993; Sehorn et al. 2004; Bugreev
et al. 2005; Lee et al. 2005; Sauvageau et al. 2005;
Sheridan et al. 2008). The DNA in these filaments
is underwound and extended 1.5-fold, resulting
in a conformation with 18 nt (or bp) and six
protomers per helical turn. The filament has a
helical pitch of 10 nm (Fig. 2A,B). It should
be noted that two structural studies suggested
Dmc1 might incorporate a different number
of nucleotides per helical turn than Rad51 (Lee
et al. 2005; Okorokov et al. 2010). However, more
recent EM analysis provided definitive support
for the canonical right-handed helical structure
(Sheridan et al. 2008; Yu and Egelman 2010).
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In addition to a high-affinity DNA-binding
site (site I), which is responsible for binding of
protomers to form nucleoprotein filaments,
RecA has a second low-affinity-binding site
(site II) that binds and extends dsDNA during
the homology search (Mazin and Kowalczykow-
ski 1998, 1996; Chen et al. 2008; Danilowicz et
al. 2012). In RecA, site II also associates with the
displaced ssDNA strand following strand ex-
change. Although studied in less detail than in
RecA, site II appears to be conserved in Rad51
and Dmc1 (Cloud et al. 2012; Danilowicz et al.
2013).

Both Rad51 and Dmc1 promote D-loop
formation by first assembling into nucleopro-
tein filaments on ssDNA and then searching for
homology in duplex DNA. However, both pro-

teins nucleate filaments on dsDNA more rapid-
ly than does RecA, and this dsDNA-binding
activity inhibits D-loop formation in vitro. As a
result, D-loop reactions typically must be staged
by allowing Dmc1-ssDNA filaments to form
before addition of dsDNA substrates (Sung
and Robberson 1995; Gupta et al. 1997; Hong
et al. 2001).

Although the activity of these proteins in the
D-loop reaction is quite limited in the presence
of ATP and Mg2þ (0.5%–4%), substituting the
nonhydrolyzable analogue AMP-PNP for ATP,
or substituting Ca2þ for Mg2þ can stimulate
D-loop formation �10-fold, to levels closer to
those observed with RecA (�50%) (Hong et
al. 2001; Bugreev and Mazin 2004; Bugreev et
al. 2005; Lee et al. 2005). Both of these condi-

Figure 2. Microscopic analysis of strand-exchange proteins. (A) Electron micrographs of human (i) Dmc1, and
(ii) Rad51filaments coating a 1312 bp circular dsDNA plasmid. Note the high density of toroids in the back-
ground of the Dmc1 image (From Sheridan et al. 2008; reprinted, with permission, from Oxford University Press
# 2008.) (B) Helical reconstructions of human (i) Dmc1, and (ii) Rad51 filaments (courtesy of E. Egelman).
(C) Surface spread S. cerevisiae meiotic nuclei immunostained for Rad51 (green) and Dmc1 (red). (i) Low
magnification view, and (ii) blow up of region indicated. Scale bar, 2mm. (From Shinohara et al. 2000; reprinted,
with permission, from the American Society of Plant Biologists # 1999.)

DNA Strand Exchange and RecA Homologs in Meiosis

Cite this article as Cold Spring Harb Perspect Biol 2015;7:a016659 5



tions block ATP hydrolysis and stabilize the 100-
nm pitch of the filament, which is active in ho-
mology search and strand exchange. These find-
ings also show that, like the reaction promoted
by RecA, the homology search and strand-
exchange processes promoted by Rad51 and
Dmc1 do not depend on the proteins’ ability
to hydrolyze ATP. Strand exchange is driven by
product stability (Menetski et al. 1990; Wittung
et al. 1997; Peacock-Villada et al. 2012).

Importantly, addition of certain accessory
factors dramatically enhances the strand-ex-
change activities of both Rad51 and Dmc1
under conditions that are thought to be physio-
logically relevant, involving Mg2þ and ATP as
cofactors (Benson et al. 1998; New et al. 1998;
Petukhova et al. 1998, 2005; Shinohara and
Ogawa 1998). Although nonphysiologically high
Ca2þ concentrations (low millimolar) have of-
ten been utilized to increase strand-exchange
efficiency (see above), a recent study shows that
micromolar Ca2þ promotes robust Dmc1 activ-
ity provided Mg2þ is also present at physiologi-
cal concentrations (Chan et al. 2014). A crystal
structure of an archael homolog of Dmc1 in-
cludes Ca2þ and Mg2þ bound to different sites
in each protomer, and the same study showed
Ca2þ stabilizes an active filament conformation
(Qian et al. 2006). Thus, Ca2þ and Mg2þ are also
likely to bind different sites in Dmc1.

One striking difference in the properties of
Dmc1 and Rad51 is that Dmc1 has a much
greater tendency to form octomeric ring struc-
tures in solution (see Fig. 2Ai) (Passy et al. 1999;
Sehorn et al. 2004; Sheridan et al. 2008). The
only crystal structure of Dmc1 at present is of
the octomeric ring form, leading to the propos-
al that toroids might be the active form of the
protein (Kinebuchi et al. 2004). However, the
proposal is likely to be incorrect given that
the same conditions that stimulate Dmc1 D-
loop activity also stimulate the assembly of he-
lical filaments on DNA (Sehorn et al. 2004; Lee
et al. 2005). Thus, the functional significance of
Dmc1’s strong tendency to form toroids, if any,
remains to be determined.

Another set of studies comparing the activ-
ities of Dmc1 and Rad51 found that the two
proteins were similar to one another, and to

RecA, in that the strand-exchange reaction, rep-
resents a second, kinetically distinct phase that
occurs after formation of a less stable homology-
dependent ternary intermediate (Gupta et al.
2001). Furthermore, the efficiency of strand ex-
change displayed similar sensitivity to the gua-
nine-cytosine (GC) content of substrates. These
similarities suggest that the structure of the fil-
ament scaffold on which the core homologous
recombination reaction occurs, and the general
properties of the DNA–DNA interactions that
occur on that scaffold are quite similar for
Rad51 and Dmc1. This conclusion, along with
the other similarities between Rad51 and Dmc1
described above, implies that interactions with
specialized cofactors are likely to be important
for functional specialization of the two proteins
in vivo.

Although the activities of Rad51 and Dmc1
have been found to be similar in many respects,
an intriguing difference has been reported for
the fission yeast orthologs involving the ability
of these proteins to promote reciprocal strand
exchange in four-strand branch-migration re-
actions (Murayama et al. 2011). A circular plas-
mid containing a single-strand gap was tested
for formation of joint molecules with a homol-
ogous linear duplex. One version of the linear
duplex ended at the site of the 50 end of the
ssDNA gap, the second version at the 30 end of
the gap (Fig. 3A). The first of these substrates
can only initiate a four-strand reaction in the 50

to 30 direction, the second only in the 30 to 50

direction. Rad51 and Dmc1 showed opposite
substrate requirements for formation of four-
strand joint molecules. Rad51 showed activity
only for the 30 to 50 substrate and Dmc1 only for
the 50 to 30 substrate. A key issue regarding in-
terpretation of these results comes from the fact
that meiotic recombination involves intermedi-
ates with 30 single-stranded tails (Sun et al. 1991;
Bishop et al. 1992). Dmc1-mediated exchange
in the 50 to 30 direction could extend hybrid
DNA by invasion of duplex and subsequent
branch migration to a 30 end. Once the 30 end
is reached, however, strand exchange is expected
to cease; there is no obvious mechanism through
which further branch migration could extend
hybrid into a region of duplex such that a
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Figure 3. Directionality of Dmc1- versus Rad51-mediated branch migration. (A) Diagramatic representation of
the four-strand reaction using substrates that can undergo conversion from three-strand branch-migration
reactions to four-strand reactions. The left side of the linear duplex substrate (blue) is homologous to the
ssDNA gap on the circular substrate. Strand exchange initiates in the ssDNA gap, branch migration extends
the tract of heteroduplex to the ssDNA–dsDNA junction at the 30 end of the ssDNA region. Then, further 50-30

