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Apoptotic cells have long been considered as intrinsically
tolerogenic or unable to elicit immune responses specific for
dead cell-associated antigens. However, multiple stimuli can
trigger a functionally peculiar type of apoptotic demise that
does not go unnoticed by the adaptive arm of the immune
system, which we named “immunogenic cell death” (ICD). ICD
is preceded or accompanied by the emission of a series of
immunostimulatory damage-associated molecular patterns
(DAMPs) in a precise spatiotemporal configuration. Several
anticancer agents that have been successfully employed in
the clinic for decades, including various chemotherapeutics
and radiotherapy, can elicit ICD. Moreover, defects in the
components that underlie the capacity of the immune system
to perceive cell death as immunogenic negatively influence
disease outcome among cancer patients treated with ICD
inducers. Thus, ICD has profound clinical and therapeutic
implications. Unfortunately, the gold-standard approach to
detect ICD relies on vaccination experiments involving
immunocompetent murine models and syngeneic cancer
cells, an approach that is incompatible with large screening
campaigns. Here, we outline strategies conceived to detect
surrogate markers of ICD in vitro and to screen large chemical
libraries for putative ICD inducers, based on a high-content,
high-throughput platform that we recently developed. Such a
platform allows for the detection of multiple DAMPs, like cell
surface-exposed calreticulin, extracellular ATP and high
mobility group box 1 (HMGB1), and/or the processes that
underlie their emission, such as endoplasmic reticulum stress,
autophagy and necrotic plasma membrane permeabilization.
We surmise that this technology will facilitate the
development of next-generation anticancer regimens, which
kill malignant cells and simultaneously convert them into a
cancer-specific therapeutic vaccine.

Introduction

Cell death can be classified based on several parameters,
including morphological manifestations, biochemical features,

kinetic considerations and functional outcomes.1-7 This said,
how cell death has been investigated and conceived since its pris-
tine descriptions (dating back to the mid-19th century)8 has obvi-
ously evolved along with the technological advances that have
been made throughout the last one and a half centuries.9,10

Thus, morphology-based classifications postulating the existence
of 3 cell death subroutines (i.e., type I, type II and type III cell
death)2,11-14 have been progressively abandoned in favor of defi-
nitions that rely on objectively quantifiable functional fea-
tures.3,15-19 Alongside, the long-standing conception according
to which distinct types of cell death like apoptosis and necrosis
would constitute mutually exclusive and diametrically opposed
entities has been refuted. In particular, throughout the past 2 dec-
ades it has become clear that: (1) apoptosis is not the sole type of
regulated cell death that contributes to (post-) embryonic devel-
opment and adult tissue homeostasis;20 (2) similar to apoptosis,
necrosis can occur in a regulated fashion, i.e., it can involve a
genetically encoded molecular machinery;4,5,21 (3) similar to
their necrotic counterparts, apoptotic cells can sometimes be
detected by the immune system and elicit an adaptive immune
response specific for dead cell-associated antigens.6,7,22,23 Thus,
although apoptosis as a physiological process involved in (post-)
embryonic development and tissue homeostasis invariably fails to
engage the adaptive branch of the immune system,24,25 specific
stimuli can promote an immunogenic variant of regulated cell
death that manifests with both morphological and biochemical
features of apoptosis.2,3,6 Of note, defects in the clearance of apo-
ptotic cells by professional phagocytes have been associated with
autoimmune conditions such as systemic lupus erythematosus
and chronic inflammation.26,27 However, it remains unclear
whether this reflects the immunogenic potential of intact apopto-
tic corpses or the insurgence of secondary necrosis.

Back in 2005, we were the first to report the unexpected find-
ing that murine colorectal carcinoma CT26 cells as well as
murine fibrosarcoma MCA205 cells exposed to a lethal dose of
doxorubicin in vitro are capable of vaccinating syngeneic mice
against a subsequent challenge with living cells of the same
type.22 We dubbed such a functionally peculiar variant of cellular
demise, manifesting with an apoptotic morphology and depend-
ing on the activity of apoptotic caspases, “immunogenic cell
death” (ICD).22 It turned out that the unsuspected ability of
doxorubicin (an anthracycline employed for the treatment of var-
ious carcinomas) to trigger ICD as a standalone intervention,
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hence converting dying cancer cells into a vaccine that is efficient
in the absence of adjuvants, is shared by a relatively restricted set
of lethal triggers.28-33 These include, but perhaps are not limited
to, mitoxantrone and epirubicin (2 other anthracyclines currently
used in the clinic),34-37 bleomycin (a glycopeptide antibiotic
endowed with antineoplastic properties),38 oxaliplatin (a plati-
num derivative generally employed against colorectal carci-
noma),39-42 cyclophosphamide (an alkylating agent approved for
the treatment of neoplastic and autoimmune conditions),43-48

etoposide (a topoisomerase inhibitor currently used for the treat-
ment of several neoplasms) combined with the chemical inhibitor
of glycolysis 2-deoxyglucose,49,50 patupilone (a microtubular
inhibitor that has not yet been approved for use in humans),51-53

