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Indoleamine 2,3-dioxigenase 1 (IDO1) is the main enzyme
that catalyzes the first, rate-limiting step of the so-called
“kynurenine pathway”, i.e., the metabolic cascade that
converts the essential amino acid L-tryptophan (Trp) into
L-kynurenine (Kyn). IDO1, which is expressed constitutively by
some tissues and in an inducible manner by specific subsets
of antigen-presenting cells, has been shown to play a role in
the establishment and maintenance of peripheral tolerance.
At least in part, this reflects the capacity of IDO1 to restrict the
microenvironmental availability of Trp and to favor the
accumulation of Kyn and some of its derivatives. Also, several
neoplastic lesions express IDO1, providing them with a means
to evade anticancer immunosurveillance. This consideration
has driven the development of several IDO1 inhibitors, some
of which (including 1-methyltryptophan) have nowadays
entered clinical evaluation. In animal tumor models, the
inhibition of IDO1 by chemical or genetic interventions is
indeed associated with the (re)activation of therapeutically
relevant anticancer immune responses. This said, several
immunotherapeutic regimens exert robust clinical activity in
spite of their ability to promote the expression of IDO1.
Moreover, 1-methyltryptophan has recently been shown to
exert IDO1-independent immunostimulatory effects. Here, we
summarize the preclinical and clinical studies testing the
antineoplastic activity of IDO1-targeting interventions.

Introduction

In mammalian cells, the amino acid L-tryptophan (Trp) is
mainly catabolized via the so-called “kynurenine pathway”, i.e.,

the metabolic cascade that converts it into L-kynurenine (Kyn).1,2

The first, rate-limiting step of the kynurenine pathway can be
catabolized by three distinct enzymes, namely, indoleamine 2,3-
dioxigenase 1 (IDO1), IDO2, and tryptophan 2,3-dioxigenase
(TDO2).1-7 IDO1 is by far the best characterized of these enzymes
as it was involved in the host response to microbial challenges as
early as in the late 1970s.8-11 In particular, IDO1 was proposed to
participate in the innate response to pathogens by virtue of its abil-
ity to deplete the inflammatory microenvironment of Trp, which
is essential not only for most (if not all) eukaryotes, but also for
several bacterial species.12 Several cell types including specific sub-
sets of dendritic cells (DCs), macrophages and immature mono-
cytes express increased levels of IDO1 in response to inflammatory
cues such as interferon g (IFNg) or signal transducer and activator
of transcription 3 (STAT3)-activatory stimuli.13-18 In 1998,
Munn and colleagues demonstrated for the first time that IDO1
exerts immunosuppressive, rather than immunostimulatory, func-
tions, as it prevents the rejection of allogenic fetuses by the mater-
nal immune system.19 This cornerstone discovery initiated an
intense wave of investigation aimed at characterizing the molecular
and cellular circuitries that underlie the immunomodulatory activ-
ity of IDO1.1,20 In spite of such an experimental effort, the precise
mechanisms by which IDO1 exerts immunosuppressive functions
remain to be elucidated. Along similar lines, further experiments
are required to understand to which extent IDO2 and TDO2
contribute to Trp catabolism in vivo.21 Indeed, purified IDO2
exhibits enzymatic activity under specific experimental conditions,
but it generally is 20–30-fold less active than IDO1.22

According to current models, IDO1 would limit innate and
adaptive immune responses by two non-mutually exclusive
mechanisms, i.e., by depleting immune effector cells of Trp,12,23

and by promoting the accumulation of Kyn and some of its
derivatives, 3-hydroxykynurenine and 3-hydroxyanthranilic
acid.24,25 A decrease in Trp availability (below 0.5-1 mM,
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according to Munn and colleagues) promotes indeed the accu-
mulation of uncharged tRNA species, resulting in a general con-
trol non-derepressible 2 (GCN2)-dependent block in protein
synthesis that is often accompanied by cell cycle arrest and (in
immune cells) irresponsiveness to immunological challenges.26-28

Along similar lines, Kyn, 3-hydroxykynurenine and 3-hydrox-
yanthanilic acid, which signal via the aryl hydrocarbon receptor
(AHR),29 have been shown not only to exert cytostatic and cyto-
toxic effects on various immune effectors, including CD8C T
lymphocytes, natural killer (NK) cells and invariant NKT
cells,24,25,30-34 but also to inhibit TH17 cells and to promote the
differentiation of na€ıve CD4C T cells into
CD4CCD25CFOXP3C regulatory T cells (Tregs),35-41 as well as
the tolerogenic activity of DCs.42-44 This said, some authors
failed to observe a decrease in the proliferation rates of T lympho-
cytes even in culture media that were completely depleted of
Trp.30 Moreover, while IDO1 may cause significant reductions
in Trp availability in vitro, it remains to be demonstrated
whether a similar effect occurs in vivo, where Trp concentrations
are in the range of 50–100 mM and local decreases in availability
are expected to be rapidly compensated upon diffusion from sur-
rounding tissues.1 Taken together, these observations suggest
that drops in the microenvironmental availability of Trp may not
be sufficient to exert robust immunosuppressive effects in vivo.
As a possibility, the accumulation of Kyn and Kyn derivatives
may synergize with local limitations in Trp availability to
potently inhibit the proliferation and activation of immune effec-
tor cells. This has been shown to occur in vitro.45,46 Indirect
mechanisms may also explain, at least in part, the biological activ-
ity of IDO1. IDO1-expressing DCs exert indeed broad and
robust immunosuppressive effects as (1) they direct suppress the
proliferation and effector of functions of cytotoxic T lympho-
cytes, NK cells and plasma cells;14,33,47-49 (2) they promote the
conversion of na€ıve CD4C T cells into CD4CCD25CFOXP3C

Tregs and activate them;47,48,50-53 and (3) they trigger the immu-
nosuppressive activity in neighboring IDO1-expressing DCs (a
process known as bystander suppression).47,54,55 The upregula-
tion of IDO1 by a specialized subset of DCs (plasmacytoid
DCs)56-58 has also been shown to contribute to the immunosup-
pressive activity of HIV-1.59-63 Moreover, progressive HIV-1
infection has been associated with alterations in the intestinal
microbiota that affect systemic Trp catabolism.64 Finally, leuke-
mic cells expressing IDO1 have been reported to resemble
IDO1-expressing DCs in their ability to convert na€ıve CD4C T
cells into CD4CCD25CFOXP3C Tregs.65,66 Taken together,
these observations reinforce the notion that IDO1 mediates
robust immunosuppressive effects in both physiological and
pathological scenarios.

As opposed to their wild-type counterparts, malignant cells
genetically engineered to express IDO1 fail to reactivate a can-
cer-specific immune responses leading to rejection in mice that
are pre-immunized with a dominant tumor-associated antigen.23

Along similar lines, the loss of the oncosuppressor gene bridging
integrator 1 (BIN1) results in increased IDO1 expression in
response to IFNg, an immunosuppressive effect that favors
tumor growth in immunocompetent, but not in

immunodeficient, mice.67 Of note, BIN1 is lost or underex-
pressed in a variety of human neoplasms, including neuroblas-
toma,68 melanoma,69 as well as breast, lung, colorectal and
prostate carcinoma.70-73 Several human tumors also express
high levels of IDO1 independent of BIN1, be it in the neoplas-
tic, vascular or immune compartment.5,23,74-79 In line with this
notion, the circulating levels of various Trp metabolites includ-
ing Kyn are elevated in subjects affected by several tumors, and
this parameter has been attributed a predictive value in some
patient cohorts.80-82 This is not surprising when the robust
immunosuppressive activity of IDO1 is taken into
consideration.

However, while in some cases elevated levels of IDO1 are
associated with poor patient prognosis,76,78 this is not always the
case.77,79,83 Thus, the expression of IDO1 in tumor biopsies pos-
itively correlated with disease-free survival in a cohort of hepato-
cellular carcinoma (HCC) patients. Moreover, the ability of
peripheral blood mononuclear cells isolated from HCC patients
to lyse HCC cell lines in vitro was directly proportional to IDO1
expression levels in the former.83 Along similar lines, not only
the number of IDO1-expressing microvessels was found to
inversely (rather than positively) correlate with the amount of
proliferating cancer cells in samples from primary and metastatic
renal cell carcinoma patients, but elevated levels of IDO1 in the
neoplastic compartment were also associated with long-term
patient survival.79 These observations indicate that IDO1 may
not always support tumor growth by virtue of its immunosup-
pressive functions.

Since IDO1 is upregulated in response to several inflamma-
tory cues, including IFNg and CpG oligodeoxynucleotides
(ODNs),13,14,84-86 IDO1 may indeed constitute a marker of a
clinically relevant inflammatory or immune response, in thus far
resembling other IFNg-responsive molecules.87,88 Moreover, at
least theoretically, the overexpression of IDO1 by neoplastic cells
should have a direct negative outcome on tumor growth as a
result of the GCN2-dependent phosphorylation of eukaryotic
translation initiation factor 2A (EIF2A) and the consequent
arrest in protein synthesis.26,28,89 Accordingly, the ability of
IFNg to mediate antineoplastic effects in vitro is more pro-
nounced in IDO1-competent cancer cells than in their IDO1-
incompetent counterparts, and it can be at least partially reversed
by the supplementation of Trp in the culture medium.90,91 Fur-
thermore, the proliferation of malignant cells implanted in synge-
neic hosts appears to be limited when these cells are induced to
upregulate IDO1.92 Taken together, these observations indicate
that the impact of IDO1 expression by malignant, vascular or
immune components of the neoplastic microenvironment on
tumor growth is less clear than generally thought.

Interestingly, developing tumors appear to recruit abundant
amounts of IDO1C DCs,93 which may engage in a mutually
reinforcing circuit with Tregs that express cytotoxic T lympho-
cyte associated protein 4 (CTLA4). In this scenario, CTLA4 has
been proposed to initiate a forkhead box O3 (FOXO3)-depen-
dent signal transduction cascade resulting in the upregulation of
IDO1 (in DCs),94,95 which in turn would activate Tregs via the
GCN2 and AHR pathway.35,38,45,53 This signaling circuit may
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be relevant for the establishment of an immunosuppressive
microenvironment in human neoplasms. In line with this notion,
the combined inhibition of IDO1, CTLA4, and CD274 (an
immunosuppressive molecule best known as PD-L1)96,97 has
recently been shown to mediate superior therapeutic effects
against well-established gliomas, in mice.98 Moreover, elevated
expression levels of IDO1 at baseline have been associated with
improved clinical outcome in melanoma patients treated with
the CTLA4-targeting antibody ipilimumab.99

In this Trial Watch,100-102 we discuss preclinical and clinical
findings about the inhibition of IDO1 as a strategy for the re(activa-
tion) of tumor-targeting immune responses, and summarize clinical
trials recently initiated to test this therapeutic paradigm in cancer
patients. As a note, no IDO1 inhibitor is currently approved for use
in humans by the US Food and Drug Administration (FDA) or
equivalent agencies worldwide.

Preclinical and Clinical Development of IDO1
Inhibitors for Cancer Therapy

During the last decade, 1-methyltryptophan, a competitive
inhibitor of IDO1 (and IDO2) that exists as a mixture of chiral
isoforms (i.e., 1-methyl-D-tryptophan and 1-methyl-L-trypto-
phan), and genetic interventions specifically targeting IDO1 have
been shown to inhibit tumor growth in rodent tumor models,
along with the (re)elicitation of an anticancer immune
response.23,67,103-108 However, targeting IDO1 as a standalone
therapeutic intervention often fail to cause tumor eradication and
to prevent disease progression. Thus, IDO1-targeting agents
have been investigated for their ability to improve the efficacy of
multiple chemotherapeutics, and some combinatorial regimens
of this type had promising results in preclinical scenarios.1,67,109

Relatively recently, these findings convinced some oncologists
on the possibility to test the safety and therapeutic potential of 1-
methyl-D-tryptophan (also known as indoximod and
NLG8189), second-generation IDO1 inhibitors (such as the
orally available agent INCB024360 and NLG919), and IDO1-
targeting vaccines in cancer patients.74,75,110-120 So far, the phar-
macological profile of several other IDO1 inhibitors–including
1-methyl-L-tryptophan, methylthiohydantoin tryptophan, bras-
sinin and derivatives, annulin B and derivatives, exiguamine A
and derivatives, as well as INCB023843–appears to be subopti-
mal for clinical development.1,20,67,112,121-126

The first-in-man Phase I clinical trial involving indoximod
enrolled a total of 48 adults with refractory solid malignancies
(NCT00567931).114 In this dose-escalation study, oral indoxi-
mod was well tolerated up to a dose of 2000 mg twice a day,
major toxicities being Grade 1 fatigue (1 case) and Grade 2 hypo-
physitis (2 cases, in patients previously subjected to several
immunotherapies). Moreover, of 7 evaluable patients who
received 200 mg indoximod per day (10 were originally enrolled
on this dose), 5 experienced objective responses or disease
stabilization.114

Nowadays, the results of another study investigating the
clinical profile of indoximod have been partially released

(NCT01191216).115 In this Phase I clinical trial, indoximod
was tested as a means to support the therapeutic profile of
docetaxel (a microtubular poison currently approved by the
US FDA for the treatment of various neoplasms).115,127,128

This study was conducted on 27 patients with metastatic
solid tumors to determine the maximum tolerated dose of
indoximod given in combination with docetaxel.115 Patients
were assigned to receive 300, 600, 1000, 1200 and 2000 mg
indoximod p.o. twice a day, in combination with either 60
or 75 mg/m2 docetaxel every 3 weeks. The most common
side effects were fatigue (58.6%), anemia (51.7%), hypergly-
cemia (48.3%), infection (44.8%), and nausea (41.4%). Out
of 22 evaluable patients, 4 experienced partial responses and
9 disease stabilization. The authors recommended a dose of
1200 mg indoximod twice a day in combination with
75 mg/m2 docetaxel every 3 weeks for testing in a Phase II
study, which they initiated themselves on a cohort of meta-
static breast carcinoma patients (NCT01792050).117

Preliminary results are also available from 2 distinct clinical
trials assessing the safety and efficacy of INCB024360 in onco-
logical indications (NCT01195311; NCT01604889).75,119,120

NCT01195311, which has been completed, was a Phase I, open-
label, dose-escalation study to determine the safety, tolerability,
pharmacokinetics and pharmacodynamics of INCB024360 in
subjects with advanced malignancies. In this setting, 52 patients
were enrolled to receive 50–700 mg INCB024360 p.o. twice a
day in 28-d cycles until disease progression or inacceptable toxic-
ity. The most frequent Grade 3 or 4 side effects were abdominal
pain, hypokalemia, and fatigue (9.6% each) and 2 dose-limiting
toxicities were recorded. Significant reduction in the circulating
Kyn/Trp ratio were observed in all patients, but there were no
objective responses. Still, 15 patients achieved disease stabiliza-
tion, lasting more than 112 d in 7 of them.75,119

NCT01604889, which is still ongoing, is a Phase I/II random-
ized, blinded, placebo-controlled study testing ipilimumab in
combination with placebo or INCB024360 or in subjects with
unresectable or metastatic melanoma.120 In this setting, 7
patients were assigned to receive 300 mg INCB024360 p.o.
twice a day plus 3 mg/kg ipilimumab i.v. every 3 weeks, and
enrollment was stopped when 5 patients developed clinically sig-
nificant elevations of circulating alanine transaminase (after 30–
76 days of treatment). Six out of 7 patients were evaluable at dis-
continuation and all exhibited disease stabilization. Of note, cor-
ticosteroids and treatment discontinuation were sufficient to
resolve hepatic symptoms. A second cohort of eight patients
receiving ipilimumab in combination with 25 mg INCB024360
p.o. twice a day was enrolled. One of these subjects experienced
dose-limiting hepatic toxicity (Grade 3 aspartate aminotransfer-
ase elevation), while immunological side effects were manageable
with temporary treatment discontinuation. At first evaluation,
the disease control rate was 75%, 3 patients achieved radiologi-
cally confirmed partial responses, and 3 patient experienced dis-
ease stabilization for 79, 148, and >127 d.120

Finally, Iversen and colleagues have recently reported the
results of a Phase I clinical trial evaluating the safety and thera-
peutic profile of an IDO1-targeting, peptide-based vaccine
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(NCT01219348).74,129,130 In this setting, 15 individuals with
metastatic non-small cell lung carcinoma achieving disease stabi-
lization upon standard-of-care chemotherapy received an IDO1-
derived peptide s.c. in combination with the Toll-like receptor 7
(TLR7) agonist imiquimod.131,132 No severe side effects were
recorded, 1 patient achieved a partial response one year after vac-
cination, and 6 patients experienced prolonged (>8.5 months)
disease stabilization. Moreover, the overall survival of these indi-
viduals was significantly improved as compared to that of similar
patients excluded from the study owing to HLA expression pro-
file. A majority of subjects enrolled in the study also developed
IDO1-specific CD8C T cells and manifested significant reduc-
tions in the amounts of circulating Tregs as compared to baseline
levels. Taken together, these data suggest that not only pharma-
cological agents, but also other means of targeting IDO1 may
provide clinical benefits to cancer patients.

As per official sources (http://www.clinicaltrials.gov), 2 addi-
tional clinical trials have been initiated to investigate the safety
and efficacy of IDO1 inhibitors in oncological indications but
have been interrupted. In particular, NCT00739609, testing
indoximod as a standalone therapeutic intervention in subjects
with relapsed or refractory solid tumors, has been terminated
owing to lack of accrual, while NCT01982487, assessing the
ability of INCB024360 to boost the efficacy of a NY-ESO-1-tar-
geting recombinant vaccine,133,134 has been withdrawn prior to
enrollment, for undisclosed reasons.

Ongoing Clinical Trials

When this Trial Watch was being redacted (August 2014),
official sources listed no less than 16 clinical trials launched to
evaluate the safety and efficacy of IDO1-targeting interventions
in cancer patients (source http://www.clinicaltrials.gov). Six of
these trials involve indoximod (NCT01042535; NCT01560923;
NCT01792050; NCT02052648; NCT02073123; NCT02077
881), 8 INCB024360 (NCT01604889; NCT01685255;
NCT01822691; NCT01961115; NCT02042430; NCT0211
8285; NCT02166905; NCT02178722), 1 NLG919
(NCT02048709), and 1 an IDO1-derived peptide
(NCT02077114) (Table 1).

In particular, indoximod is being tested in combination with
(1) docetaxel (NCT01792050, see above) or an experimental
DCbased vaccine (NCT01042535),116,135,136 in subjects with
metastatic breast carcinoma; (2) temozolomide (an alkylating
agent currently employed against glioma, astrocytoma and mela-
noma),137,138 in patients with primary brain neoplasms
(NCT02052648); (3) ipilimumab,139,140 in adults with metastatic
melanoma (NCT02073123); (4) gemcitabine (an immunostimu-
latory nucleoside analog approved for the treatment of several car-
cinomas)141-144 and paclitaxel (a microtubular poison used against
a wide panel of neoplasms),145,146 in patients with metastatic pan-
creatic cancer (NCT02077881); and (5) sipuleucel-T (also known
as Provenge�, the sole DC-based preparation currently approved
by the US FDA for use in humans),135,136 in individuals with
refractory metastatic prostate carcinoma (NCT01560923).

In addition, INCB024360 is being evaluated: (1) as a stand-
alone therapeutic intervention, in subjects with myelodysplastic
syndromes (NCT01822691) or women with tumors of the
reproductive tract (NCT01685255; NCT02042430); (2) in
combination with ipilimumab (NCT01604889, see above), or a
mixture of MHC Class I-restricted peptides147,148

(NCT01961115), in patients with unresectable or advanced mel-
anoma; (3) in association with the intraperitoneal delivery of
haploidentical NK cells and interleukin-2,149-151

(NCT02118285) or a DC-targeted variant of NY-ESO-1152,153

and a TLR3 agonist154,155 (NCT02166905), in women with
reproductive tract cancers; and (4) in combination with a mono-
clonal antibody targeting the immunosuppressive receptor pro-
grammed cell death 1 (PDCD1, best known as PD-1),156-158 in
subjects with advanced solid tumors (NCT02178722).

Finally, the safety and preliminary efficacy of NLG919
employed as a standalone therapeutic intervention are being
assessed in patients with advanced solid tumors
(NCT02048709), while an IDO1-derived peptide is being tested
in combination with either ipilimumab or vemurafenib (an
FDA-approved inhibitor of mutant BRAF)159-162 in subjects
with unresectable Stage III or IV melanoma (NCT02077114).

Concluding Remarks

Although 1-methyl-L-tryptophan inhibits IDO1 much more
efficiently that its D counterpart in cell-free assays and in cel-
lula,1,51,163-165 the immunostimulatory potential of the latter in
vivo is superior.6,109,166 This explains why indoximod is cur-
rently developed in the clinic and 1-methyl-L-tryptophan not.
Moreover, it adds to an increasing amount of evidence indicating
that indoximod exerts IDO1-independent immunostimulatory
effects.1 For instance, several immunostimulatory agents includ-
ing IFNg,167,168 CpG ODNs84,169 and monoclonal antibodies
specific for tumor necrosis factor receptor superfamily, member 9
(TNFRSF9, best known as 4-1BB or CD137)170-173 have been
shown to mediate therapeutic effects in preclinical or clinical sce-
narios in spite of their ability to upregulate IDO1 expression.
Nonetheless, indoximod loses its ability to suppress tumor
growth in Ido1¡/¡ mice.109 Taken together, these observations
suggest that the anticancer activity of indoximod may rely on
mechanisms other than the inhibition of the enzymatic activity
of IDO1.174 In further support of this notion, indoximod has
recently been shown to interfere with the transcription and trans-
lation of IDO1,175,176 and to inhibit Trp transporters of the
plasma membrane.177

Although our understanding of the biological effects of
indoximod and other IDO1 inhibitors is incomplete, these
molecules appear to mediate potent antineoplastic effects
along with the re(activation) of anticancer immunosurveil-
lance. Precisely determining to which extent these effects are
on-target (i.e., they stem from the blockage of Trp catabo-
lism) may allow for the development of novel agents that
promote a therapeutically relevant tumor-targeting immune
response but fail to provoke systemic metabolic disturbances
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as they inhibit IDO1 at the whole body level. In this setting,
it would be very interesting to see whether the antineoplastic
activity of indoximod is preserved in mice expressing a cata-
lytically inactive variant of Ido1. The results of this and other
experiments aimed at disentangling the complex signaling
pathways and metabolic circuitries controlled by IDO1 are
urgently awaited.
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