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Abstract

In this paper we propose a novel algorithm for the efficient search of the most similar brains from 

a large collection of MR imaging data. The key idea is to compactly represent and quantify the 

differences of cortical surfaces in terms of their intrinsic geometry by comparing the Reeb graphs 

constructed from their Laplace-Beltrami eigenfunctions. To overcome the topological noise in the 

Reeb graphs, we develop a progressive pruning and matching algorithm based on the persistence 

of critical points. Given the Reeb graphs of two cortical surfaces, our method can calculate their 

distance in less than 10 milliseconds on a PC. In experimental results, we apply our method on a 

large collection of 1326 brains for searching, clustering, and automated labeling to demonstrate its 

value for the “Big Data” science in human neuroimaging.

1 Introduction

With the advance of MR imaging techniques and the availability of large scale data from 

multi-site studies such as the Alzheimer's Disease Neuroimaging Initiative (ADNI) [1] and 

Human Connectome Project (HCP) [2, 3], brain imaging is now entering the era of “Big 

Data” research [4]. To fully take advantage of the rich source of imaging data, one key 

challenge is to efficiently organize these data and provide search tools with real-time 

performance that can quickly find the most similar brains to a query brain. For example, 

comparing the brain of a patient with a control group of most similar brains has the potential 

of allowing us to factor out structural differences and improve the signal to noise ratio in 

disease diagnosis and the detection of treatment effects in drug trials.

Besides simple measures such as intra-cranial volume, sophisticated comparisons that can 

take into account more elastic brain differences usually involve nonlinear warping 

techniques, which can take at least minutes to compute a pairwise registration. To overcome 

this difficulty, it is essential to develop rich characterizations of the brain with a small 

footprint to enable efficient calculation. In this work, we propose a novel method to compare 

the similarity of cortical surfaces based on their intrinsic geometry. We use the Reeb graphs 

constructed from the Laplace-Beltrami (LB) eigenfunctions of the cortical surfaces as the 

compact, yet informative, description of the brain [5, 6]. Due to the presence of noise in the 

Reeb graph, we develop a progressive pruning and matching process based on the 

persistence of critical points [7, 8]. With our novel method, a similarity measure of two 
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cortical surfaces can be calculated in less than 10 milliseconds in our MATLAB 

implementation. In our experiments, we demonstrate the potential of our method for “Big 

Data” problems by applying it to find the most similar brains from a collection of 1326 

brains. The similarity measure also allows the clustering of cortical surfaces to reveal brain 

asymmetry in terms of intrinsic geometry. We also demonstrate the potential of our method 

in automated cortical labeling via intrinsic mapping between a brain and its nearest 

neighbor.

The rest of the paper is organized as follows. In section 2, we introduce the LB 

eigenfunctions of cortical surfaces and the construction of their Reeb graphs. The persistent 

Reeb graph matching process is developed in section 3 to compute the similarity between 

cortices. Experimental results are presented in section 4. Finally, conclusions and future 

work are discussed in section 5.

2 Reeb Graph of LB Eigenfunctions

Given a cortical surface ℳ, the LB eigen-system is defined as

(1)

where Δℳ is the LB operator on the surface, and the pair (λn, fn) are the n-th eigenvalue and 

eigenfunction, respectively. The set of eigenfunctions Φ = {f0, f1, f2, ⋯,} form an 

orthonormal basis on the surface. Using the LB eigen-system, an embedding 

was proposed in [9]:

(2)

where intrinsic surface analysis can be performed such as mapping and automated labeling 

[10].

For surfaces with salient geometric profiles, the LB eigenfunctions have been used 

successfully as feature functions for the construction of Reeb graphs [6]. Given a Morse 

function f on a surface (ℳ), its Reeb graph is defined as follows [11].

Definition 1. Let f : ℳ → ℝ. The Reeb graph R(f) of f is the quotient space with its 

topology defined through the equivalent relation x ⋍ y if f(x) = f(y) for ∀ x, y ∊ ℳ.

Various approaches were developed for the numerical construction of Reeb graphs. In this 

work, we use the algorithm proposed in [6] to build the Reeb graph as a graph of critical 

points. Given an eigenfunction fn of (ℳ), we first calculate its critical points 

, which include maximum, minimum, and saddle points, and sort 

them according to their function value such that . Using the 

level contours in the neighborhoods of the critical points, a parcellation of the surface can be 

obtained and region growing can then be applied to connect neighboring nodes in the Reeb 
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graph. In the end, the Reeb graph is represented as R(fn) = (Cn, En), where Cn is the nodes of 

the graph, and  is the set of edges, where each edge connects two nodes. 

Following the Morse theory, the Reeb graph encodes the topology of the surface. Cortical 

surfaces are generally reconstructed with genus zero topology, thus all of their Reeb graphs 

have tree structures.

As an example, we plot in Fig. 1 the Reeb graphs of a cortical surface, which is represented 

as a mesh of 200K triangles. With the increase of the order, the eigenfunction becomes more 

oscillatory. This means they will have more critical points and thus a more complicated 

structure in the computed Reeb graph. The complexity of the Reeb graph, however, is not 

solely determined by the order of the eigenfunction. Because we use a discrete 

representation of the surface and eigenfunction, numerical approximations will sometimes 

create spurious critical points as shown in Fig. 1(a). To use the Reeb graph for brain 

indexing and search, it is critical to robustly detect and remove such spurious structures 

without compromising the representation power of the Reeb graph.

3 Persistent Reeb Graph Matching

Based on the concept of persistence in discrete topology, we develop in this section a Reeb 

graph pruning and matching algorithm. This provides the core step for efficient brain search 

by comparing the intrinsic geometry of cortical surfaces.

For an edge  of the Reeb Graph R(fn) = (Cn, En), its weight is defined 

according to its persistence:

(3)

which is the difference of the LB eigenfunction value of the two critical points  and . 

Using the weight on edges, we also have a matrix representation Rn of the Reeb graph with 

its entries defined as  if there exists an edge between the node 

 and . By using the persistence to define the edge weights, we not only have a natural 

way for outlier pruning but also an efficient mechanism to model the distribution of the 

critical points on the surface. By comparing the Reeb graphs of different surfaces, we can 

thus quantify their differences in terms of intrinsic geometry.

For Reeb graph pruning, an intuitive approach can be developed for the selection of a 

persistence threshold. Because the LB eigenfunctions have oscillatory patterns similar to 

Fourier basis functions, their peak values are essentially the expected persistence of the 

maximum and minimum. Based on this observation, we choose the persistence threshold 

based on the maximum of the eigenfunction as δ = max(|fn|)/5 in our experiments. To 

remove spurious edges, we sort all edges according to their persistence. At each step, we 

find the edge  with the smallest weight. If , we remove it from the edge set by 

collapsing the two nodes . For a node , we calculate its total weight  as
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(4)

We collapse the two nodes by removing the node with the smaller total weight and adding 

all its connections to the other node. For example, if , we remove  from the 

node set of the Reeb graph R(fn). Except for the edge  to be removed, for all other edges 

that were connected to , we update them by replacing  with . We then check if the 

degree of any node becomes two. If so, we add an edge to connect its two neighbors and 

remove this node and its two edges from the graph. For all new edges, their weights are 

calculated according to (3) with the function values of the nodes. The above steps can be 

repeated until the persistence threshold is reached. For the example shown in Fig. 1, we 

applied the pruning process and the new results are shown in Fig. 2.

For fast brain search, the core step is to efficiently compute a similarity measure between 

two cortical surfaces. The solution we develop here is based on comparing the Reeb graphs 

of their corresponding LB eigenfunctions. Let ℳ1 and ℳ2 denote two surfaces we want to 

compare. We denote their corresponding eigenfunctions as  and . For the 

n–th eigenfunction  and , we first compute their Reeb graphs  and . Let 

 With ,  With . To 

start the iterative pruning and matching algorithm, we first prune both graphs to have the 

same number of K nodes with K ≤ min(K1, K2). We define the pruning cost P as the total 

edge weights between the original and pruned Reeb graph. The pruning cost of both graphs 

are denoted as  and . After that, an iterative process as summarized in Table 1 is 

applied to match the Reeb graphs of the two surfaces. Next we describe the details of each 

step.

Let K denote the number of nodes in the Reeb graphs at the start of each iteration. We define 

the cost matrix of size K × K for matching the nodes of  to  as

(5)

Using the cost matrix A+, we run the Hungarian algorithm and find the one-to-one 

correspondences ϕ+ from the nodes of  to . We compute the distance between the 

Reeb graphs as:

(6)

Where  and  are the matrix representation of the Reeb graphs.

Because of the sign ambiguity of the eigenfunction, we flip the sign of the eigenfunction 

and compute the cost matrix as
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(7)

With the cost matrix A−, the correspondence computed with the Hungarian algorithm is 

denoted as ϕ−, and the distance between the Reeb graphs is:

(8)

The overall cost of the matching at the current iteration is then

(9)

which is the sum of the graph distance and pruning costs. If convergence is not reached, we 

continue the above steps after pruning the minimal edges from both graphs as described in 

Table 1. Otherwise, the optimal match and the distance  is recorded.

By applying the persistence Reeb graph matching algorithm for eigenfunctions up to the 

order N, we have the overall distance between ℳ1 and ℳ2 for brain search:

(10)

4 Experimental Results

In our experiments, we applied our method to T1-weighted MR images from three publicly 

available datasets. The first dataset consists of the 225 subjects released by the HCP up to 

date. The second dataset is composed of the 101 MR images of the Mindboggle atlas [12]. 

The third dataset includes 1000 MR images from all baseline visits of the ADNI2 project. 

Overall we have a total of 1326 T1-weighted images from a diverse population. Cortical 

surfaces were automatically reconstructed with the method in [6]. The white matter (WM) 

surfaces of all subjects were used in our experiments for persistent Reeb graph matching 

(PRGM), which is currently implemented in MATLAB. Before we perform PRGM, the first 

9 LB eigenfunctions and their Reeb graphs were computed for all subjects.

4.1 Fast Brain Search

To demonstrate the capability of our method in finding the most similar brains from a large 

brain collection, we applied PRGM between the HCP cohorts and all brains from the three 

cohorts. For the left WM surface of a HCP subject, a PRGM is applied against the left WM 

surface of each of the 1326 subjects and the distance is computed as in (10). On a PC with a 

2.7GHz CPU, every pair of PRGM takes less than 10 milliseconds. As shown in Fig. 3 (a), 

we obtain a distance matrix of size 225 × 1326. Among the 225 HCP subjects, the closest 

match for 116 of them are from the HCP collection, 15 of them are from the Mindboggle 

collection, and 94 of them are from the ADNI collection. As an example, we show in Fig. 
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3(b) the left WM surface of one HCP subject and the nearest brains we found via PRGM 

from all three datasets.

4.2 Brain Asymmetry

In our second experiment, we applied pairwise PRGM to all the left hemisphere (LH) and 

right hemisphere (RH) WM surfaces of the HCP cohort. The distances are saved into a 

matrix of size 450 × 450 as shown in Fig. 4(a), which exhibits a clear pattern: the (LH,LH) 

and (RH,RH) blocks of the matrix have smaller distance values than the (LH,RH) block. 

This suggests that we could use the PRGM distance to evaluate brain asymmetry on a large 

scale. To further illustrate this point, we applied multidimensional scaling (MDS) to the 

distance matrix and plotted the results in Fig. 4(b). While there are overlaps, it is clear that 

the LH and RH surfaces form very distinct clusters. A t-test was applied to the projection of 

the MDS embedding coordinates onto the diagonal line, i.e., the vector (−1, 1), and a highly 

significant p-value 9.4e−34 was obtained.

4.3 Fast Resolution of Sign Ambiguity in LB embedding

To compare two surfaces with their LB embeddings as defined in (2), it is usually a 

challenging and computationally expensive task to resolve the ambiguities including the sign 

of the eigenfunctions, switching of the order of the eigenfunctions, and possible splitting of 

the eigenspaces due to multiplicity. With PRGM matching, we find the nearest surface from 

a large brain collection such that the risk of order switching is greatly reduced. For lower 

order eigenfunctions, multiplicity is uncommon for cortical comparisons in our experience. 

Thus the focus is on resolving the sign ambiguity of LB embeddings for two very similar 

surfaces. Using the corresponding critical points provided by PRGM, we show here that this 

can be achieved extremely efficiently.

For the HCP subject and its closest Mindboggle match shown in Fig. 3(b), the PRGM 

applied to the first 9 eigenfunctions generates a set of 48 corresponding critical points as 

shown in Fig. 5 (a) and (b). For the n-th eigenfunction of the first surface , 

we calculate its difference with  or  on the corresponding point set and use the one 

with the smaller difference to construct the embedding of the second surface. This process 

can also be done in less than 10 milliseconds in our MATLAB implementation. After that, 

we can compute the nearest point map in the embedding space between the surfaces and pull 

back the manually delineated labels on the Mindboggle surface to the HCP subject [10]. The 

resulting labels are plotted in Fig. 5(c) and (d). For further demonstration, we plotted the 

cortical labeling results of six more HCP surfaces with the same strategy. These results show 

that excellent cortical labeling can be done efficiently with PRGM-based search. For future 

work, these results also lay the foundation for further improved labeling performance with 

the fusion of labels from multiple neighbors [10].

5 Conclusions

In this paper we developed a novel approach for brain search based on persistent Reeb graph 

matching. For future work, we will investigate different graph matching techniques and 

compare their speed and search performance with the Hungarian algorithm used in our 
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current work. We will also incorporate other geometric features such as the skeletons of the 

sulci and gyri of the cortex for more informative comparisons.
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Fig. 1. 
The Reeb graphs of the 1st, 5th, 9th eigenfunction of a cortical surface. In (a)-(c), the 

surface is color-coded with the corresponding eigenfunction. A zoomed view of a spurious 

critical point was shown (a).
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Fig. 2. 
The pruned Reeb graphs.
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Fig. 3. 
PRGM results of HCP cohorts versus the HCP, Mingboggle, and the ADNI cohorts. (a) The 

distance matrix. (b) The closest match of an HCP subject in the three cohorts. Distance to 

each matched brain is plotted alongside the arrow.
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Fig. 4. 
The use of persistent Reeb graph matching for brain asymmetry analysis on the HCP cohort.
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Fig. 5. 
Reeb graph matching for fast sign ambiguity resolution and cortical labeling. Critical point 

set on the HCP (a) and Mindboggle subject (b). (c) Automatically generated labels on the 

HCP subject. (d) Manually delineated labels on the Mindboggle subject.
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Fig. 6. 
Cortical labeling results of six HCP subjects paired with their nearest match from the 

Mindboggle cohort. In each pair of surfaces: Left: HCP; Right: Mindboggle.
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Table 1
Persistent Reeb Graph Match Algorithm

Set . Repeat the following steps until the minimal edge weight of  and  are above the persistence threshold δ.

1 Calculate the cost matrix D+.

2 Calculate the cost matrix D–.

3 Compute the distance D at the current pruning level. If , set  and record the correspondence.

4 Prune the minimal edge in both Reeb graphs, and update the pruning cost  and . Go back to step 1.
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