septacidin (an antifungal antibiotic produced by Streptomyces
fibriatus)54,55 specific forms of radiation therapy,34,56-64 photody-
namic therapy (a clinically approved anticancer intervention that
involves the administration of a photosensitizing agent followed
by light irradiation),65-73 high hydrostatic pressure,74 multiple
oncolytic viruses,75-83 replication-defective viral vectors encoding
a potentially cytotoxic product (e.g., thymidine kinase from her-
pes simplex virus type I, HSV-1) combined with viruses express-
ing an immunostimulatory molecule (e.g., fms-related tyrosine
kinase 3 ligand, FLT3LG),84 the clinically employed proteasomal
inhibitor bortezomib,85-87 shikonin (a component of Chinese
herbal medicine),88 a monoclonal antibody specific for the epi-
dermal growth factor receptor (EGFR),89 capsaicin (a neurotoxic
derivative of homovanillic acid found in chili peppers),90,91 and
perhaps the n3-polyunsaturated fatty acid docosahexaenoic
acid,92 as well as the transgene-driven expression of SMAC mim-
etics.93,94 In addition, some interventions are capable of convert-
ing non-immunogenic instances of cell death into bona fide
ICD. These maneuvers include the administration of cardiac gly-
cosides, which are particularly powerful in this respect as they
promote per se all major manifestations of ICD (see below),95-97

or zoledronic acid (a bisphosphonate currently approved to treat
osteoporosis and to prevent skeletal fractures in cancer patients
with bone metastases),98,99 as well as the provision of co-stimula-
tory signals via CD40.100 This said, it should be kept in mind
that the capacity of a given agent to cause ICD or exacerbate the
immunogenicity of apoptosis cannot be predicted yet from its
structural or chemical properties, since molecules as similar to
each other as oxaliplatin and cisplatin do not share this functional
profile.39,40

The notion that apoptotic cancer cells do not always go unde-
tected by the immune system has profound clinical repercus-
sions.101 First, it implies that the immune system, at least under
specific circumstances, can mount an adaptive immune response
against (self) malignant cells, hence mediating antineoplastic
effects or contributing to the therapeutic activity of conventional
anticancer regimens. This concept represents the theoretical
foundation of modern tumor immunology and anticancer
immunotherapy.22,102,103 As a matter of fact, many chemothera-
peutics that have been successfully used in the clinic throughout
the past century have recently been discovered to mediate off-tar-
get immunostimulatory effects, ICD being one of the underlying
mechanisms (though not the sole).104-106 Second, it implies that

a large number of parameters reflecting the immunological com-
petence of the host, including the type, quantity and localization
of tumor-infiltrating lymphoid and myeloid cells,107-113 the
amount of blood-borne memory T cells that are able to recognize
antigens associated with apoptotic cancer cells,114 the circulating
levels of various ICD-associated biomarkers, including the non-
histone chromatin-binding protein high mobility group box 1
(HMGB1),46,115-117 as well as genetic polymorphisms affecting
virtually all facets of the immune response,41,108,118,119 may be
endowed with a robust prognostic or predictive value. This
notion has already been demonstrated in several ICD-related
clinical scenarios. Thus, the relative abundance of tumor-infil-
trating CD8C cytotoxic T lymphocytes (CTLs) and
CD4CCD25CFOXP3C regulatory T cells reportedly predicts the
propensity of breast carcinoma patients to benefit from anthracy-
cline- or oxaliplatin-based chemotherapy, respectively.52,120

Along similar lines, single nucleotide polymorphisms in the genes
coding for ICD-relevant receptors such as Toll-like receptor 4
(TLR4) and purinergic receptor P2X, ligand-gated ion channel,
7 (P2RX7) have been shown to influence disease outcome among
breast carcinoma patients treated with anthracycline-based che-
motherapy.41,119 Taken together, these observations demonstrate
that the induction of ICD is a therapeutically relevant objective,
calling for the identification of novel ICD inducers and mole-
cules that improve the immunogenicity of conventional variants
of apoptosis.

After summarizing the main molecular and cellular determi-
nants that underlie ICD, we discuss the assays that are currently
available for the detection of surrogate ICD markers and how
these methods can be combined into a platform that is compati-
ble with high-content, high-throughput applications. We surmise
that this methodological approach will accelerate the discovery
and development of therapeutic regimens that kill malignant cells
in an immunogenic fashion.

Immunogenic Cell Death Signaling

According to current models, ICD relies on the ability of spe-
cific stimuli to kill cells while provoking the spatiotemporally
coordinated emission of immunogenic signals.7,121-129 Such sig-
nals are conveyed by damage-associated molecular patterns
(DAMPs), i.e., molecules that are not accessible by the immune
system in physiological conditions but are released or exposed on
the outer leaflet of the plasma membrane during cytoprotective
stress responses or upon cell death.103,130-133 Similar to their
microbial counterparts, many (but not all) DAMPs exert robust
immunostimulatory effects upon binding to pattern recognition
receptors (PRRs) expressed by immune cells.121 So far, 3 DAMPs
have been attributed a key role in the immunogenic potential of
virtually all ICD inducers: the endoplasmic reticulum (ER) chap-
erone calreticulin (CALR),34,65,126,134-136 ATP,66,124,137-143 and
HMGB1.41,46,115,116,144-147 In addition, many DAMPs have
been shown to contribute to the immunogenicity of cell death in
a limited amount of experimental scenarios. These include
immunostimulatory cytokines like interferon a (IFNa),148,149
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various chaperones of the heat-shock protein (HSP) family,
notably heat shock 70kDa protein 1A (HSPA1A, best known
as HSP70) and heat shock protein 90kDa a (cytosolic),
class A member 1 (HSP90AA1, best known as
HSP90),65,71,85,90,145,150-153 sphingomyelin metabolites (e.g.,
ceramide and sphingosine-1-phosphate),154 a plethora of mito-
chondrial products (e.g., mitochondrial DNA, N-formylated
peptides, cardiolipin),155-157 cytosolic components like urate and
F-actin,158-161 as well as products of the breakdown of the extra-
cellular matrix (e.g., hyaluronan fragments).162,163

CALR gets exposed on the cell surface early in the course of
ICD, i.e., before the apoptosis-associated shuffling of phosphati-
dylserine between the inner and outer leaflet of the plasma mem-
brane.34,164,165 The molecular mechanisms underlying this ICD
hallmark have been dissected in detail and appear to involve 3
distinct signaling modules: (1) an ER stress module centered
around the phosphorylation of eukaryotic translation initiation
factor 2A (EIF2A) and the resultant arrest in protein synthesis;
(2) an apoptotic module involving the activation of caspase-8
and the consequent cleavage of B-cell receptor-associated protein
31 (BCAP31), as well as the pro-apoptotic Bcl-2 family members
BCL2-associated X protein (BAX) and BCL2-antagonist/killer 1
(BAK1); and (3) an exocytosis module requiring the actin cyto-
skeleton as well as vesicle-associated membrane protein 1
(VAMP1) and synaptosomal-associated protein, 25 kDa
(SNAP25), 2 proteins involved in intracellular vesicular traffick-
ing.36 Moreover, in some (but not all) models of ICD,67 CALR
obligatorily translocates to the cell surface together with another
ER chaperone, protein disulfide isomerase family A, member 3
(PDIA3).36,37 Upon binding to low density lipoprotein receptor-
related protein 1 (LRP1, also known as CD91), membrane-
exposed CALR delivers a major phagocytic signal to professional
antigen-presenting cells (APCs) such as dendritic cells, de facto
improving their capacity to take up dead cells and their corp-
ses.66,91,166-173 Interestingly, the phagocytosis-stimulatory effects
of CALR is robustly counterbalanced by CD47, which is highly
expressed by a large panel of solid and hematopoietic tumors.166

This latter observation suggests that various neoplasms benefit
from avoiding the effects of CALR exposure, perhaps as this pre-
vents the elicitation of an adaptive immune response against the
malignant cells that “physiologically” succumb in the course of
oncogenesis and tumor progression. Alternatively, the phagocyto-
sis-inhibitory activity of CD47 may confer tumors with an
advantage by increasing the local availability of macromolecules
derived from their spontaneous demise and degradation of some
of their cellular constituents. This possibility has not yet experi-
mentally addressed.

The ICD-associated release of ATP proceeds through a com-
plex mechanism that involves (1) the apparent relocalization of
vesicular ATP stores from lysosomes to autolysosomes; (2) the
redistribution of lysosomal-associated membrane protein 1
(LAMP1) to the plasma membrane; (3) Rho-associated, coiled-
coil containing protein kinase 1 (ROCK1)-mediated and myosin
II-dependent cellular blebbing; and (4) the opening of pannexin
1 (PANX1) channels, 4 processes that rely on caspases.140,142,174

In a vast majority of models, the secretion of ATP by cells

exposed to ICD inducers requires an intact autophagic machin-
ery.83,138,139,175 In these settings, the genetic or pharmacological
inhibition of autophagy limits ATP release by cells succumbing to
ICD and hence negatively influences their ability to elicit an adap-
tive immune response upon inoculation in immunocompetent
syngeneic mice.60,138,139 Along similar lines, the chemical inducer
of autophagy STF-62247 increases the immunostimulatory
potential of ICD as triggered by chlorin-e6-based photodynamic
therapy (MK, unpublished observations). However, this does not
seem to apply to all ICD inducers.68 Thus, the ability of hyperi-
cin-based photodynamic therapy to induce the secretion of ATP
does not appear to change in autophagy-deficient versus autoph-
agy-proficient cells.68,70,176 Moreover, the former respond to
hypericin-based photodynamic therapy by exposing higher
amounts of CALR on the plasma membrane than the latter, hence
exhibiting a superior immunogenic potential.68,70,176 Possibly,
this reflects the incapacity of autophagy-deficient cells to clear oxi-
dized proteins, resulting in an aggravation of the ER stress
response that underlies CALR exposure in the course of
ICD.68,70,176 Irrespective of these variations, extracellular ATP
operates as a strong chemoattractant and promotes not only the
recruitment of immune cells to sites of ICD, but also their differ-
entiation, an effect that depends on purinergic receptor P2Y, G-
protein coupled, 2 (P2RY2).141,177-179 Moreover, extracellular
ATP promotes the activation of the NLR family, pyrin domain
containing 3 (NLRP3) inflammasome in APCs, hence stimulating
the processing and release of interleukin (IL)-1b and
IL-18.119,180-189 In line with this notion, the immunogenic poten-
tial of cells succumbing to ICD can be significantly reduced by
pharmacological or genetic interventions that limit the availability
of ATP in the pericellular space, such as the administration of
recombinant apyrase (an ATP-degrading enzyme) or the transfec-
tion-enforced overexpression of ectonucleoside triphosphate
diphosphohydrolase 1 (ENTPD1, best known as CD39), which
converts ATP into ADP and AMP.190 Intriguingly, CD39 and 50-
nucleotidase, ecto (NT5E, best known as CD73), which trans-
forms AMP into adenosine, are often overexpressed by malignant
tissues. This expression pattern reflects the advantage that these
enzymes confer to cancer cells by the degradative conversion of
extracellular ATP, which promotes immunosurveillance, into
adenosine, which exerts potent immunosuppressive effects.191-197

Of note, autophagy is also important for the perception of cell
death as immunogenic because it contributes to several aspects of
cellular immune responses, including the differentiation, survival
and activation of myeloid and lymphoid cells.198-200

The release of HMGB1 from cells succumbing to ICD
requires the permeabilization of both the nuclear and plasma
membranes, de facto constituting a post-mortem event.3,41

Although autophagy has been proposed to contribute to the
release of HMGB1 from dying cells, at least under some circum-
stances,201 the molecular machinery that underlies this crucial
manifestation of ICD has not yet been elucidated in detail. This
said, extracellular HMGB1 is well known to mediate robust pro-
inflammatory effects upon binding to several receptors on the
surface of immune cells, including TLR2, TLR4 and advanced
glycosylation end product-specific receptor (AGER, best known
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as RAGE).202-210 Moreover, extracellular HMGB1 reportedly
exerts a chemotactic activity by forming a complex with chemo-
kine (C-X-C motif) ligand 12 (CXCL12) that signals via chemo-
kine (C-X-C motif) receptor 4 (CXCR4).211 Finally, at least
under some circumstances, endogenous HMGB1 appears to pro-
mote autophagy by interfering with the mutually inhibitory
interaction between the central autophagic regulator beclin 1
(BECN1) and the anti-apoptotic protein B-cell CLL/lymphoma
2 (BCL2).212-214 It is therefore tempting to speculate, yet
remains to be formally demonstrated, that the nuclear release of
HMGB1 may contribute to the autophagic response of cells suc-
cumbing to ICD inducers. Of note, the biological activity of
extracellular HMGB1 appears to be regulated by its redox
state.215-221 Moreover, HMGB1 binds not only to TLR2, TLR4
and RAGE, but also to hepatitis A virus cellular receptor 2
(HAVCR2, best known as TIM-3), hence mediating immuno-
suppressive (as opposed to immunostimulatory) effects.222-224

Taken together, these observations suggest that the biological
activity of HMGB1 exhibits a consistent degree of context-
dependency. Nonetheless, HMGB1-deficient malignant cells
exposed to ICD inducers fail to elicit adaptive immune responses
upon inoculation into immunocompetent syngeneic mice, a
defect that can be corrected by the co-administration of synthetic
TLR4 ligands.225-228 Together with the notion that Tlr4¡/- mice
fail to perceive anthracycline-treated syngeneic cells as immuno-
genic,41,229 this observation demonstrates the importance of the
HMGB1-TLR4 signaling axis for ICD.

In summary, the spatiotemporally coordinated emission of
specific DAMPs promotes the recruitment of APCs to sites of
ongoing ICD, their ability to take up dead cell-derived particu-
late material, as well as their capacity to prime an adaptive
immune response.6 This generally proceeds in 2 phases, involving
the sequential recruitment and activation of IL-17-secreting gd T
cells and ab CTLs.31,230 The latter not only mediate direct anti-
neoplastic effects, mostly by secreting interferon g (IFNg) and
via the granzyme-perforin pathway, but also underlie the estab-
lishment of protective immunological memory (Fig. 1).231

Gold-Standard Methods to Monitor ICD

As it stands, the gold-standard approach to evaluate the ability
of a specific stimulus to cause bona fide ICD relies on vaccination
assays.6,22,30 In this setting, malignant cells are exposed in vitro to
the lethal stimulus of choice, thoroughly washed (to remove the
stimulus), resuspended in an adequate volume of PBS, and then
inoculated subcutaneously into the flank of immunocompetent
syngeneic mice. One week later, living cells of the same type are
introduced subcutaneously into the opposite flank, and mice are
routinely monitored for the appearance of a palpable neoplastic
lesion (Fig. 2A). The proportion of mice that do not develop
subcutaneous tumors reflects the degree of immunogenicity of
cell death as induced by the lethal trigger under evaluation. As a
note, murine cells succumbing to prototypic inducers of ICD
such as doxorubicin and mitoxantrone effectively vaccinate 80%
of mice.34,95,232

As a confirmatory assay, putative ICD inducers can be assessed
for their ability to mediate immune system-dependent therapeu-
tic effects against established neoplastic lesions.6,34,233 In this sce-
nario, grafted, genetically-driven or chemically-induced
subcutaneous or orthotopic tumors are established in both
immunocompetent and immunodeficient mice. Malignant
lesions are then allowed to progress until a pre-determined size or
time point, beyond which tumor-bearing mice are treated with
the compound under evaluation (Fig. 2B). In this experimental
setup, bona fide ICD inducers mediate optimal therapeutic
effects in immunocompetent, but not in immunodeficient,
mice.34,41,95,119,233 Importantly, this latter approach is suitable
to validate the results of vaccination experiments but cannot be
employed alone to determine the capacity of a specific interven-
tion to cause ICD. Indeed, even the activity of antineoplastic reg-
imens that fail to render dying cells immunogenic but induce
other immunostimulatory effects is negatively affected by the
absence of a functional immune system.104,105 Among other
molecules, this applies to the microtubular inhibitor paclitaxel
and the nucleoside analog gemcitabine.104,105