branch migration results in reciprocal stand exchange via the four-strand reaction. (B) Inferred consequence of
50-30 branch migration on D-loops formed in vivo. Ends at DSB sites are processed to have 30 overhanging ssDNA
tails. Branch migration is expected to proceed to the 30 end, but not be able to carry out a four-strand reaction
because an end has been reached. (C) Model for strand-exchange filament elongation on 30 ssDNA tails. Rad51
(blue) nucleates filament formation. Dmc1 filaments (orange) are seeded at the end of a Rad51 filament. The
direction of filament elongation is proposed to be the same as the direction of branch migration for the four-
strand reaction. Thus, the Rad51 filament is elongated in the 30 –50 direction, the Dmc1 filament elongated in the
50 –30 direction. This will tend to completely coat the entire ssDNA region, and perhaps lead to extension of
the Rad51 filament into the flanking dsDNA.
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four-strand reaction would ensue (Fig. 3A). The
same study that showed directional preferences
in the four-strand reaction also used linear sub-
strates to analyze the directionality of three-
strand reactions and found no directional pref-
erence for Rad51 versus Dmc1 (Fig. 3B) (Mur-
ayama et al. 2011). Two possible roles for the
four-strand reaction promoted by Dmc1 were
proposed; removal of Spo11-linked oligonucle-
otides from 30 ends, and extension of D-loops
by assembly of Dmc1 on the displaced ssDNA
strand. We note that it is also possible that the
results of four-strand reactions reflect different
directionalities of Rad51 and Dmc1 polymeri-
zation on DNA. This idea is suggested to us by
analogy to RecA, which both polymerizes and
promotes branch migration with a 50 to 30 bias
(Register and Griffith 1985; Lindsley and Cox
1990; Roca et al. 1990). The possibility is inter-
esting in light of our current model for Rad51-
Dmc1 cooperation in which Dmc1 filaments are
seeded at the end of Rad51 filaments (see be-
low). If Dmc1 filaments elongate 50 to 30, they
would tend to extend to the 30 end of ssDNA
tracts, whereas the Rad51 filaments would tend
to extend toward ssDNA–dsDNA junctions
(Fig. 3C). Furthermore, if Rad51 nucleates at a
random position along an ssDNA tract, and po-
lymerizes away from the 30 end, the maximum
length of a subsequent Dmc1 filament will be
predetermined. Thus, depending on the posi-
tion of Rad51 filament initiation, the relative
lengths of Rad51 and Dmc1 filaments could
differ from one event to the next (Fig. 2C).

Another study of human proteins examined
the activity of the DNA translocase Rad54 on
D-loops formed by Rad51 or Dmc1. Dmc1-as-
sociated D-loops were found to be more resis-
tant to Rad54-mediated dissociation than were
Rad51-associated D-loops (Bugreev et al. 2011).
This result was interpreted to imply that the D-
loops formed by Dmc1 are more stable than
those formed by Rad51, and Dmc1-mediated
stabilization of D-loops was interpreted to re-
flect a role for Dmc1 in channeling D-loop in-
termediates to the crossover rather than the non-
crossover pathway. Although the experimental
results of the study are convincing, the investi-
gators’ interpretation of the results should be

viewed with caution. Notably, this analysis did
not take into account specificity of accessory
factors for function with Rad51 versus Dmc1.
Biochemical and genetic observations indicate
that, despite a high degree of functional overlap,
Tid1/Rdh54 displays a marked preference for
Dmc1, whereas Rad54 functions more efficient-
ly with Rad51 (Dresser et al. 1997; Shinohara et
al. 2000; Nimonkar et al. 2012). Thus, Rad54 is
not a “neutral” reagent for comparing the stabil-
ity of Rad51- versus Dmc1-formed D-loops. It
should also be noted that genetic studies indi-
cate that Rad54 and Rdh54/Tid1 act to enhance
the efficiency of the crossover pathway rather
than channel intermediates away from it, as Ma-
zin and colleagues suggested (as discussed in
more detail below).

CYTOLOGICAL LOCALIZATION OF RAD51
AND DMC1

The functional cooperation of Rad51 and Dmc1
during meiotic recombination raises the ques-
tion of how the two RecA homologs are ar-
ranged at a DSB. The first cytological character-
ization of Rad51 and Dmc1 in budding yeast
showed that each formed a focal staining pat-
tern in which the foci largely colocalized (Fig.
2Ci) (Bishop 1994). Focus formation depends
on DSBs. This and other findings indicate that
foci mark sites of ongoing recombination. Co-
localization of Rad51 and Dmc1 foci, coupled
with the functional cooperation of these RecA
homologs in promoting the normal interhomo-
log bias of recombination, suggests that Rad51
and Dmc1 often reside at the same DSB site.
However, Rad51 and Dmc1 foci do not precisely
colocalize; rather, pairs of Rad51 and Dmc1 foci
tend to be partially offset, lying side by side (Fig.
2Cii) (Shinohara et al. 2000). This separation is
consistent with two-hybrid studies indicating
that the two RecA homologs display strong ho-
motypic interaction, and little heterotypic in-
teraction (Dresser et al. 1997; Masson et al.
1999; Tarsounas et al. 1999). Cytological evi-
dence for neighboring pairs of Rad51–Dmc1
homotypic filaments led to speculation that
Rad51 might form a filament on one end of
the DSB while Dmc1 forms a filament on the
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other (Shinohara et al. 2000). This speculation
contributed to formal models in which the two
ends of a DSB have distinct activities during
recombination (Hunter and Kleckner 2001;
Neale et al. 2005; Hunter 2007; Lao et al. 2008;
Kim et al. 2010; Hong et al. 2013). Furthermore,
a recent study of Rad51–Dmc1 staining pat-
terns in Arabidopsis was interpreted as being
consistent with the asymmetric loading model;
Dmc1 foci were seen to lie adjacent to Rad51 foci
(Kurzbauer et al. 2012). However, the asymmet-
ric loading model does not easily accommodate
our recent finding that Rad51 serves as an acces-
sory factor for Dmc1-mediated D-loop forma-
tion both in vivo and in vitro (see below). Rad51
would need to stimulate Dmc1 filament assem-
bly “in trans,” for instance, on the end opposite
to that which it is bound. If, rather than loading
on just one side, loading of Rad51 occurs on
both sides of a DSB, the overlapping or side-
by-side Rad51–Dmc1 foci would be explained

if the end of a homofilament of Rad51 served as
a seed for initiating polymerization of a homo-
filament of Dmc1 (Figs. 3C,4C). This model
predicts that each DSB instigates assembly of
a pair of Rad51 filaments, each of which stimu-
lates assembly of a Dmc1 filament. Consistent
with this idea, our unpublished studies in bud-
ding yeast provide evidence that side-by-side
Rad51–Dmc1 foci come in pairs (MS Brown, J
Grubb, and DK Bishop, unpubl.).

It should also be noted that the longest di-
mension of the majority of Rad51 and Dmc1
structures visualized by conventional microsco-
py is usually shorter than the resolution limit of
visible light (�200 nm) (Bishop 1994). Thus,
immunostaining foci are resolution-limited
“airy disks” (Fig. 2C). Given that Rad51 and
Dmc1 function by forming filaments on DNA,
these filaments must usually be substantially
shorter than 200 nm. If one assumes foci repre-
sent the helical nucleoprotein filaments de-
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A

B

C

D

E

Figure 4. Working model for assembly and function of Rad51–Dmc1 recombinosomes. (A) RPA binds to
ssDNA regions formed by nucleolytic resection of DNA ends. (B) Rad51, with the aid of mediator proteins
(not shown), displaces RPA. Rad51 is prevented from forming D-loops by the inhibitory protein Hed1. (C)
Mei5–Sae3 promotes initiation of Dmc1 filaments at the end of a Rad51 filament. Once initiated, Dmc1
filaments elongate on DNA by homotypic protomer–protomer interactions. (D) Dmc1 carries out a homology
search culminating in formation of a segment of heteroduplex DNA. Efficient formation of D-loops by Dmc1
requires interaction of the searching filament with a complex of Hop2–Mnd1 bound to the target dsDNA. (E)
The Rdh54/Tid1 translocase, or the Rad54 translocase, binds the Rad51 filament and translocates along the
heteroduplex, simultaneously displacing Dmc1 and extending the heteroduplex tract to the 30 end. The end is,
thus, rendered accessible for initiation of DNA synthesis.
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scribed above, for instance, with one 10-nm he-
lical turn containing 18 nt, the length of ssDNA
within a diffraction limited focus is less than
400 nt. Thus, either filaments adopt a com-
pressed configuration in cytological prepara-
tions or they contain DNA tracts of less than
400 bases. This is also true of the majority of
Rad51 staining structures observed in associa-
tion with mitotic DNA damage repair (Haaf
et al. 1995; Bishop et al. 1998; Gasior et al. 2001).

ACCESSORY FACTORS FOR
Dmc1-MEDIATED RECOMBINATION

Mei5–Sae3

Dmc1’s activity depends on the Mei5 and Sae3
proteins in budding yeast. Homologs of Mei5
and Sae3 are called Swi5 and Sfr1, respectively,
in fission yeast and vertebrates. Mei5 and Sae3
bind directly to one another to form a complex
important for recruitment of Dmc1 to recom-
binosomes in vivo (Hayase et al. 2004; Tsubou-
chi and Roeder 2004). Mei5 and Sae3 form im-
munonstaining foci that colocalize with each
other and with foci formed by Dmc1. Forma-
tion of Mei5–Sae3 foci is not observed in dmc1
mutants indicating that normal association of
Dmc1 and Mei5–Sae3 with chromatin is inter-
dependent. Consistent with a role for Mei5–
Sae3 in Dmc1 function, mei5 and sae3 mutants
display clear phenotypic similarities to dmc1
mutants including failure to repair meiotic
DSBs, accumulation of Rad51 foci, defective as-
sembly of synaptonemal complexes, and uni-
form meiotic arrest in prophase (Hayase et al.
2004; Tsubouchi and Roeder 2004). In addition,
Mei5–Sae3 foci do not form in a rad51 mutant
in which weakly staining Dmc1 foci are assem-
bled (Hayase et al. 2004). Together these find-
ings suggest that Mei5–Sae3 promotes Dmc1
assembly downstream from Rad51 loading, a
conclusion supported by biochemical observa-
tions described below.

The finding that Mei5–Sae3 is required for
Dmc1 focus formation in vivo suggested that it
might directly stimulate assembly of Dmc1 nu-
cleoprotein filaments. A common characteristic
of proteins that mediate nucleoprotein filament

assembly is that they can overcome the inhibito-
ry effects of RPA bound to ssDNA (Gasior et al.
2001; San Filippo et al. 2008). RPA is a highly
expressed protein that binds specifically to
ssDNA. RPA is essential for replication and
also plays critical roles in recombination, as re-
viewed in detail in Zelensky et al. (2014). Factors
that promote the assembly of strand-exchange
proteins on RPA coated tracts of ssDNA are
called recombination mediator proteins (see Ze-
lensky et al. (2014) for a more complete discus-
sion of mediators). The results of biochemical
studies in budding yeast, fission yeast, and
mouse indicate that Mei5–Sae3 and its homo-
logs are capable of mediating Rad51 and Dmc1
filament formation.

Biochemical characterization of budding
yeast Mei5 and Sae3 shows that the two proteins
copurify as a single complex (Hayase et al. 2004;
Ferrari et al. 2009), as is also the case for ortho-
logs in fission yeast and mammals (Kokabu et al.
2011; Say et al. 2011; Yuan and Chen 2011). The
complex binds both ssDNA and dsDNAvia con-
tacts with Mei5 (Say et al. 2011). Electrophoretic
mobility shift assays show that binding of
Mei5–Sae3 to ssDNA is preferred over dsDNA
(Ferrari et al. 2009; Say et al. 2011). In addition,
preferential binding to dsDNA–ssDNA forks
has been observed and suggested to direct mam-
malian RAD51 or DMC1 filament assembly to
the dsDNA–ssDNA junctions formed by nucle-
olytic 50 end resection (Say et al. 2011). Howev-
er, the in vivo relevance of this fork-binding
activity remains to be tested. It should also be
noted that the intrinsic DNA-binding activity of
budding yeast Mei5–Sae3 is not sufficient for
its stable association with recombination sites
during meiosis because, as previously men-
tioned, dmc1 mutants are severely defective for
formation of Mei5–Sae3 foci (Hayase et al.
2004; Tsubouchi and Roeder 2004). Similarly,
Swi5–Sfr1 focus formation in mitotically cy-
cling S. pombe cells requires Rhp51, the pombe
Rad51 homolog (Akamatsu et al. 2007). In ad-
dition to binding DNA via Mei5, the Mei5–
Sae3 complex has been shown to bind directly
to three proteins: Rad51, Dmc1 (both via the
amino terminus of Mei5), and RPA (Hayase
et al. 2004; Ferrari et al. 2009; Say et al. 2011).
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Budding yeast Mei5–Sae3 has recombina-
tion mediator activity; it suppresses the inhibi-
tory effect of adding RPA to D-loop reactions
before addition of Dmc1 (Ferrari et al. 2009).
Although budding yeast Mei5–Sae3 only stim-
ulates Dmc1 activity (Ferrari et al. 2009; Say
et al. 2011), the Swi5–Sfr1 heterodimer from
fission yeast can enhance the activity of both
Rad51 and Dmc1 in vitro (Haruta et al. 2006;
Kurokawa et al. 2008). Similarly, S. pombe and
human Mei5–Sae3 orthologs stimulate Rad51
in vivo (Akamatsu et al. 2007; Yuan and Chen
2011). Thus, the specificity of Mei5–Sae3 for
stimulating Dmc1 seen for budding yeast in
vivo does not appear to be a conserved feature.

The requirement for both Rad51 and Mei5–
Sae3 in Dmc1 focus formation suggested that
Rad51 might function with Mei5–Sae3 to stim-
ulate Dmc1 filament assembly (Bishop 1994;
Hayase et al. 2004; Tsubouchi and Roeder
2004). This possibility is supported by the ob-
servation of robust simulation of Dmc1’s D-
loop activity by a combination of Rad51 and
Mei5–Sae3 (Cloud et al. 2012). This synergistic
effect of combining Rad51 and Mei5–Sae3 was
observed under more physiological conditions
than those used to detect mediator activity in
the absence of Rad51 (high-Mg2þ and low-
Ca2þ concentration as opposed to high Ca2þ

only). The role of Rad51 in stimulating Dmc1
assembly may normally occur via nucleation
of a Dmc1 homopolymer on the end of a grow-
ing Rad51 filament, a scenario that would ex-
plain the side-by-side localization pattern of
Rad51 and Dmc1 foci (Fig. 2C). Furthermore,
genetic observations suggest that Rad51 can
contribute to Dmc1 focus formation in a rad52
mutant background, in which cytologically vis-
ible Rad51 foci do not form (Bishop 1994; Ga-
sior et al. 1998; Gasior 1999). This suggests that
Rad51 can stimulate Dmc1 assembly without
itself forming an extensive polymeric complex
on DNA. Perhaps a minimal core complex com-
posed of Rad51, Mei5, and Sae3 is sufficient to
stimulate Dmc1 filament nucleation on ssDNA,
or to stabilize such filaments once they form.
Biochemical studies designed to determine the
influence of Rad51, Mei5, and Sae3 on Dmc1
filament assembly are needed.

Overall, the biochemical properties of
Mei5–Sae3 and its orthologs suggest that the
protein has three related functions: assembly/
stabilization of active Rad51 filaments, as-
sembly/stabilization of Dmc1 filaments, and
promoting the ability of Rad51 to enhance
Dmc1 filament assembly/stabilization. All three
of these activities are likely to be mechanisti-
cally related. Iwasaki and colleagues proposed
that S. pombe Swi5/Sfr1 stabilizes filaments by
binding to the helical groove, in which its elon-
gated form could bridge adjacent protomers of
Rad51 (Kokabu et al. 2011). Structural analysis
of S. pombe Swi5/Sfr1 revealed it to be an elon-
gated and kinked a-helical coiled-coil structure
(Kuwabara et al. 2010, 2012; Kokabu et al. 2011)
that could fit in the groove of a Rad51 or Dmc1
filament. If the protein does bind in the groove,
it will be of interest to determine how such bind-
ing can occur without disruption of Rad51- (or
Dmc1-) mediated homology search and strand-
exchange activities, which occur within the
groove (Haruta et al. 2008; Kokabu et al. 2011;
Kuwabara et al. 2012). Following Iwasaki’s sug-
gestion, an attractive possibility to explain the
role of Mei5–Sae3’s role in promoting Rad51-
dependent Dmc1 activity is that it stabilizes pro-
tein–protein contacts between adjacent Rad51
and Dmc1 protomers by forming a bridge at the
junction between end-to-end Rad51 and Dmc1
homofilaments on the same piece of ssDNA
(Fig. 4C).

The meiotic function of Mei5–Sae3 homo-
logs in other organisms might not be entirely
conserved with S. cerevisiae. At the time of
writing, there is no information on the meiotic
functions of the mammalian complex (called
Swi5–Sfr1 or Swi5–Mei5). Mutant analysis of
meiotic recombination in S. pombe indicates
that Swi5–Sfr1 is specifically required for inter-
homolog joint molecule (JM) formation (but
not for intersister [IS] JM formation) (Hyppa
and Smith 2010). However, the role of this pu-
tative interhomolog-specific Swi5–Sfr1 func-
tion appears to be distinct from that of Mei5–
Sae3 in Saccharomyces cerevisiae meiosis, be-
cause it seems to act through Rad51 and not
Dmc1 at DSB hot spots (Hyppa and Smith
2010). Yet, JM formation at DSB cold spots re-
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quires Rad51, Swi5–Sfr1, and Dmc1 (Hyppa
and Smith 2010); and Swi5–Sfr1 acts as a medi-
ator of Dmc1 function in vitro (Haruta et al.
2006). These observations leave open the possi-
bility that S. pombe Swi5–Sfr1 acts analogously
to S. cerevisiae Mei5–Sae3 inwild-type S. pombe.

Hop2–Mnd1

A second critical accessory factor in meiotic
strand invasion and exchange is the Hop2–
Mnd1 heterodimer. The HOP2 gene was found
in a screen for mutants defective in meiotic gene
conversion (Leu et al. 1998). The MND1 gene
was identified among genes that are specifically
expressed in meiosis as being required for DSB
repair, JM formation, and chromosome segre-
gation (Rabitsch et al. 2001; Gerton and DeRisi
2002). Interaction between Hop2 and Mnd1
proteins was discovered following the demon-
stration that high copy numbers of MND1 can
suppress phenotypes associated with a non-null
allele of HOP2 (Tsubouchi and Roeder 2002).
Hop2 has been shown to bind Mnd1 in crude
extract pull down experiments (Tsubouchi and
Roeder 2002) as well as by copurification (Chen
et al. 2004; Petukhova et al. 2005; Pezza et al.
2006, 2007). Furthermore, molecular genetic
and biophysical studies have established that
the two proteins interact via coiled-coil motifs
to form a tightly bound heterodimeric complex
with a stoichiometry of 1:1 (Tsubouchi and
Roeder 2002; Pezza et al. 2006). Small angle
X-ray scattering analysis suggests that the heter-
odimer has a kinked, elongated V shape with the
amino termini of both Hop2 and Mnd1 at the
termini of the V (Zhao et al. 2013). Correspond-
ingly, hop2 and mnd1 single mutant phenotypes
are very similar to hop2 mnd1 double-mutant
phenotypes. All show uniform prophase arrest
in budding yeast with unrepaired DSBs and
nonhomologous pairing/synapsis (Rabitsch
et al. 2001; Gerton and DeRisi 2002; Tsubouchi
and Roeder 2002; Chen et al. 2004; Zierhut et al.
2004; Henry et al. 2006). Defects in meiotic re-
combination have also been reported for single
mutants in mouse, Arabidopsis, and fission yeast
(Nabeshima et al. 2001; Petukhova et al. 2003;
Schommer et al. 2003; Saito 2004; Domenichini

et al. 2006; Kerzendorfer et al. 2006; Panoli et al.
2006; Vignard et al. 2007). Together, these find-
ings suggest that the major functional form of
Hop2 and Mnd1 is the heterodimeric form, al-
though certain results involving the mouse ho-
mologs raise the possibility that Hop2 can con-
tribute recombinogenic activity in the absence
of Mnd1 both in vitro and in vivo (Pezza et al.
2006, 2013).

Additional findings led to the view that
Hop2–Mnd1 functions to promote Dmc1-me-
diated homology search and strand exchange in
budding yeast. First, there are strong phenotyp-
ic similarities between dmc1, hop2, and mnd1
single mutants, and dmc1 mnd1 or dmc1 hop2
double mutants resemble dmc1 single mutants
(Tsubouchi and Roeder 2002; Zierhut et al.
2004; Henry et al. 2006). Second, overexpres-
sion of RAD51 was shown to bypass the arrest
conferred by mnd1 or hop2 mutants, as was pre-
viously shown to be the case for dmc1 mutants
(Tsubouchi and Roeder 2002; Zierhut et al.
2004) (see discussion below). Third, other mu-
tations previously identified as being required
for the uniform arrest observed in dmc1 mu-
tants were shown to also be required for arrest
conferred by hop2 or mnd1 mutants (Tsubouchi
and Roeder 2002; Zierhut et al. 2004; Henry
et al. 2006). Mutations that bypass arrest in-
clude those that block checkpoint signaling
and axial element assembly (as described below
in the section Regulation of Recombination
Template Choice during Meiotic Recombina-
tion). Although no significant colocalization
between Hop2–Mnd1 and Dmc1 has been ob-
served (as discussed further below), Dmc1 foci
and DSBs persist indefinitely in hop2 and mnd1
mutants suggesting Dmc1 is unable to promote
JM formation in the absence of Hop2–Mnd1 in
vivo (Leu et al. 1998; Gerton and DeRisi 2002;
Tsubouchi and Roeder 2002; Zierhut et al. 2004;
Lao et al. 2013). These findings support the
hypothesis that Hop2–Mnd1 plays a specific
role in promoting interhomolog recombination
by functioning as a Dmc1 cofactor. The fact that
Dmc1 foci form normally in the absence of
Hop2–Mnd1 suggests that Hop2–Mnd1 acts
on Dmc1 after the Mei5–Sae3 complex exerts
its influence (Tsubouchi and Roeder 2002; Ha-
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yase et al. 2004; Zierhut et al. 2004; Vignard
et al. 2007).

Initial biochemical studies of budding yeast
Hop2–Mnd1 showed that the protein stimu-
lates Dmc1 D-loop activity only threefold
(Chen et al. 2004). However, this study was
flawed because the Hop2 protein used lacked
its normal carboxyl terminus, which is coded
by a third exon in the HOP2 gene (Chan et al.
2014). The third exon had not been discovered
at the time the expression construct used in the
earlier experiments was built. Importantly,
wild-type Hop2–Mnd1 stimulates Dmc1 activ-
ity 30-fold or more. This dramatic stimulation
was also found for the mouse and fission yeast
proteins (Petukhova et al. 2005; Enomoto et al.
2006; Ploquin et al. 2007). Thus, Hop2–Mnd1
can be viewed as an essential cofactor for
Dmc1’s homology search and strand-exchange
functions in vivo and in vitro.

A number of different biochemical interac-
tions have been proposed to play a role in the
stimulation of Dmc1’s strand-invasion activity
by Hop2–Mnd1. Direct interaction of Hop2–
Mnd1 with Dmc1 has been observed by surface
plasmon resonance (Petukhova et al. 2005).
This direct interaction is likely to be responsible
for the Hop2–Mnd1-mediated stabilization of
ssDNA–Dmc1 filaments that have been ob-
served in vitro (Pezza et al. 2007; Zhao et al.
2013). However, Hop2–Mnd1 binds DNA di-
rectly, preferring dsDNA to ssDNA (Chen et al.
2004; Enomoto et al. 2006). Furthermore, the
finding that preincubation of duplex DNA with
Hop2–Mnd1 provides optimal stimulation of
yeast Dmc1 suggested that either nonspecific
dsDNA capture or alteration of the structure
of duplex target might be important for the
mechanism of stimulation (Chen et al. 2004;
Chan et al. 2014). Indeed, affinity capture and
cosedimentation experiments using the mouse
and human orthologs of Hop2–Mnd1 and
Dmc1, respectively, have provided evidence for
homology-independent capture of dsDNA by
ssDNA–Dmc1 filaments (Pezza et al. 2007). A
similar activity of Hop2–Mnd1 has been seen
with ssDNA–Rad51 filaments (Chi et al. 2007).
In addition, Hop2–Mnd1 has been shown to
dramatically alter the structure of duplex DNA

via single molecule analysis, which revealed that
Hop2–Mnd1 can promote extensive condensa-
tion of duplex DNA (Pezza et al. 2010). These
findings led to the hypothesis that Hop2–Mnd1
stimulates Dmc1-mediated homology search-
ing by promoting nonspecific binding of duplex
by ssDNA–Dmc1 filaments followed by con-
densation of dsDNA in a manner that increases
the rate of homology search (Fig. 6E) (Pezza
et al. 2010).

Although Hop2–Mnd1 can stimulate cer-
tain Rad51 activities in vitro, it is unclear at
present whether this activity plays a significant
role in vivo (Petukhova et al. 2005). One report
suggested that Arabidopsis Mnd1 is capable
of enhancing Rad51-mediated IS repair in a
Dmc12/2 mutant (Vignard et al. 2007), but a
more recent and extensive study came to the
opposite conclusion (Uanschou et al. 2013).
Similarly, there are conflicting reports concern-
ing the radiation sensitivity of somatic cells in
Mnd12/2 mutants (Domenichini et al. 2006;
Kerzendorfer et al. 2006). In budding yeast,
Hop2 and Mnd1 are not required for Rad51-
mediated meiotic recombination in the dmc1
hed1 double-mutant background (Lao et al.
2013). Furthermore, neither budding yeast nor
fission yeast Hop2–Mnd1 stimulates Rad51’s
D-loop activity in vitro (Ploquin et al. 2007;
Chan et al. 2014). Finally, no evidence of
Hop2–Mnd1 stimulation of Rad51 activity has
been reported for Hop22/2 or Mnd12/2

knockout mice (Petukhova et al. 2003). Thus,
further evidence is required to determine
whether Hop2–Mnd1 influences Rad51 activity
in vivo. If it does, the function is likely to be
a more recent evolutionary invention than the
role of Hop2–Mnd1 in controlling Dmc1’s
activity.

Cytological characterization of Hop2–
Mnd1 indicates that the protein associates with
chromosomes independent of other compo-
nents of the meiotic recombinosomes. Hop2
and Mnd1 localize to chromosomes in a dense
focal staining pattern (Leu et al. 1998; Tsubou-
chi and Roeder 2002; Zierhut et al. 2004). Sur-
prisingly, Hop2–Mnd1 foci show key differ-
ences compared with those formed by other
proteins that play direct roles in D-loop forma-
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tion. First, Hop2–Mnd1 foci form indepen-
dently of DSBs (Leu et al. 1998; Tsubouchi
and Roeder 2002; Zierhut et al. 2004; Vignard
et al. 2007). Second, in contrast to other acces-
sory proteins, Hop2–Mnd1 foci do not show
high levels of colocalization with Rad51 or
Dmc1 (Tsubouchi and Roeder 2002; Zierhut
et al. 2004; Vignard et al. 2007). These findings
led to the suggestion that Hop2–Mnd1 might
influence the activity of recombinosomes indi-
rectly via control of chromosome pairing inter-
actions. This idea was supported by the finding
that mutation of the S. pombe homolog of Hop2
(Meu13) reduced chromosome pairing some-
what in a spo11 mutant background and that
S. cerevisiae hop2 mutants build synaptonemal
complexes between nonhomologous chromo-
somes (Nabeshima et al. 2001; Tsubouchi and
Roeder 2003). However, biochemical evidence
for direct interaction between Hop2–Mnd1
and strand-exchange proteins (Petukhova et al.
2005), as well as evidence showing that Hop2–
Mnd1 can stimulate strand exchange in purified
systems (Chen et al. 2004; Petukhova et al. 2005;
Enomoto et al. 2006; Ploquin et al. 2007; Chan
et al. 2014), suggest Hop2–Mnd1 functions di-
rectly at sites of meiotic recombination in vivo.
The simplest explanation for the absence of
significant colocalization between Dmc1 and
Hop2–Mnd1 is that the dsDNA-binding activ-
ity of Hop2–Mnd1 accounts for the presence of
DSB-independent foci, and only a small frac-
tion of Hop2–Mnd1 foci are associated with
DNA recombination intermediates at any given
moment; for instance, the preponderance of
Hop2–Mnd1 complexes are not engaged with
Dmc1 (and/or Rad51) and may obscure the
relatively small subset of complexes that are.

Tid1/Rdh54 and Rad54

The DNA translocase enzymes Tid1/Rdh54 and
Rad54 both play a role in meiotic recombina-
tion. They possess a potent dsDNA-dependent
ATPase activity and function as molecular
motors, translocating along dsDNA. Although
multiple mechanisms of translocase action have
been proposed, it is important to emphasize
that both translocases positively regulate meiot-

ic recombination including crossing over (Ce-
ballos and Heyer 2011; also reviewed in Daley
et al. 2014). A tid1 single mutant displays a sub-
stantial delay in forming JM crossover interme-
diates but high levels of CO products are even-
tually formed (Shinohara et al. 1997, 2000,
2003b). A rad54 mutant displays normal CO
levels but reduced spore viability (Shinohara et
al. 1997; Schmuckli-Maurer and Heyer 2000).
Importantly, rad54 tid1 double mutants rarely
produce spores, and those produced are mostly
inviable (Shinohara et al. 1997). Furthermore,
recombinant products fail to form, DSBs per-
sist, and end hyperresection occurs demonstrat-
ing a substantially redundant role for Rad54
and Tid1 in promoting both crossover and
noncrossover recombination (Shinohara et al.
1997). In addition to this role in DSB repair,
Rad54 and Tid1 have another role in preventing
the sequestration of Rad51 and Dmc1 in non-
recombinogenic complexes by displacing the
proteins from dsDNA (Holzen et al. 2006;
Shah et al. 2010).

The same dsDNA translocation activity can
account for Rad54 and Tid1’s roles in both pro-
moting productive recombination and prevent-
ing nonrecombinogenic complex formation.
Biochemical studies have showed that Rad54 is
capable of stripping Rad51 from the heterodu-
plex formed at sites of strand invasion (Kiianitsa
et al. 2006; Wright and Heyer 2014). Given their
partial redundancy and similar phenotypes in
vivo, it seems likely that Tid1/Rdh54 and Rad54
function similarly. Thus, the translocases are
probably recruited to the ends of Dmc1 and
Rad51 filaments—whether recombinogenic or
nonrecombinogenic—and mediate their disas-
sembly. In the case of recombinogenic filament
disassembly, homology between the donor and
acceptor chromatids would allow the translo-
case to act as a “heteroduplex pump,” which
mechanistically couples the extension of hetero-
duplex DNA to stabilize the nascent joint mol-
ecule with removal of RecA homolog protomers
from the heteroduplex DNA product (Fig.
4D,E) (Li and Heyer 2008; Wright and Heyer
2014). Finally, the DNA translocases may also
contribute to the efficiency of repair by virtue of
their nucleosome remodeling activity, which
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could also act to stabilize D-loops (Alexeev et al.
2003; Zhang et al. 2007; Hicks et al. 2011).

MEIOB and SPATA22

Recently, genetic studies in mice identified two
proteins, MEIOB and SPATA22, which are crit-
ical for fertility (La Salle et al. 2012; Ishishita
et al. 2013; Luo et al. 2013; Souquet et al.
2013). MEIOB is of particular interest as it con-
tains a so-called oligonucleotide/oligosaccha-
ride binding (OB) fold, which is common
to proteins that bind specifically to tracts of
ssDNA, including RPA. Indeed, biochemical ex-
periments show that MEIOB binds ssDNA (Luo
et al. 2013; Souquet et al. 2013). A truncated
form of the protein was also found to have
ssDNA-specific 30 exonuclease activity (Luo et
al. 2013). Immunostaining studies show that
both proteins display very high levels of inter-
dependent colocalizing foci, which also colo-
calize with RPA. Meiob2/2 single mutants dis-
play evidence of DNA damage accumulation
and fail to form MLH1 foci (Luo et al. 2013;
Souquet et al. 2013), which mark positions of
crossovers in wild-type cells (Anderson et al.
1999). RAD51 and DMC1 foci form in these
mutants, but two studies reported that the foci
do not persist as long as in wild type (Ishishita
et al. 2013; Souquet et al. 2013). These results
implicate MEIOB and SPATA22 as components
of the meiotic recombinosome that play a role
during the RAD51/DMC1-dependent stage of
recombination.

REGULATION OF RECOMBINATION
TEMPLATE CHOICE DURING MEIOTIC
RECOMBINATION

In diploids, each meiotic DSB could form a D-
loop with any of three intact repair templates,
one on the sister chromatid and two on the pair
of homolog chromatids (Fig. 1). Yet, meiotic
DSBs are preferentially repaired using a homo-
log chromatid; IH bias in budding yeast yields a
5:1 ratio of interhomolog to IS JM species, ex-
ceeding the 2:1 ratio expected by random choice
between the three available intact chromatids.
This is in stark contrast with mitotic DSB repair,

which shows strong IS bias (Jackson and Fink
1985; Kadyk and Hartwell 1992; Schwacha and
Kleckner 1994; Bzymek et al. 2010).

Southern blotting assays that allow detec-
tion of DNA intermediates and products of
meiotic recombination have facilitated the study
of IH bias in fungi (Fig. 5) (Cao et al. 1990;
Schwacha and Kleckner 1994; Cromie et al.
2006). In budding yeast, Southern blots of
two-dimensional (2D) gels revealed that two
JM intermediates—the SEI and the dHJ—are
biased toward the homolog chromatid rather
than the sister chromatid (Schwacha and Kleck-
ner 1995; Hunter and Kleckner 2001). In addi-
tion to these CO intermediates, one-dimen-
sional (1D) gel electrophoresis variations can
reveal both IH CO and NCO product levels.
However, these physical assays cannot detect na-
scent D-loops—the last common intermediate
between CO and NCO pathways—and are sim-
ilarly unable to detect IS CO and NCO products.
Additionally, assumptions are required to deter-
mine the lifetimes of intermediates. Despite
these significant limitations, JM analysis via
2D gels has driven our current understanding
of the mechanism of partner choice in meiosis.

Using the 2D gel assay, a number of proteins
have been implicated by genetic analysis as be-
ing required for the fivefold homolog bias ob-
served in budding yeast in vivo (Hunter 2007).
Positive regulators of homolog bias include the
RecA homologs Rad51 and Dmc1 (Schwacha
and Kleckner 1997), as well as DNA damage
checkpoint signaling proteins (Grushcow et al.
1999; Thompson and Stahl 1999; J Grubb and
DK Bishop, unpubl.), including components of
the checkpoint clamp, the clamp loader, and the
ataxia telangiectasia- and RAD3-related (ATR/
Mec1) checkpoint kinase. In budding yeast, the
checkpoint clamp is composed of Rad17, Mec3,
and Ddc1; the clamp loader is a derivative of the
replication factor C (RFC) complex that con-
tains the checkpoint specific subunit Rad24
(Hochwagen and Amon 2006). Also critical
for IH bias is a set of proteins that are associated
with the axial/lateral elements of the synapto-
nemal complex. These proteins include Red1
and Hop1, two abundant proteins that are
thought to be structural components of axial/
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lateral elements of the synaptonemal complex
(SC), as well as Mek1, a key meiotic kinase
whose activity depends on Red1 and Hop1. Im-
portantly, Red1, Hop1, and Mek1 are down-
stream components of a DSB-dependent check-
point signal in which Mec1- and Tel1-mediated
phosphorylation of Hop1 is translated into a
DSB-proximal Mek1 signal (Wan et al. 2004;
Niu et al. 2005; Carballo et al. 2008). Finally,
cohesin has been proposed to be a negative reg-
ulator of meiotic IH bias (Kim et al. 2010).

The identification of these players led to a
number of molecular models of IH bias, al-
though the critical aspects of the mechanism
remain unclear. A key point of discussion has
been whether homolog bias results from nega-
tive regulation of IS recombination or positive
regulation of IH recombination (Callender and
Hollingsworth 2010; Hong et al. 2013). Howev-
er, the two possibilities are not mutually exclu-
sive and a number of results suggest that both
modes of regulation are involved.

Rad51 and Dmc1 Must Cooperate
to Impose Interhomolog Bias
of Template Choice

Although mutation of Dmc1 was shown to re-
sult in a strong block to meiotic recombination,
it was later shown that this strong block requires
Hed1, a protein capable of inhibiting the activity
of Rad51 (Tsubouchi and Roeder 2006). If Hed1
is eliminated, Rad51 is capable of promoting
DSB repair. This Dmc1-independent activity
of Rad51 results in eventual completion of the
meiotic program for most cells and generation
of tetrads in which �65% of spores are viable.
Among these spores, the frequency of IH recom-
bination is only modestly reduced relative to
that observed in wild type. These and earlier
observations suggested that Rad51 is capable
of substituting for Dmc1 or that Dmc1 play a
relatively minor role in supporting Rad51’s
strand-exchange activity, with Hed1 acting to
prevent Rad51 from acting until Dmc1 is incor-
porated into recombinosomes. However, analy-
sis of recombination intermediates showed that
interhomolog bias is drastically diminished
when Rad51 is activated to take the place of

Dmc1 (Hong et al. 2013; Lao et al. 2013). This
defect in interhomolog interactions is manifest-
ed by defects in the formation of interhomolog
joint molecules, chromosome pairing and syn-
apsis, and exit from prophase (Lao et al. 2013).
Given that nearly normal levels of crossovers do
eventually form in dmc1 hed1 despite an ex-
treme deficiency in interhomolog bias, it is clear
that homeostatic mechanisms compensate, al-
beit incompletely, for the deficiency. Two mech-
anisms explain this compensation (Lao et al.
2013). First, a larger fraction of IH interactions
results in formation of a CO as opposed to an
NCO recombinant (Martini et al. 2006; Lao
et al. 2013). Second, additional DSBs are in-
ferred to form when homolog pairing/synapsis
is inefficient and prophase is extended (Argun-
han et al. 2013; Gray et al. 2013; Lao et al. 2013;
Thacker et al. 2014). As a consequence of these
two compensatory processes, normal or near-
normal levels of COs eventually form in hed1
dmc1 mutants. Thus, as in organisms that lack
a Dmc1 ortholog, budding yeast Rad51 can pro-
mote high levels of IH recombination in bud-
ding yeast, albeit with greatly reduced efficiency.
However, homolog bias requires Dmc1.

Additional evidence that Dmc1 and Rad51
cooperate in meiosis comes from analysis of
the rad51 mutant, in which Dmc1 can still
form immunostaining foci and promote strand
exchange, albeit inefficiently (Schwacha and
Kleckner 1997; Shinohara et al. 2003a). The
Dmc1 foci formed in rad51 mutants are three-
fold dimmer on average than those formed in
wild type suggesting that they reflect incomplete
filament elongation (Bishop 1994; Shinohara
et al. 2003a). However, as seen when Rad51 cat-
alyzes recombination in the absence of Dmc1,
interhomolog bias is lost when Dmc1 catalyzes
recombination in the absence of Rad51 (Schwa-
cha and Kleckner 1997).

Additionally, the formation of axial associ-
ations, which connect aligned but unsynapsed
homologs in budding yeast zip1 mutants, re-
quires both Rad51 and Dmc1 (Rockmill et al.
1995). Yet, despite the ability of either Rad51 or
Dmc1 to catalyze strand invasion independent-
ly, the strand-invasion activity of Rad51 is dis-
pensable during meiosis (Cloud et al. 2012); a
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separation of function mutant that retains the
ability to form helical filaments, but is deficient
in D-loop formation, has normal IH bias and
forms normal levels of recombination products.
Thus, the RecA homologs normally cooperate
during meiosis. Dmc1 catalyzes strand invasion
and Rad51 directs this invasion toward a homo-
log chromatid.

Rad51 and Dmc1 appear to similarly coop-
erate in plants (Couteau et al. 1999). Like
S. cerevisiae, Dmc1 appears to be the catalytic
recombinase in Arabidopsis thaliana meiosis,
because a Rad51–GFP fusion supports normal
meiosis despite being deficient in mitotic DNA
repair (Cloud et al. 2012; Da Ines et al. 2013).
Also similar to budding yeast, formation of
wild-type levels of Dmc1 foci requires Rad51
(Vignard et al. 2007; Kurzbauer et al. 2012).
Interestingly, the Rad51-independent assembly
of Dmc1 foci is suppressed by ATR kinase in
A. thaliana (Kurzbauer et al. 2012). It is current-
ly unclear whether a similar mode of regulation
is present in other organisms. rad51, dmc1, and
rad51 dmc1 A. thaliana mutants all display ab-
errant homolog alignment and synapsis (Cou-
teau et al. 1999; Li et al. 2004; Vignard et al.
2007; Kurzbauer et al. 2012). However, in con-
trast to the arrest of budding yeast dmc1 mu-
tants, plant dmc1 mutants progress and repair
all meiotic DSBs via Rad51-mediated IS repair
(Couteau et al. 1999; Vignard et al. 2007). This
finding is consistent with the apparent absence
of a Hed1 homolog in plants. It is possible that
local assembly of Dmc1 inhibits Rad51’s IS re-
pair activity in plants, as appears to be the case
in budding yeast (Hong et al. 2013; Lao et al.
2013; Cole 2014; Liu et al. 2014).

Despite the overwhelming evidence of co-
operation between Rad51 and Dmc1, there are
examples in which the two RecA homologs ap-
pear to contribute different functions based on
the location of a DSB. In A. thaliana, Dmc1-
mediated recombination can promote centro-
mere pairing independently of Rad51, whereas
both Rad51 and Dmc1 are required for IH re-
combination and pairing of chromosome arms
(Da Ines et al. 2012). In S. pombe, IH recombi-
nation at DSB hot spots appears to be indepen-
dent of Dmc1; however, at DSB coldspots, both

Rad51 and Dmc1 are required for IH JM for-
mation (Hyppa and Smith 2010). It should be
noted that, in contrast to S. cerevisiae, there ap-
pears to be no IH bias at hot spots in S. pombe
(Cromie et al. 2006; Hyppa and Smith 2010);
however, it is unclear whether and how the lack
of IH bias is connected to differential use of
Dmc1 at DSB hot spots and coldspots. In both
of these cases, at least one mode of IH recom-
bination still requires both Rad51 and Dmc1.

Evidence for Negative Regulation
of IS Recombination

A number of observations indicate that cells can
negatively regulate IS recombination, leading to
the proposal that homolog bias results from a
kinetic impediment or barrier to sister chroma-
tid recombination (BSCR; Fig. 6A). Key obser-
vations have utilized dmc1 mutants, which as-
semble Rad51 complexes but fail to repair DSBs
(Bishop et al. 1992; Bishop 1994). In the ab-
sence of RED1 or MEK1 activity, dmc1 mutants
efficiently repair DSBs almost exclusively using
the sister chromatid through a Rad51/Rad54-
dependent pathway, suggesting the relaxation of
a Red1–Mek1-imposed constraint on IS recom-
bination (Schwacha and Kleckner 1997; Niu
et al. 2005, 2009). As mentioned above, a sim-
ilar result pertains when a direct inhibitor of
Rad51’s activity, Hed1, is mutated in the ab-
sence of Dmc1: homolog bias is reduced 25-
fold relative to that in wild-type cells (Hong
et al. 2013; Lao et al. 2013). Notably, Dmc1 itself
also blocks Rad51’s ability to promote IS re-
combination given that a hed1 single mutant
has only a modest reduction in homolog bias
relative to a hed1 dmc1 double mutant (Hong
et al. 2013; Lao et al. 2013). Importantly, red1,
mek1, and hed1 single mutants also display de-
fects in homolog bias, indicating that they play
important roles during wild-type meiosis
(Rockmill and Roeder 1991, 1990; Kim et al.
2010; Hong et al. 2013; Lao et al. 2013). Thus,
Red1, Mek1, and Hed1 are all required to block
Rad51-mediated IS recombination in dmc1
mutant cells, whereas Red1, Mek1, and Dmc1
all act to limit Rad51’s IS activity in the absence
of Hed1.
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Importantly, the BSCR is not specific to
Rad51-mediated events. In addition to block-
ing Rad51-mediated events in a dmc1 mutant,
Mek1 appears to partially inhibit Dmc1-medi-
ated IS DSB repair during haploid meiosis
in a mutant in which Rad51 activity is dimin-
ished and no homologous chromatid is avail-
able (Callender and Hollingsworth 2010).
Although the nature of this BSCR is still uncer-
tain, Red1 clearly controls Mek1 kinase activ-
ity and specific inhibition of the Mek1 kinase,
using an ATP analog sensitive mek1-as allele,
strongly suggests that target phosphorylation
is responsible for Mek1’s role in homolog bias
(Wan et al. 2004).

Three substrates of Mek1 kinase have been
reported to date. First, Mek1 self-activates its
kinase activity by autophosphorylation on thre-
onine 327 (Niu et al. 2007). Second, Mek1 de-
pendent phosphorylation occurs at threonine
11 of histone H3 (Govin et al. 2010). Although
subsequent work showed that H3 is a direct
substrate of Mek1, no overt recombination phe-
notypes have been found to be associated with
a mutant form of H3 that cannot be phosphor-
ylated (S Keeney, pers. comm.). Finally, Mek1
phosporylates Rad54 on threonine 132. This
modification of Rad54 can inhibit its activity
in vitro and in vivo (Niu et al. 2005, 2009; Busy-
gina et al. 2008). Nonetheless, it is currently
unclear whether phosphorylation of Rad54
by Mek1 contributes to IH bias in wild-type
cells. This is because single mutant strains har-
boring the nonphosphorylatable allele of the
RAD54 gene, rad54-T132A, produce IH recom-
binants with normal efficiency, and also form
viable meiotic products. Thus, phosphorylation
of Rad54 is unlikely to be a primary mechanism
for promoting homolog bias. Two-dimensional
gel analysis of IH bias in the rad54-T132A sin-
gle mutant would address this outstanding
question.

It is possible to infer that Mek1 phosphor-
ylation of substrates other than Rad54 con-
tributes to IH bias (Niu et al. 2009). One key
observation is that the Rad51-repressive activity
of Hed1 is largely, although not completely,
Mek1 dependent (Niu et al. 2007; Lao et al.
2013). However, there were no reports implicat-

ing Hed1 as a substrate of Mek1 at the time this
review was prepared.

Mek1-mediated repression of Rad51’s
strand-exchange activity via Hed1 may be lifted
late in meiosis, during a “clean-up” phase in
which a mitotic-like IS repair pathway ensures
that all DSBs are repaired (Sheridan and Bishop
2006). Consistent with this late idea, in C. ele-
gans, IH recombination is shut down late in mei-
osis and IS recombination predominates (Rosu
et al. 2011). In addition to contributing to the
BSCR, Mek1 activity is also inferred to be a pos-
itive regulator of IH recombination (discussed
below), further emphasizing the fact that addi-
tional Mek1 substrates remain to be discovered.

Evidence for Positive Regulation
of IH Recombination

Because Dmc1 directly catalyzes homology
search and strand invasion, the incorrect choice
of recombination partner in rad51 mutants im-
plies that IH bias is positively imposed during
normal meiosis, overruling the default pro-
pensity for IS recombination (Schwacha and
Kleckner 1997; Cloud et al. 2012). Furthermore,
mutant analysis suggests that Mek1 kinase ac-
tivity may confer two distinct regulatory effects
on Dmc1’s IH strand-exchange activity. First,
completely eliminating Red1 or Mek1 function
using null mutations blocks Dmc1-dependent
JM formation (Hong et al. 2013). Second, low
levels of Red1 function allow Dmc1-mediated
joint molecule formation, but do not support
IH bias (Schwacha and Kleckner 1997). Thus, in
addition to negatively regulating Rad51’s activ-
ity via Hed1, Mek1 acts as a positive regulator of
Dmc1’s JM forming activity.

In addition to the positive regulation of
Dmc1’s activity by Rad51 and Mek1 signaling,
a recent study concluded that local regulation of
the meiosis-specific cohesin component Rec8
positively regulates IH recombination (Kim
et al. 2010; Hong et al. 2013). Specifically, cohe-
sin is inferred to direct recombination between
sisters and the Rad51–Mek1 ensemble removes
this constraint to IH recombination. This study
distinguished two classes of homolog bias mu-
tants, a highly defective class with IH:IS dHJ
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ratios of 1:5 or less (wild-type bias is 5:1) and a
second class, that results in the less severe IH:IS
dHJ ratio of exactly 1:1. Mutants lacking a RecA
homolog, Red1, or Mek1 represent the first
class, whereas mutants lacking Rec8 constitute
the second class. Importantly, rec8 red1, rec8
rad51, and rec8 hed1 dmc1 mutants all display
the less severe 1:1 IH:IS defect of the rec8 single
mutant rather than the more severe defects of
red1, rad51, or hed1 dmc1 mutants (Kim et al.
2010; Hong et al. 2013). These results support
the inference that Rec8 negatively regulates IH
recombination and Red1–Mek1 signaling over-
comes this negative effect to enhance the effi-
ciency of IH recombination.

Recombination between Sisters Is Not
Completely Blocked in Dmc1þ Meiosis

Although IS repair of DSBs is completely
blocked in dmc1 mutants, IS recombination
does occur during normal meiotic recombina-
tion. DSBs formed at hemizgyous loci—in
which repair is only possible via IS recombina-
tion—are efficiently repaired during otherwise
wild-type meiosis (Goldfarb and Lichten 2010).
Interestingly, the timing of DSB repair was
equivalent whether the DSB occurred in a ho-
mozygous or hemizygous region; however, the
rate of this IS repair at both homozygous and
hemizygous loci is increased in mek1 mutants.
To account for these findings, a kinetic model of
IH bias was proposed in which the relative rates
of IS and IH strand exchange are skewed to
favor IH recombination (Goldfarb and Lichten
2010). Specifically, Mek1 signaling imposes a
kinetic brake on IS recombination and the de-
gree of this negative regulation determines the
relative rates at which IH and IS repair proceed.
Similarly, in haploid yeast engineered to enter
meiosis—in which every DSB lacks a homolo-
gous chromatid repair template—there is a
Mek1-dependent delay in IS recombination
(De Massy et al. 1994; Callender and Hollings-
worth 2010). Thus, regardless of the presence of
a nonsister chromatid, Mek1 limits the rate of IS
recombination. In addition to controlling the
relative rates of IH and IS recombination,
Mek1 signaling modulates CO versus NCO re-

pair choice (Goldfarb and Lichten 2010). The
increased rate of IS DSB repair at hemizygous
sites in a mek1 mutant is not associated with a
corresponding increase in IS JMs, suggesting
increased use of an NCO pathway. This empha-
sizes the need for caution in relying solely on
IH:IS JM ratios to characterize partner choice
defects, because these measures only detect CO
intermediates.

Both DNA Ends Often Form D-Loops
Independently of One Another

Hunter and colleagues reported that mcJM in-
termediates, comprising three and four inter-
connected chromatids, occur during normal
meiotic recombination and that these structures
accumulate to high levels in mutants that lack
the JM disrupting helicase Sgs1 (Oh et al. 2007).
Invasion of both homolog and sister chromatids
within the same mcJM is consistent with the
inference that IS recombination occurs fre-
quently during normal meiosis (above), and
that a given DNA end may engage more than
one chromatid before a DSB is eventually re-
paired (McMahill et al. 2007). The existence of
mcJMs further suggests that both ends created
by a DSB are capable of promoting homology
search and strand exchange. This possibility is
consistent with the loading of Dmc1 on both
DNA ends (as discussed above) rather than
Rad51 being the sole strand-exchange protein
located on one of the two ends. Another impli-
cation of these findings is that IH bias may in-
volve processes that preferentially stabilize na-
scent IH interactions, possibly dependent on
chromosome pairing and/or synapsis (Börner
et al. 2004; Lao and Hunter 2010).

Partner Choice in Organisms with
DSB-Independent Synapsis

Although most organisms require recombina-
tion to properly align and synapse homologs, D.
melanogaster and C. elegans synapse homologs
independent of DSBs (Dernburg et al. 1998;
McKim et al. 1998). In these organisms—which
lack Dmc1, Hop2, and Mnd1— the stable, co-
linear juxtaposition of homologs in the context
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of the synaptonemal complex could constitute a
distinct mechanism of IH bias in which the spa-
tial proximity of homolog chromatids to a DSB
increases the likelihood of IH recombination,
perhaps approaching the 2:1 IH:IS ratio predict-
ed from random invasion of one of the three
available chromatids. Consistent with this
idea, IH CO recombination in these organisms
is absolutely dependent on synapsis (Page and
Hawley 2001; MacQueen et al. 2002). Further-
more, DSBs—manifested as cytologically visi-
ble g-H2AX or Rad51 foci—appear to form
after full synapsis in these organisms (Jang
et al. 1994; Colaiacovo et al. 2003).

MODELS FOR IH BIAS

The Anchor Pad Model

The analysis of Rec8 function described above
led to the development of a model for the mech-
anism of IH bias (Fig. 6B) (Kim et al. 2010;
Hong et al. 2013). This model breaks IH bias
into two distinct phases: “establishment” and
“maintenance.” Establishment is the process
through which a homologous chromatid is cho-
sen as the initial recombination partner. Tech-
nically exquisite 2D gel analysis, in which both IS
and IH SEIs were distinguished, showed that
rad51, hed1 dmc1, red1, and mek1 mutants are
defective for establishment of IH bias, forming
high levels of IS SEIs rather than IH SEIs (Kim
et al. 2010; Hong et al. 2013). The maintenance
phase is proposed to occur at the SEI-to-dHJ
transition. rec8 single mutants are inferred to
properly establish IH bias at the SEI stage, but
subsequently manifest a precise 1:1 ratio of
IH:IS dHJs (Kim et al. 2010; Hong et al. 2013).
This 1:1 dHJ ratio was argued to reflect defective
processing of an “ends-apart” recombination
intermediate in which one DSB end forms an
IH SEI, and the opposite end forms a homolo-
gy-dependent complex with the sister chroma-
tid. This putative homology-dependent IS com-
plex was presumed to be undetectable by the
current 2D gel method. The 1:1 dHJ ratio seen
in rec8 mutants was thus explained by disrup-
tion of the ends-apart intermediate as the SEI-
to-dHJ transition occurs. If maintenance is nor-

mal, the IS complex is preferentially lost and the
IH SEI is converted to an IH dHJ. In the rec8
mutant, the mechanism that selectively disrupts
the IS complex is defective such that the IH SEI
and the IS complex are lost with equal probabil-
ity, leading to subsequent formation of an IS or
an IH dHJ, respectively. The putative IS connec-
tion is given the name “anchor pad.” During
normal (REC8þ) meiosis, the anchor pad blocks
the opposite (partner) DSB end from a homol-
ogy-dependent interaction with the sister by
seeding polymerization of the strand-exchange
nucleoprotein filament beyond the 30 end of the
IS complex (which we presume would be a na-
scent D-loop) into the adjacent duplex DNA
region. This elongated filament could block in-
vasion of the sister by the opposite DSB end,
leaving the homolog chromatids as the only
available partners for that end. This model has
yet to be supported by evidence for the existence
of anchor pads.

Homology-Independent Steric Hindrance
Models

Other models to explain IH bias propose that
recombinosomes are subject to steric hindrance
that reduces access to the target DNA sequence
on the sister chromatid. One proposal suggested
that the homology search activity of Dmc1 fila-
ments is confined by an extended structure or
scaffold that projects the active portion of the
filament away from the axial element on which
the scaffold is assembled (Fig. 6C) (Sheridan
and Bishop 2006). The integrity of this structure
was proposed to require local assembly of Rad51
as well as phosphorylation of a nearby Mek1
substrate. Ultrastructural studies in Allium,
showing recombinosomes associated with pro-
teinacious bridges between coaligned axial ele-
ments, are consistent with this idea (reviewed by
Zickler and Kleckner 1999). However, it is not
known whether these extended structures form
before the homology search or not. Another
model involving steric hindrance proposes
that recombinosomes are locally tethered to
the axial/lateral element (Fig. 6D) (Blat et al.
2002; Hunter 2007). Such confinement could
preclude interaction with corresponding se-
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quences on a sister chromatid that are physically
separated from the axis in loop regions. The
model rests on the assumption that both DSB
ends remain associated with the axis during the
homology search.

Activation of Strand Exchange in DSB-Distal
Regions

Klein and colleagues proposed a model in which
Mnd1 (and by extension, Hop2) mediates IH
bias by creating recombination-proficient do-
nor templates (Fig. 6E) (Zierhut et al. 2004).
This model was based on the fact that Mnd1
forms immunostaining foci independently of,
and spatially separated from, DSBs (as discussed
above). Mnd1 was proposed to bind to chroma-
tin nonspecifically, which is now understood
to reflect the dsDNA-binding activity of the
Hop2–Mnd1 heterodimer, and then to be lo-
cally displaced (or inactivated) from DSB prox-
imal regions, which would include the target
sequence on the sister chromatid. Consequently,
Mnd1-dependent activation of strand exchange
is only possible with homolog templates, in
which Mnd1 has not been displaced. The bio-
chemical results described above led us to pro-
pose an updated version of this model in which
homolog bias results from local activation of
Dmc1’s D-loop activity by Hop2–Mnd1, to-
gether with rapid displacement of Hop2–
Mnd1 from DSB-proximal regions during the
time between DSB formation and the comple-
tion of recombinosome assembly (Chan et al.
2014).

It should be noted that the models present-
ed above are compatible with one another and
IH bias could involve aspects of more than one
of these hypothetical mechanisms.

CONCLUDING REMARKS

In conclusion, recent progress has identified
many, perhaps all, of the proteins that carry
out the search for DNA homology and catalyze
DNA strand exchange during meiotic recom-
bination. Many of these proteins appear to
modulate mitotic-like DNA repair pathways,
contributing meiosis-specific functions that

promote the invasion of a homolog rather
than the sister chromatid. These studies have
generated a number of hypotheses to explain
the mechanism of IH bias. However, critical ev-
idence for any of the models is still lacking. Of
particular importance will be the improvement
of methods to detect all joint molecule species,
especially those that go on to form NCO recom-
binants. Other key questions include: Does local
regulation of Rec8 occur at DSB sites, and, if so,
how does this contribute to IH bias? Does an IS
anchor pad form as a required intermediate on
the pathway to IH–JM formation? More gener-
ally, how are the activities of the two ends of a
given DSB differentiated? Is activation of Mek1
kinase normally limited to DSB proximal re-
gions? Does inhibitory phosphorylation of
Rad54 by Mek1 normally play any role in nor-
mal IH bias? What are all the Mek1 substrates
that play a role in IH bias and how does phos-
phorylation contribute to those roles? Does lo-
cal, DSB-dependent redistribution or inactiva-
tion of Hop2–Mnd1 dictate template choice?
What is the 3D structure of the recombinosome?
How does that structure contribute to regula-
tion of recombinosome function? By what
mechanisms do organisms that lack Dmc1 pro-
mote IH recombination? We expect answers to
many of these questions in the near future.
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