Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jan 4;91(1):242–246. doi: 10.1073/pnas.91.1.242

A membrane form of brain L-glutamate decarboxylase: identification, isolation, and its relation to insulin-dependent mellitus.

B Nathan 1, J Bao 1, C C Hsu 1, P Aguilar 1, R Wu 1, M Yarom 1, C Y Kuo 1, J Y Wu 1
PMCID: PMC42923  PMID: 8278373

Abstract

A membrane form of L-glutamate decarboxylase (GAD) was identified and purified to apparent homogeneity from hog brain. The purified GAD was established as an integral membrane protein by phase-partitioning assay, charge-shift electrophoresis, and chromatography on a hydrophobic interaction column. This membrane GAD has a native molecular mass of 96 +/- 5 kDa and is a homodimer of 48 +/- 3-kDa subunits. Immunoprecipitation and immunoblotting tests revealed the presence of antibodies against this membrane GAD in sera from patients with insulin-dependent diabetes mellitus. Since this form of GAD appears to be an integral membrane protein and is presumed to have extracellular domains exposed, it seems reasonable to suggest that membrane GAD is more likely than soluble GAD to be involved in the pathogenesis of insulin-dependent diabetes and related autoimmune disorders such as stiff-man syndrome.

Full text

PDF
242

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arias C., Valero H., Tapia R. Inhibition of brain glutamate decarboxylase activity is related to febrile seizures in rat pups. J Neurochem. 1992 Jan;58(1):369–373. doi: 10.1111/j.1471-4159.1992.tb09320.x. [DOI] [PubMed] [Google Scholar]
  2. Baekkeskov S., Aanstoot H. J., Christgau S., Reetz A., Solimena M., Cascalho M., Folli F., Richter-Olesen H., De Camilli P., Camilli P. D. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature. 1990 Sep 13;347(6289):151–156. doi: 10.1038/347151a0. [DOI] [PubMed] [Google Scholar]
  3. Blum P., Jankovic J. Stiff-person syndrome: an autoimmune disease. Mov Disord. 1991;6(1):12–20. doi: 10.1002/mds.870060104. [DOI] [PubMed] [Google Scholar]
  4. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  5. Chang Y. C., Gottlieb D. I. Characterization of the proteins purified with monoclonal antibodies to glutamic acid decarboxylase. J Neurosci. 1988 Jun;8(6):2123–2130. doi: 10.1523/JNEUROSCI.08-06-02123.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Christgau S., Aanstoot H. J., Schierbeck H., Begley K., Tullin S., Hejnaes K., Baekkeskov S. Membrane anchoring of the autoantigen GAD65 to microvesicles in pancreatic beta-cells by palmitoylation in the NH2-terminal domain. J Cell Biol. 1992 Jul;118(2):309–320. doi: 10.1083/jcb.118.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Christgau S., Schierbeck H., Aanstoot H. J., Aagaard L., Begley K., Kofod H., Hejnaes K., Baekkeskov S. Pancreatic beta cells express two autoantigenic forms of glutamic acid decarboxylase, a 65-kDa hydrophilic form and a 64-kDa amphiphilic form which can be both membrane-bound and soluble. J Biol Chem. 1991 Nov 5;266(31):21257–21264. [PubMed] [Google Scholar]
  8. Covarrubias M., Tapia R. Brain glutamate decarboxylase: properties of its calcium-dependent binding to liposomes and kinetics of the bound and the free enzyme. J Neurochem. 1980 Jun;34(6):1682–1688. doi: 10.1111/j.1471-4159.1980.tb11261.x. [DOI] [PubMed] [Google Scholar]
  9. Covarrubias M., Tapia R. Calcium-dependent binding of brain glutamate decarboxylase to phospholipid vesicles. J Neurochem. 1978 Nov;31(5):1209–1214. doi: 10.1111/j.1471-4159.1978.tb06244.x. [DOI] [PubMed] [Google Scholar]