The main drawbacks of these assays relate to the use of
rodents: the need for a tightly controlled sterile facility (which is
mandatory for working with immunodeficient animals), pro-
longed times for the establishment/growth of neoplastic lesions,
and significant costs. Moreover, vaccination and therapeutic tests
for the detection of ICD are limited by the relatively restricted
number of syngeneic tumor models that are currently available.
Thus, although they constitute the gold-standard approach for
the detection of ICD, vaccination assays relying on immunocom-
petent mice and syngeneic cancer cells are intrinsically incompat-
ible with large screening campaigns. To circumvent this issue,
various techniques that allow for the detection of one or more
ICD manifestations in vitro and in vivo have been developed.6,234

Monitoring the immunostimulatory activity of lead compounds
(be it linked to the induction of ICD or reflecting other mecha-
nisms) early in the drug discovery pipeline may indeed speed up
significantly the development of novel anticancer agents.104

Detection of Surrogate ICD Biomarkers

A relatively ample panel of ICD-associated phenomena can be
monitored in vitro to obtain insights into the ability of a specific
intervention to provoke ICD (Table 1).

Cell death
By definition, ICD inducers must be cytotoxic and provoke

cell death above a minimal threshold level. Cancer cells emit
indeed a wide panel of DAMPs in response to non-lethal pertur-
bations of homeostasis. However, such DAMPs differ in both
qualitative and quantitative terms from those emitted by cells of
the same type dying in response to the same stimulus applied
with a lethal intensity and duration. Living cells are less likely to
be taken up by APCs and ignite an adaptive immune response
than their dying counterparts. Moreover, if the fraction of dying
cells is excessively low, neoplastic lesions develop at the
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vaccination site and protective immunity cannot be estab-
lished.34,95 Thus, agents that stimulate all the key manifestations
of ICD including CALR exposure, ATP secretion and HMGB1
release, but fail to exert robust cytotoxic effects cannot be consid-
ered as authentic ICD inducers. This is the case of cardiac glyco-
sides including digoxin and digitoxin, which nonetheless are
powerful at converting non-immunogenic instances of cell death
into bona fide ICD, hence operating as a potent immune adju-
vant.95-97,235

Several assays are commercially available to monitor cell
death-associated parameters, the most reliable indicator of cell
death being end-stage plasma membrane permeabilization.9,236

This can be monitored by so-called exclusion dyes like the DNA-
binding chemicals propidium iodide (PI) and 40,6-diamidino-2-
phenylindole (DAPI), which only accumulate in cells with per-
meabilized plasma membranes. PI and DAPI can be conveniently
detected by flow cytometry or fluorescence microscopy (absorp-
tion/emission peaks: 535/617 and 358/461 nm, respectively).
On flow cytometry, both PI and DAPI can be combined with
fluorescence variants of the protein annexin A5 (ANXA5),

permitting the detection of phosphatidylserine exposure,9,237,238

as well as with 3,30-dihexyloxacarbocyanine iodide (DiOC6(3),
absorption/emission peaks: 482/504 nm), allowing for the quan-
tification of mitochondrial transmembrane potential (Dcm).

239-

241 The externalization of phosphatidylserine (a phospholipid
normally restricted to the inner leaflet of the plasma membrane)
indeed accompanies multiple (though not all) instances of apo-
ptotic cell death,16,242-245 while the permanent dissipation of the
Dcm as a result of mitochondrial outer membrane permeabiliza-
tion (MOMP) constitutes one of the major hallmarks of mito-
chondrial apoptosis.17,18,246,247 Of note, DiOC6(3) is not
compatible with fixation, but other Dcm-sensitive probes are,
including chloromethyltetramethylrosamine (absorption/emis-
sion peaks: 554/576 nm).248 MOMP is accompanied by the
massive activation of caspase-9 and -3, while caspase-8 is required
for ICD upstream of MOMP. The activation of caspases can be
documented by flow cytometry or fluorescence microscopy,
either upon the immunostaining of cells with monoclonal anti-
bodies specific for active caspase fragments, or with cell-permeant
caspase substrates that become fluorescent upon cleavage.9,249,250

Figure 1. Molecular and cellular mechanisms of immunogenic cell death. Cancer cells succumb to specific stimuli (e.g., anthracyclines, oxaliplatin, some
forms of radiation therapy, photodynamic therapy) while emitting a spatiotemporally ordered combination of damage-associated molecular patterns
(DAMPs). These signals include (but are not limited to) the pre-apoptotic exposure of the endoplasmic reticulum chaperone calreticulin (CALR) on the
surface of dying cells, the secretion of ATP during the blebbing phase of apoptosis, and the release of the nuclear protein high mobility group box 1
(HMGB1) upon plasma membrane permeabilization. Upon binding to specific receptors, immunogenic cell death (ICD)-associated DAMPs promote the
recruitment of antigen-presenting cells (APCs) and stimulate their ability to take up particulate material and cross-present dead cell-associated antigens
to CD8C cytotoxic T lymphocytes (CTLs) while secreting interleukin (IL)-1b. The consequent adaptive immune response also involves gd T lymphocytes
that produce IL-17. Both gd T cells and ab CTLs mediate direct antineoplastic effects by secreting interferon g (IFNg) and via the granzyme-perforin path-
way. In addition, some CTLs acquire a memory phenotype, underlying the establishment of long-term immunological protection.
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Alternatively, caspase activation can be detected in a semi-quanti-
tative manner by immunoblotting, with antibodies specific for
caspases (which are themselves activated by cleavage) or their
substrates.250,251

As MOMP ensues the assembly of BAX/BAK1-containing
oligomers across the outer mitochondrial membrane, the process
can also be monitored by means of green fluorescent protein
(GFP)-BAX chimeras (GFP absorption/emission peaks: 395/
509 nm). In this setting, the relocalization of BAX to

mitochondria can be followed by fluorescence microscopy as a
shift in GFP fluorescence from a diffuse to a punctate or net-
work-like pattern.40,252 Finally, one of the major morphological
modifications of apoptosis (and hence of ICD) is nuclear conden-
sation (pyknosis).1,2,95 Also this process can be conveniently
monitored by fluorescence microscopy, either in cells that consti-
tutively express a GFP- or red fluorescent protein (RFP)-tagged
variant of histone 2B (RFP-H2B, absorption/emission peaks:
584/607 nm) or upon fixation and staining with the

Figure 2. Assays for the evaluation of immunogenic cell death in vivo. (A) Vaccination assays. Murine cancer cells of choice are exposed in vitro to a puta-
tive inducer of immunogenic cell death (ICD), 1 mM mitoxantrone (positive control) or 50 mM cisplatin (negative control) for a predetermined time (nor-
mally 6–24 hours), then washed, resuspended in PBS, and eventually injected s.c. into one flank (vaccination site) of immunocompetent syngeneic mice
(ideally 5–10 per group). One week later, mice are challenged with living cancer cells of the same type, which are inoculated s.c. into the contralateral
flank (challenge site). Tumor incidence and growth are routinely monitored at both injection sites over a 1-2 months period. The development of neo-
plastic lesions at the vaccination site indicates that the stimulus under investigation is unable to cause cell death (under the circumstances under investi-
gation) to a degree that is compatible with the elicitation of adaptive immunity. Conversely, in the absence of tumors at the vaccination site, the ability of
the experimental maneuver under evaluation to promote bona fide ICD inversely correlates with the number of neoplastic lesions developed at the chal-
lenge site. As an indication, neoplastic cells exposed in vitro to 1 mM mitoxantrone for 6 hours and maintained in culture for additional 18 hours vacci-
nate approximately 80% of mice against a challenge with living cells of the same type. (B) Therapeutic assays. Immunocompetent and immunodeficient
syngeneic mice bearing grafted, genetically-driven or chemically-induced subcutaneous or orthotopic tumors are treated with a putative ICD inducer,
mitoxantrone (positive control) or cisplatin (negative control) at therapeutic doses, followed by the monitoring of tumor size over a 1–3 weeks period. In
this setting, bona fide ICD inducers mediate optimal antineoplastic effects in immunocompetent, but not in immunodeficient, mice. Since this is also the
case of therapeutic interventions that exert off-target immunostimulatory effects, this assay cannot be employed alone to discriminate between ICD and
non-immunogenic cell death (nICD). Please note that all curves represented in this figure do not depict primary data but have been created for the sake
of exemplification.
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chromatinophilic dye Hoechst 33342 (absorption/emission
peaks: 361/461 nm).40,95,235

CALR exposure
Several assays are available to directly monitor the ICD-associ-

ated translocation of CALR on the outer leaflet of the plasma
membrane. For instance, this can be achieved on flow cytometry,
by staining non-permeabilized cells with a CALR-specific anti-
body, or in cells that stably express a CALR-HaloTagTM fusion
protein.40,95 In the latter scenario, the HaloTagTM label can be
visualized by a cell-impermeant fluorescent chemical, resulting in
the specific detection of the CALR molecules that are effectively
accessible for ligand binding from the extracellular microenviron-
ment.40,95 In both cases, it is imperative to remove from the anal-
ysis dead (PIC or DAPIC) cells, as the permeabilized plasma
membrane allows both the CALR-specific antibody and the nor-
mally cell-impermeant HaloTagTM ligand to access intracellular
CALR.34,40 Alternatively, CALR exposure can be monitored
upon the biotinylation of cell surface proteins (which must be
performed in pre-apoptotic conditions, when plasma membranes
are intact, to avoid false-positive results owing to intracellular
CALR), followed by streptavidin-mediated precipitation, and
detection by immunoblotting,34,66,253 or by fluorescence micros-
copy, in cells that constitutively express a CALR-GFP fusion con-
struct. For the sake of precision, it should be noted that the latter
system does not detect CALR-GFP exposure in itself, but the ER
perinuclear clustering that invariably accompanies exposure.20,232

We have also successfully employed a PDIA3-specific antibody
and flow cytometry as well as PDIA3-GFP-expressing cells and
fluorescence microscopy to (indirectly) assess CALR exposure in
the course of ICD, as in our models PDIA3 invariably co-translo-
cates with CALR on the surface of cells exposed to ICD
inducers.36,37,95 However, this does not apply to all experimental
settings,66,67 implying that the PDIA3-GFP fusion is a useful
confirmatory tool but cannot be employed as a standalone means
to identify all instances of ICD.

In some instances, it may be important to monitor CALR
exposure along with the proficiency of the ER stress response.
This may indeed allow for the identification of defects in the sig-
naling pathway that leads to the translocation of CALR to the
outer leaflet of the plasma membrane. Several assays are currently
available for the detection of the different arms of the ER stress
response.136,254-256 For instance, the phosphorylation state of
EIF2A and/or of the major EIF2A kinases, including EIF2A
kinase 1 (EIF2AK1, best known as HRI),257 EIF2AK2 (best
known as PKR),258 and EIF2AK3 (best known as PERK),259–261

can be assessed by immunoblotting, flow cytometry or immuno-
fluorescence microscopy with phosphoneoepitope-specific anti-
bodies.260 The splicing status of X-box binding protein 1
(XBP1) mRNA, reflecting the activation of the ER stress sensor
endoplasmic reticulum to nucleus signaling 1 (ERN1, best
known as IRE1a), can be monitored by quantitative real-time
RT-PCR,262 as well as by flow cytometry or fluorescence micros-
copy, either in cells that express a fluorescently-tagged version of
XBP1263 or upon the administration of a self-quenched RNA
probe that can be cleaved by IRE1a.264 Finally, the nuclear

redistribution of activating transcription factor 6 (ATF6) can be
easily evaluated by fluorescence microscopy in cells that constitu-
tively express GFP- or RFP-tagged variants of ATF6.52 As an
alternative, ER stress can be indirectly monitored upon the for-
mation of GTPase activating protein (SH3 domain) binding pro-
tein 1 (G3BP1)-containing granules in cells genetically modified
to express a G3BP1-GFP fusion.40,265 This said, G3BP1 appears
to redistribute to granules in response to a wide panel of stressful
conditions that are not limited to specific perturbations of reticu-
lar homeostasis. Thus, monitoring G3BP1 aggregation can be
useful to determine whether cells mount a stress response to a
putative inducer of ICD, yet cannot be employed to formally
imply the ER in this process.

ATP secretion
The ICD-associated secretion of ATP can be monitored by 2

complementary approaches: directly, by quantification of extra-
cellular ATP,137,180 or indirectly, by the assessment of residual
intracellular ATP.137,139 The most employed method currently
available for the quantification of ATP levels relies on the ability
of eukaryotic luciferases to produce light while oxidizing
D-(-)-luciferin (which must be added exogenously) in a ATP-
dependent manner.266,267 This can be applied to culture superna-
tants as well as to cell lysates, and hence is compatible with both
the direct and indirect assessment of ATP secretion in the course
of ICD. The vesicular pool of ATP can also be visualized by fluo-
rescence microscopy upon staining cells with the ATP-binding
fluorochrome quinacrine (absorption/emission peaks: 436/
525 nm).268 Alternatively, intracellular ATP can be monitored
in living cells by a fluorescence resonance energy transfer
(FRET)-based assay involving a yellow fluorescent protein-cyan
fluorescent protein (YFP-CFP) fusion containing a domain that
changes its conformation upon ATP binding, hence shifting the
spectral properties of the probe.269

In some settings, it may be relevant to monitor the autophagic
response that generally precedes and is required for ICD-associ-
ated ATP release. This can be achieved by a wide panel of techni-
ques, whose detailed discussion goes largely beyond the scope of
this set of recommendations.15,270,271 This said, one of the most
convenient approaches to obtain insights into the autophagic
response of cells exposed to homeostatic perturbations relies on
the use of a GFP- or RFP-tagged variant of microtubule-associ-
ated protein 1 light chain 3 (MAP1LC3, best known as LC3).272

In the course of autophagy, LC3 gets conjugated to phosphati-
dylethanolamine, hence acquiring the ability to accumulate into
forming autophagosomes.273,274 In line with this notion, GFP-
LC3 redistributes from a diffuse to a punctate pattern in cells
mounting an autophagic response, a phenomenon that can read-
ily be monitored by fluorescence microscopy.

HMGB1 release
Similar to the secretion of ATP, the release of HMGB1 in the

supernatant of cells undergoing ICD can be monitored directly
or indirectly, as a function of residual intracellular
HMGB1.41,207,275 The former approach relies on the immuno-
blotting-based assessment of HGMB1 in concentrated cell
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supernatants, or (most often) on commercially available enzyme-
linked immunosorbent assay (ELISA) kits specific for human or
murine HMGB1. These kits generally allow for the precise quan-
tification of HMGB1 concentrations in a wide panel of biological
specimens, including culture supernatants, serum samples and
interstitial fluids, yet may be relatively expensive for use in large-
scale screening campaigns.95,147,275 Alternatively, HMGB1
release can be assessed by fluorescence microscopy in cells
expressing a GFP-tagged variant of HMGB1, as the loss of coloc-
alization between the GFP signal and a nuclear stain (e.g.,
Hoechst 33342, H2B-RFP).275 This said, the precise quantifica-
tion of HMGB1 variants exhibiting differential redox states
requires mass spectroscopy.276

High-content, high-throughput platform
Cell death that is not accompanied by CALR exposure, ATP

secretion and HMGB1 release is generally not perceived as
immunogenic.34,41,119 In other words, the absence of only one
such ICD-associated events often entails a consistent decrease in
the immunogenicity of cell death, if not its total loss. This
implies that the ability of a given intervention to promote ICD
can be inferred in vitro only upon the concurrent evaluation of
all ICD hallmarks. Indeed, cells succumbing to homeostatic per-
turbations that stimulate ATP secretion and HMGB1 release but
not CALR exposure, such as the administration of cisplatin, fail
to elicit adaptive immune responses upon inoculation into
immunocompetent mice.34,39,40 This said, a platform that would
allow for the simultaneous detection of cell death, CALR expo-
sure, ATP secretion and HMGB1 release in the context of large
screening campaigns was missing. To circumvent this obstacle to
the identification of novel, perhaps clinically relevant bona fide
inducers of ICD, we recently developed a robotized cell biology
platform that allows for entirely automated compound handling
and multiplex read-out capability (including fluorescence micros-
copy, flow cytometry and bioluminescence detection) in sterile
conditions. We then designed fully automated workflows based
on various combinations of the assays described above and
including appropriate procedures for data handling/normaliza-
tion and statistical analysis. This approach is compatible with the
high-content, high-throughput screening of large chemical librar-
ies, returning a cumulative score that represents the ability of a
specific compound to promote the 4 tenets of ICD. Importantly,
this integrated platform does not abolish the need to evaluate
putative ICD inducers for their capacity to elicit protective anti-
cancer immune responses in gold-standard vaccination assays.
Nonetheless, it allows for the relatively straightforward identifica-
tion of candidate molecules. By means of this approach, septaci-
din has been identified as a bona fide ICD inducer.232 Moreover,
cardiac glycosides were found to robustly improve the immuno-
genic potential of cell death.95-97,235 We expect this platform not
only to allow for the discovery of other ICD inducers, but also to
facilitate the understanding of the molecular pathways that
underlie ICD and how these can be modulated for therapeutic
purposes.

Concluding Remarks and Future Directions

As described above, the simultaneous detection of cell death,
CALR exposure, ATP secretion and HMGB1 release by means
of a high-content-, high-throughput-compatible platform is use-
ful for the identification of candidate ICD inducers among large
chemical libraries. Nonetheless, vaccination assays involving
immunocompetent mice and syngeneic cancer cells do not cease
to constitute the gold-standard approach to formally identify
bona fide triggers of ICD.

Paradoxically, the major obstacle to the identification and
development of clinically relevant ICD inducers appears to be
represented by the murine system itself, as rodent and human
cells do not necessarily respond to a specific stimulus in a compa-
rable fashion. As a standalone example, mouse cells are highly
resistant to the cytotoxic activity of cardiac glycosides, owing to
the expression of a mutated subunit of their target, the Na2C/KC

ATPase.95,277 This implies that formally determining whether a
given intervention provokes ICD in the human system is compli-
cated. Humanized rodent models, i.e., immunodeficient mice
reconstituted with a human immune system,278 may partially cir-
cumvent this issue. However, the interaction between human
immune cells and the murine microenvironment may be nega-
tively influenced by inter-species molecular variations that com-
promise the ability of the former to mount an appropriate
immune response.279,280 Thus, although attempts are being
made to limit such variations,281 experimental models that allow
for the proper evaluation of ICD in the human system require
further improvements. Finally, the procedure outlined above for
the identification of novel ICD inducers assesses the biochemical
processes that are required for the immunogenicity of anthracy-
cline-induced cell death. However, ICD might exist in function-
ally distinct variants, implying that hitherto uncharacterized
mechanisms might render cell death immunogenic. This possibil-
ity should be actively investigated in future studies.

Irrespective of these caveats, we are confident that the screen-
ing of large chemical or small-interfering RNA libraries com-
bined with vaccination assays in the murine model will allow for
the identification of novel, therapeutically relevant interventions
for the induction or modulation of ICD. Moreover, the immu-
nohistochemical detection of ICD-associated biomarkers in bio-
ptic specimens from cancer patients may convey robust
predictive or prognostic indications, at least under some circum-
stances.282,283 The implementation of well-designed, longitudi-
nal immunomonitoring procedures into the clinical development
of antineoplastic agents is required to ascertain the actual prog-
nostic or predictive value of ICD-associated processes among
oncological patients.284-286 Of note, a Phase I clinical study has
recently been launched to investigate the safety and preliminary
therapeutic efficacy of adenoviral vectors genetically modified to
trigger ICD, in subjects with malignant glioma and glioblastoma
multiforme (NCT01811992). In this setting, serotype 5, replica-
tion-defective, first-generation adenoviruses encoding the HSV-1
thymidine kinase and similar vectors coding for FLT3LG are co-
infused at the time of surgical tumor resection, followed by
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valacyclovir (a gancylovir-like prodrug converted by the viral thy-
midine kinase and cellular kinases into its triphosphate cytotoxic
variant)287,288 in the context of current standard-of-care therapy
(source https://clinicaltrials.gov/). The results of such a first-in-
man study relying on the genetic induction of ICD in cancer
patients are urgently awaited.
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