  10. Denner L. A., Wei S. C., Lin H. S., Lin C. T., Wu J. Y. Brain L-glutamate decarboxylase: purification and subunit structure. Proc Natl Acad Sci U S A. 1987 Feb;84(3):668–672. doi: 10.1073/pnas.84.3.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Erlander M. G., Tillakaratne N. J., Feldblum S., Patel N., Tobin A. J. Two genes encode distinct glutamate decarboxylases. Neuron. 1991 Jul;7(1):91–100. doi: 10.1016/0896-6273(91)90077-d. [DOI] [PubMed] [Google Scholar]
  12. Erlander M. G., Tobin A. J. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res. 1991 Mar;16(3):215–226. doi: 10.1007/BF00966084. [DOI] [PubMed] [Google Scholar]
  13. Fonnum F. The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fractions of rat and guinea-pig brain. Biochem J. 1968 Jan;106(2):401–412. doi: 10.1042/bj1060401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Helenius A., Simons K. Charge shift electrophoresis: simple method for distinguishing between amphiphilic and hydrophilic proteins in detergent solution. Proc Natl Acad Sci U S A. 1977 Feb;74(2):529–532. doi: 10.1073/pnas.74.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Martin D. L., Martin S. B. Effect of nucleotides and other inhibitors on the inactivation of glutamate decarboxylase. J Neurochem. 1982 Oct;39(4):1001–1008. doi: 10.1111/j.1471-4159.1982.tb11489.x. [DOI] [PubMed] [Google Scholar]
  16. Reetz A., Solimena M., Matteoli M., Folli F., Takei K., De Camilli P. GABA and pancreatic beta-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J. 1991 May;10(5):1275–1284. doi: 10.1002/j.1460-2075.1991.tb08069.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sherman A. D., Davidson A. T., Baruah S., Hegwood T. S., Waziri R. Evidence of glutamatergic deficiency in schizophrenia. Neurosci Lett. 1991 Jan 2;121(1-2):77–80. doi: 10.1016/0304-3940(91)90653-b. [DOI] [PubMed] [Google Scholar]
  18. Solimena M., Aggujaro D., Muntzel C., Dirkx R., Butler M., De Camilli P., Hayday A. Association of GAD-65, but not of GAD-67, with the Golgi complex of transfected Chinese hamster ovary cells mediated by the N-terminal region. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3073–3077. doi: 10.1073/pnas.90.7.3073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Solimena M., De Camilli P. Autoimmunity to glutamic acid decarboxylase (GAD) in Stiff-Man syndrome and insulin-dependent diabetes mellitus. Trends Neurosci. 1991 Oct;14(10):452–457. doi: 10.1016/0166-2236(91)90044-u. [DOI] [PubMed] [Google Scholar]
  20. Solimena M., Folli F., Aparisi R., Pozza G., De Camilli P. Autoantibodies to GABA-ergic neurons and pancreatic beta cells in stiff-man syndrome. N Engl J Med. 1990 May 31;322(22):1555–1560. doi: 10.1056/NEJM199005313222202. [DOI] [PubMed] [Google Scholar]
  21. Stelzer A., Laas R., Fleissner A. Subcellular distribution of glutamic acid decarboxylase in rat brain regions following electroconvulsive stimulation. J Neural Transm. 1985;62(1-2):99–106. doi: 10.1007/BF01260419. [DOI] [PubMed] [Google Scholar]
  22. Westhead E. W. Lipid composition and orientation in secretory vesicles. Ann N Y Acad Sci. 1987;493:92–100. doi: 10.1111/j.1749-6632.1987.tb27186.x. [DOI] [PubMed] [Google Scholar]
  23. Wu J. Y., Huang W. M., Reed-Fourquet L., Bao J., Nathan B., Wu E., Tsai W. H. Structure and function of L-glutamate decarboxylase. Neurochem Res. 1991 Mar;16(3):227–233. doi: 10.1007/BF00966085. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES