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Abstract

Context—The basal ganglia and thalamus together connect in parallel closed-loop circuits with 

the cortex. Previous imaging studies have shown modifications of the basal ganglia and cortical 

targets in individuals with Tourette syndrome (TS), but less is known regarding the role of the 

thalamus in TS pathogenesis.

Objective—To study the morphological features of the thalamus in children and adults with TS.

Design—A cross-sectional, case-control study using anatomical magnetic resonance imaging.

Setting—University research center.

Participants—The 283 participants included 149 with TS and 134 normal control individuals 

aged 6 to 63 years.

Main Outcome Measures—Conventional volumes and measures of surface morphology of the 

thalamus.

Results—Analyses of conventional volumes and surface morphology were consistent in 

demonstrating an enlargement in TS-affected thalami. Overall volumes were 5% larger in the 

group composed of children and adults with TS. Statistical maps of surface contour demonstrated 
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enlargement over the lateral thalamus. Post hoc testing indicated that differences in IQ, comorbid 

illnesses, and medication use did not account for these findings.

Conclusions—Morphological abnormalities in the thalamus, together with the disturbances 

reported in the sensorimotor cortex, striatum, and globus pallidus, support the hypothesis of a 

circuit wide disorder within motor pathways in TS. The connectivity and function of the numerous 

and diverse thalamic nuclei within cortical-subcortical circuits constitute an anatomical crossroad 

wherein enlargement of motor nuclei may represent activity-dependent hypertrophy within this 

component of cortical-subcortical motor circuits, or an adaptive response within a larger putative 

compensatory system that could thereby directly modulate activity in motor circuits to attenuate 

the severity of tics.

Anatomical and functional disturbances in corticostriatothalamocortical (CSTC) circuits are 

thought to contribute to the pathogenesis of Tourette syndrome (TS). Previous imaging 

studies have suggested the presence of hypoplasia in motor portions of these loops, 

particularly in the caudate nucleus1,2 and in inferior portions of sensory, motor, and 

premotor cortices.3 Enlargement in other portions of CSTC circuits, including the frontal 

and parietal cortices, the hippocampus, and their associated commissural pathways,4–6 are 

thought to compensate for disturbances in motor pathways and thereby reduce the severity 

of tic symptoms in persons with TS.

The thalamus is an integral component of the CSTC circuits that are involved in the genesis 

of tic symptoms and their associated compensatory responses. A previous functional 

magnetic resonance imaging study demonstrated activation of the thalamus, together with 

the basal ganglia and frontal and parietal cortices, during the willful suppression of tic 

symptoms.7 The change in activity of the thalamus correlated with the change inactivity of 

basal ganglia nuclei, suggesting that a coordinated effort between the thalamus and basal 

ganglia (defined as the striatum, globus pallidus, substantia nigra, and subthalamic nucleus)8 

is required to suppress tics. In addition, inducing lesions in or stimulating thalamic 

subregions may attenuate tics,9,10 whereas space-occupying lesions of the thalamus seem to 

exacerbate them.11 These and other findings have prompted some to hypothesize that 

dysregulation of thalamocortical activity may generate tic behaviors.12

Several preliminary anatomical studies have yielded contradictory findings for overall 

thalamic volume. One reported an increased size of the left hemithalamus in 18 treatment-

naive boys with TS.13 Another in which treatment history was unspecified found decreased 

thalamic volumes in 23 children with TS.14 A third study detected no morphological 

differences in the thalamus of 15 neuroleptic-naive adults.15 The small numbers of 

participants, their differing histories of medication use, the differing age and sex 

compositions of the samples, and the markedly differing image-processing techniques across 

these studies renders a coherent interpretation of their findings impossible.

A large-scale study is needed to clarify the effects of TS on thalamic morphology. We 

assessed overall thalamic volumes and localized morphological features over individual 

thalamic subregions in a large sample of children and adults to improve our understanding 

of the role of the thalamus in the pathophysiological processes of TS. We hypothesized that 

the volumes of the thalamus and its subregions would differ between diagnostic groups.
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METHODS

PARTICIPANTS

Participants with TS (n=149) were recruited from the Tic Disorders Specialty Clinic at the 

Yale Child Study Center, New Haven, Connecticut. Normal control subjects (NC [n=134]) 

were recruited from a list of 10 000 names purchased from a telemarketing company and 

group-matched with the participants with TS by zip code and age range. Written informed 

consent was obtained from all participants, and protocols were approved by the human 

investigation committee at Yale School of Medicine and New York State Psychiatric 

Institute.

Participants were aged 6 to 63 years and were predominantly right-handed.16 Exclusion 

criteria for the TS group included another movement disorder or a major psychiatric disorder 

other than obsessive-compulsive disorder (OCD) or attention-deficit/hyperactivity disorder 

(ADHD). Exclusion criteria for controls included history of tic disorder, OCD, or ADHD 

and any current Axis I diagnosis. Additional exclusion criteria for both groups included 

seizure activity, head trauma with loss of consciousness, any history of substance abuse, and 

IQ below 80.

Diagnoses were established by using a portion of the Schedule for Tourette Syndrome and 

Other Behavioral Disorders,17 which includes the Schedule for Affective Disorders and 

Schizophrenia for School-Age Children–Present and Lifetime Version,18 and a best-estimate 

consensus procedure that considered all available study materials, including medical 

records. Clinical ratings of current and worst-ever severity of tic symptoms were rated with 

the Yale Global Tic Severity Scale,19 OCD symptoms with the Yale-Brown Obsessive 

Compulsive Scale,20,21 and ADHD symptoms with the DuPaul-Barkley ADHD Scale.22 

Socioeconomic status was estimated using the Hollingshead Four-Factor Index.23 Estimates 

of full-scale IQ were made using the Wechsler Abbreviated Scale of Intelligence.24

The present sample overlaps closely with samples for which morphological analyses of 

other brain regions have been reported.2,4,5 The samples differ slightly because of minor 

differences in image quality or partial volume effects locally where the boundaries of the 

brain regions of interest are defined. If a blind review of the supervised region definitions 

suggested that regional boundaries could not be defined with great confidence, a decision 

was rarely made to exclude a participant’s imaging data from further analysis so as to reduce 

noise from measurement error that could undermine the ability to detect real group 

differences. Fewer than 2% of participants have been excluded from our various studies on 

this basis.

MAGNETIC RESONANCE IMAGING

High-resolution T1-weighted magnetic resonance images were obtained on a single 1.5-T 

scanner (GE Signa, Milwaukee, Wisconsin) during a 7-year period. Assessments were 

performed at least monthly to ensure the stability of image quality over time and included 

analyses of signal-to-noise and contrast-to-noise ratios, geometric distortion, and intensity 

uniformity in phantoms and living participants. Head positioning was standardized with the 

use of canthomeatal landmarks. Brain scans were acquired using a 3-dimensional volume 
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spoiled gradientecho sequence (repetition time, 24 milliseconds; echo time, 5 milliseconds; 

flip angle, 45°; frequency encoding, superior/inferior; no wrap; 256 × 192 matrix; field of 

view, 30 cm; 2 excitations; section thickness, 1.2 mm; and 124 contiguous sections encoded 

for sagittal section reconstructions).

MORPHOMETRIC PROCEDURES

Morphometric analyses were performed on workstations (Sun Ultra 10; Sun Microsystems, 

Inc, Santa Clara, California) using a commercially available software system (ANALYZE 

7.5; Biomedical Imaging Resource, Mayo Foundation, Rochester, Minnesota) by technicians 

unaware of the clinical status of the subject or left-right orientation of the image. A second 

operator (K.D.) confirmed the accuracy of all procedures.

IMAGE QUALITY

Images were rated blindly on a 6-point scale describing motion artifact. Images scoring 4 or 

higher on this scale were excluded from analysis and are not included in the reported sample 

size. Rates of inclusion differed only slightly between diagnostic groups (TS group, 78%; 

NC group, 68%;  [P=.03]).

THALAMUS DEFINITION

After removal of nonbrain tissue and cortical gray matter, an anisotropic diffusion filter was 

applied to the remaining brain image (k = 2, iterations = 20; eFigure 1 [http://

www.archgenpsychiatry.com]).25–27 The thalamus was segmented by sampling gray scale 

values throughout the brain image and averaging the peaks for white and gray matter. An 

isointensity contour function grown from a seed within the thalamus provided an initial 

definition of the structure, which was then manually edited. The thalamus was distinguished 

from the hypothalamus by a line defining the hypothalamic sulcus on sagittal views, which 

excluded a portion of the geniculate nuclei and pulvinar (Pu) from the analysis. Interrater 

intraclass reliability coefficients28 assessed on 10 scans obtained at times spaced equally 

throughout the study were greater than 0.90. An expert in these procedures (B.S.P.) 

reviewed all the tracings used for this study for spatial accuracy.

WHOLE BRAIN VOLUME

We measured whole brain volume (WBV) for use as a covariate to control for global scaling 

effects in statistical analyses of conventional volumes. This measure included not only gray 

and white matter but also cerebrospinal fluid within the ventricles and cortical sulci to 

ensure the exclusion of any possible confound of age-related effects of tissue atrophy with 

this general measure of body scaling.29

SURFACE ANALYSIS

We assessed group differences in surface contour while controlling for age and sex. We 

calculated the distance from a voxel-sized point on the surface of each participant’s 

thalamus to the corresponding point on the surface of the thalamus in a template brain. 

Procedures for selecting the template brain are described elsewhere.30 This previously 

validated method of surface analysis31 was customized to accommodate independent 
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analysis of the right and left hemithalami. Briefly, a rigid-body similarity transformation 

with global scaling was used to register the entire brain of each participant with the template 

brain, thereby eliminating the need to further adjust for differences in WBV. The thalamus 

was then rigidly coregistered to the template thalamus. This second transformation created a 

refined registration in which to compare surfaces of isolated hemithalami. Each 

hemithalamus was warped to the corresponding anatomy of the template by using a high-

dimensional, nonrigid algorithm based on techniques used in fluid-flow dynamics. Warping 

permitted point-to-point matching of homologous tissue between the test thalamus and the 

template thalamus. Subsequently, the high-dimensionally warped images were unwarped to 

the refined registration while maintaining the point-to-point correspondences. This 

procedure permitted calculation of the signed euclidean distance of each surface point from 

the corresponding point on the surface of the template thalamus.

ATLAS-BASED LABELING OF THALAMIC NUCLEI

Boundaries of nuclei within the thalamus of the template brain were estimated using a 

modified version of a digital brain atlas32 with a widely used parcellation scheme and 

nomenclature.33 The atlas was registered to the template thalamus using a 3-dimensional 

nonlinear transformation based on voxel intensity. After smoothing this image manually, a 

simplified outline of 11 identified nuclei (listed in the legend for Figure 1) was overlaid on 

the template thalamus to aid localization of findings to individual thalamic nuclei.

STATISTICAL ANALYSES

Conventional Volumes—Statistical analyses of thalamic volumes were performed using 

commercially available software (SAS, version 9.0; SAS Institute Inc, Cary, North 

Carolina). Our a priori hypothesis was tested using a mixed-models analysis with repeated 

measures (PROC MIXED; SAS Institute Inc) that accounted for the intercorrelation of 

hemithalamic volumes across the cerebral hemispheres. The model included a 2-level 

within-subjects factor of hemisphere (left or right) and a between-subjects factor of 

diagnosis (TS or NC). Covariates included age, sex, lifetime diagnosis of ADHD or OCD, 

and WBV to control for scaling effects. In addition to the independent variables and 

covariates, we considered all 2- and 3-way interactions of diagnosis, sex, hemisphere, and 

age and the 2-way interactions of WBV and hemisphere. Non-significant terms were 

eliminated via backward stepwise regression, with the constraint that the model at each step 

was hierarchically well formulated. Our a priori hypothesis was tested by assessing the 

statistical significance of the main effect of diagnosis. Statistical significance was set at P <.

05, with all P values being 2-sided.

Surface Morphometry—We used linear regression at each voxel on the surface of the 

thalamic template to compare differences in the average distance of the surfaces between the 

TS and NC groups. Our a priori hypothesis of group differences in thalamic morphology 

was tested by assessing the significance of the main effect of diagnosis across the entire 

sample. Post hoc analyses included assessment of the effects of age and sex on our findings 

of group differences, which we tested in the interactions of diagnosis × age and diagnosis × 

sex. To ensure the stability of our findings across children and adults, we also assessed maps 

of effect size and variance for the whole sample, a subsample of adults, and a subsample of 
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children. Models covaried for age and sex and were hierarchically well formulated.34 We 

used the theory of false discovery rate to correct P values for multiple comparisons in the 

presence of intercorrelated measures of distance.31,35 Voxels with P values of less than .05 

were color coded and displayed on the template brain.

Correlation With Tic Severity—We explored the associations of thalamic morphology 

with the severity of tic symptoms at the time of the scan or at the period of greatest reported 

lifetime severity. Two analyses correlated tic severity (current and lifetime) with 

conventional volumes using age, WBV, and sex as covariates. Two additional analyses 

correlated tic severity (current and lifetime) with measures of distance from the thalamic 

template at each point on the thalamic surface while including age and sex as covariates. A 

third analysis assessed the sex differences in the correlation of tic severity with surface 

morphology by assessing the statistical significance of the interaction of tic severity with sex 

while including within the model the main effects of age, sex, and tic severity.

Assessment of Possible Confounds—We explored the association of thalamic 

surface morphology and use of α-agonists, antipsychotics, or antidepressants in 3 separate 

linear regressions. Models exploring medication use (coded dichotomously) included the 

main effect of use of the particular medication in question with age and sex as covariates. 

The effects of medication on our findings were also assessed by repeating a priori 

hypothesis testing using a subgroup of individuals with TS who were medication free. The 

effect of IQ was assessed by repeating a priori hypothesis testing using IQ as a covariate. 

Finally, we assessed the effects of comorbid ADHD or OCD on our findings in several 

ways. First, we assessed the stability of our findings in the subgroup of participants with TS 

who had no lifetime history of those disorders. Second, we included ADHD and OCD as 

covariates in our statistical models assessing the effects of a diagnosis of TS on thalamic 

morphology. Third, regression models explored the effects of comorbid ADHD or OCD on 

surface measures by evaluating the main effects of scores from the DuPaul-Barkley ADHD 

Scale or Yale-Brown Obsessive Compulsive Scale while including age and sex as 

covariates.

RESULTS

PARTICIPANT DEMOGRAPHICS

Consistent with the male predominance in this disorder,36,37 the TS group had a higher 

proportion of male participants (Table 1). In addition, the difference in mean age between 

diagnostic groups was small but statistically significant. The mean IQ score in the TS group 

was lower than that in the NC group, although the IQ scores were above the national average 

in both groups. Other demographic characteristics were similar between groups.

HYPOTHESIS TESTING

The test for fixed effects in our mixed model revealed significantly larger conventional 

thalamic volumes in the TS group compared with the NC group (diagnosis main effect, 

F=4.96 [P=.03]; Table 2). An analysis of least squares means (SEs) indicated that 
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conventional thalamic volumes were on average 5% larger in the TS group (TS group, 7000 

[98]mm3; NC group, 6689 [148]mm3; SE, 139.66; t275=−2.23 [P=.03]).

SURFACE ANALYSIS

Maps comparing morphological surface features across diagnostic groups indicated that the 

overall increase in thalamic volume in the TS group derived from protrusions that were 

widespread across the thalamic surface (Figure 1). Significant enlargement was localized 

along the horizontal length of the right lateral thalamic surface and over the posteromedial 

and lateral surfaces of the left thalamus. Regions with robust bilateral effects included the 

ventrolateral (VL) and ventroposterior (VP) motor nuclei and the posterior complex formed 

by the lateral posterior (LP) and Pu nuclei (LP-Pu complex).

SEX × DIAGNOSIS INTERACTION

A portion of the left posterior thalamus exhibited a significant diagnosis × sex interaction 

that survived false discovery rate correction. Local volumes in the region protruded in 

female participants with TS compared with female NC participants, whereas local volumes 

were similar between male participants with TS and male NC participants (Figure 2A).

CORRELATION WITH TIC SEVERITY

We did not detect a significant main effect for the correlation of tic severity with 

conventional thalamic volume (r=0.016 [P=.4]) or with morphological features of the 

thalamic surface. We did, however, detect a significant interaction of current tic severity 

with sex over the Pu in the same location where the sex × diagnosis interaction was also 

detected. A plot of this interaction indicated that a greater outward deformation 

accompanied less severe tic symptoms in female participants only (Figure 2B).

AGE EFFECTS

In our model for conventional volumes, neither the main effect of age nor the age × 

diagnosis interaction was significant, indicating that the average size of the thalamus was 

similar in children and adults regardless of diagnosis. Similarly, an age × diagnosis 

interaction did not survive correction for multiple comparisons in surface maps (data not 

shown; eFigure 2 shows additional analyses, including effect size and variance maps in the 

whole sample and samples of children and adults separately), indicating that the effects of 

diagnosis on thalamic morphology were similar in children and adults.

COMORBIDITY EFFECTS

We did not detect significant main effects for the lifetime diagnosis of OCD or ADHD in 

conventional thalamic volumes. Correlation of thalamic surface morphology with comorbid 

symptom severity resulted in inward and outward deformations across anterior and medial 

thalamic surfaces (eFigure 3). An analysis of the participants who had a sole diagnosis of TS 

(pure TS) compared with the NC group yielded findings that demonstrated the outward 

deformation in the lateral thalamus in the TS group and that were consistent with the 

findings in analyses of all participants with TS (eFigure 4A).
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MEDICATION EFFECTS

Medications had various effects on thalamic morphology (eFigure 5). The participants with 

TS who were taking selective serotonin receptor inhibitors exhibited local volume 

reductions across the anterior thalamic surface that included the anterior nucleus and the left 

Pu. Use of α-agonists was associated with outward deformation across the ventral thalamus. 

The deformation corresponded to a portion of the left lateral Pu that did not overlap with the 

main effect of diagnosis. Participants using second-generation antipsychotics demonstrated 

an outward deformation across the anterior surface of the thalamus and an inward 

deformation of the left lateral Pu. Analyses of surface morphology comparing medication-

free participants in the TS group with the NC group revealed robust findings in the motor 

nuclei and the LP-Pu complex (eFigure 4B) confirming that medication effects were not 

producing the differences detected in lateral thalamic contour across diagnostic groups.

IQ SCORES

A surface map demonstrating the main effect of diagnosis while controlling for age, sex, and 

IQ was indistinguishable from the model in which IQ was not included as a covariate (not 

shown), indicating that the small but statistically significant difference in IQ scores across 

diagnostic groups did not account for the large group differences in thalamic morphology.

COMMENT

We detected significant enlargement in conventional thalamic volumes in a group of 

children and adults with TS. Surface maps localized the source of this enlargement to the 

lateral thalamus bilaterally, overlying several motor nuclei (VL/VP) and the Pu (eTable). 

Post hoc findings included a significant sex × diagnosis interaction such that female 

participants with TS showed a proportionally larger outward deformation. Also at this 

location, a relatively greater outward deformation accompanied less severe tics in female 

participants only.

LATERAL THALAMUS IN THE PATHOGENESIS OF TS

Anatomical, pharmacologic, clinical, and functional imaging studies have implicated CSTC 

circuits in the pathogenesis of TS.38 The CSTC circuits are arranged in parallel, 

topographical, tripartite loops. The first portion of the loop consists of projections from a 

specified cortical region that terminate in the striatum. Postsynaptic projections from the 

striatum traverse the direct and indirect pathways through the basal ganglia output nuclei to 

terminate in the thalamus. The final projection of the loop exits the thalamus and closes the 

loop by terminating within the cortical areas of origin.39 This topographic arrangement is 

loosely classified by region of cortical origin into 4 sets of loops originating and returning to 

the sensorimotor, orbitofrontal, association, and anterior cingulate cortices. Comparing the 

locations of prominent group differences in thalamic morphology to CSTC loop topography 

suggests that the circuits containing thalamic enlargement include those from caudal motor 

portions of the frontal lobe. Specifically, the CSTC circuits involved likely include the 

supplementary motor and cingulate motor cortices that project to the VL motor nucleus via 

the dorsolateral caudate and dorsocentral putamen and those from the primary motor and 
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premotor cortices that project to lateral portions of the VP motor nucleus via the dorsolateral 

putamen.

The importance of the basal ganglia for motor control and movement disorders historically 

contributed to the general assumption that dysfunction of the basal ganglia was of primary 

importance in causing TS. However, reports of thinning of motor and premotor cortices that 

control movement of the tic-prone face and larynx3 and reports of abnormal 

electrophysiological properties of primary motor cortex in persons with TS40 suggested that 

morphological and functional disturbances in structures outside the basal ganglia may 

contribute to a wider circuit-based dysfunction in TS. Combined with data showing thinning 

of the somatosensory cortex in TS-affected brains,3 our data suggest that motor and 

sensorimotor circuits may be altered in persons with TS. The presence of abnormalities in 

sensorimotor pathways would support hypotheses asserting that TS results from an inability 

to effectively gate sensory information given that tics are often executed to alleviate 

premonitory sensory urges.41,42

MODULATION AND INTEGRATION OF INFORMATION IN CSTC PATHWAYS BY THE 
THALMUS

Modern anatomical and physiological studies have shown that portions of the thalamus 

actively modulate information coming to thalamic nuclei from the basal ganglia as well as 

the cortexandother subcortical structures.43–47Monosynaptic projections from intralaminar48 

and motor nuclei,49 for example, directly influence basal ganglia functioning. Thalamic 

innervation to the dorsal-most portions of the caudate may be entirely from the VL motor 

nucleus,49–51 in effect creating a closed subcortical loop that functions in parallel to CSTC 

loops.52 This anatomical arrangement places the VL motor nucleus in a position to be a 

primary modulator of the basal ganglia nuclei that have been hypothesized to be involved in 

the pathogenesis of TS.

The thalamus also serves as a locus for cross-talk between CSTC loops. Anatomical studies 

demonstrate that thalamic motor nuclei contain not only the synapses that relay information 

through parallel CSTC loops but also the terminals of nonreciprocal projections from the 

cortex.53–55 Multiple nonreciprocal projections are arranged in a rostral-to-caudal 

topographic orientation within the thalamus such that the terminals of nonreciprocal 

projections interdigitate with terminals of reciprocal projections. This coalescence of 

projections permits the integration of information originating from higher-order association 

cortices with signals emanating from the primary motor and sensory cortices.56 Thalamic 

nuclei therefore provide an anatomical locus whereby information from higher-order 

association cortices, which are thought to play a compensatory role in TS, can integrate with 

and modulate information from dysfunctional motor and sensorimotor circuits.

ROLE OF THE LP-Pu COMPLEX

Unlike classic motor and sensory nuclei that relay ascending information from peripheral 

and subcortical structures to the cortex, the LP-Pu complex relays higher-order information 

from one cortical area to another.57 Efferents of the LP-Pu complex terminate in association 

cortices of the prefrontal, parietal, occipital, and temporal lobes as well as in limbic regions 
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such as the amygdala.58–69 Combined with incoming information from the superior 

colliculus and reticular brainstem, information relayed through the LP-Pu complex is 

thought to subserve arousal, selective attention, and orientation to visual and auditory 

stimuli.70–75 Thus, a disturbance in the Pu such as the enlargement described herein would 

presumably disrupt attentional processing.76–79 Disturbed attentional processing could in 

turn exacerbate tic symptoms, as supported by the following considerations: first, persons 

with TS must allocate enormous attentional reserves to control their tic symptoms80; second, 

the presence of comorbid ADHD bodes poorly for the long-term prognosis of tic 

symptoms40,81; and third, the successful treatment of ADHD symptoms has been shown to 

reduce the severity of tics in children with TS.82

POSSIBLE CAUSES OF THALAMIC ENLARGEMENT IN TS

The causes of thalamic enlargement in our TS sample are unclear. Enlargement could 

represent an activity-dependent hypertrophy83–86 of relay nuclei within dysfunctional, 

hyperactive motor circuits in persons with TS.87 This interpretation is consistent with 

evidence of reduced inhibitory interneurons in the striatum and reduced inhibition of motor 

cortices in persons with TS.3,88,89 It is also consistent with the long-postulated excess 

activity within the basal ganglia’s direct output pathway, which would disinhibit 

thalamocortical projections and thereby produce excess synaptic activity within thalamic 

motor nuclei.90 Weighing somewhat against this interpretation of the source of thalamic 

enlargement, however, is the absence of significant correlation of the degree of enlargement 

of the motor nuclei with the severity of tic symptoms, which would have been predicted if 

enlargement represented activity-dependent hypertrophy associated with excess tic-related 

activity in motor circuits.

A competing hypothesis asserts that larger local thalamic volumes serve a compensatory 

function in persons with TS. This interpretation is supported by previous studies in which 

enlargement of the prefrontal cortex and hippocampus were associated with less severe 

symptoms, seeming therefore to represent a compensatory response that helped to attenuate 

symptoms.4,5 The pattern of enlargement in the thalamus shown herein, along with the 

enlargement in the hippocampus and frontal cortex demonstrated previously, could represent 

an extended network of CSTC circuit-based hypertrophy that increases executive control 

over hypoplastic and dysfunctional motor circuits in persons with TS.4 Indeed, the nuclei of 

the lateral thalamus would likely be the locus where executive systems interact with and 

influence activity in dysfunctional motor circuits.56

Finally, previous studies have provided evidence of reduced white matter integrity in the 

right thalamus14 and findings consistent with decreased fiber branching in the right motor 

nuclei that correlated with symptom severity91 in individuals with TS. These previous 

findings suggest that the increase in thalamic volume that we detected could represent 

physical expansion of gray matter into space made available by abnormalities in adjacent 

white matter. Alternatively, alterations in nonneuronal cells within the thalamus itself, such 

as expansion produced by a reactive astrocytosis, could conceivably contribute to the 

observed increase in thalamic volume.
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SEXUAL DIMORPHISMS IN THE PATHOGENESIS OF TS

The significant sex × diagnosis interaction detected in the Pu derived from an enlargement 

in female participants with TS relative to female NCs that surpassed the size in male 

participants with TS and male NCs. An increased volume in the posterior thalamus in female 

participants with TS could be interpreted as a relative masculinization, as has been reported 

to occur in the amygdalae of female participants with TS.4 The direct projection described 

between the LP-Pu complex and the amygdala92 and a similar pattern of TS-related 

enlargement are consistent with the idea that both structures play a similar role in the 

pathophysiological processes of TS. Moreover, more maletyped cognitive profiles have been 

reported in both girls and women who have TS.93 Together our findings and those in 

previous reports are consistent with the long-standing hypothesis that a relative 

masculinization of the brain in female participants with TS may counter the protective 

effects that female sex usually confers on the risk of developing TS.93,94

An alternative hypothesis is that relative Pu enlargement in female participants signifies that 

the Pu is part of the larger distributed compensatory network in TS. Our correlation analyses 

indicated that in female participants relative outward deformation of the Pu was associated 

with less severe tics. In other words, relatively greater Pu volumes appeared to be protective, 

implying that the development of interventions that enhance Pu plasticity and function might 

provide new ways to attenuate the symptoms of TS.

LIMITATIONS

Findings from previous preliminary studies of thalamic volume have been inconsistent in 

TS.13–15 The large sample size and advanced imaging and statistical techniques of the 

present study help to resolve some of these contradictory findings. Nevertheless, limitations 

of this study must be acknowledged. We examined only morphological features of the 

thalamic surface and therefore were unable to study the intralaminar nuclei of the thalamus, 

which project heavily to the basal ganglia nuclei95,96 and which are frequent targets for 

electrical stimulation in the treatment of intractable TS symptoms.97 We also could not 

visualize directly the reticular thalamus, which surrounds the body of the thalamus and 

modulates its activity via inhibitory projections secreting γ-aminobutyric acid.98 Further 

clarification of the morphological differences associated with TS will require additional 

studies, ideally longitudinal, that are designed and powered to detect the morphology of 

individual subcortical nuclei. Finally, although we devised statistical modeling and 

numerous post hoc analyses to exclude the likelihood that thalamic enlargement was 

produced by factors other than a diagnosis of TS, we cannot entirely exclude the possibility 

that developmental stage, sex, comorbid symptoms, or treatment history contributed to our 

findings.

In conclusion, these findings add to growing evidence of the presence of circuitwide 

disturbances in motor and sensorimotor pathways in persons with TS. They also suggest that 

the thalamus is a promising anatomical locus where hypertrophic executive portions of 

CSTC circuits interact with and modulate activity in hyperexcitable and hypoplastic motor 

and sensorimotor portions of CSTC circuits. The thalamus therefore may be an anatomical 

crossroad where pathogenesis and compensation meet and where compensatory systems can 
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directly influence dysfunctional activity in motor circuits to attenuate the severity of tic 

symptoms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Main effects of diagnosis in thalamic surface morphology. Right and left hemithalami are 

shown in rotating views of the anterior (A), lateral (L), posterior (P), and medial (M) aspects 

as guided by the arrow showing direction of rotation. Dorsal and ventral views are also 

shown. The images to the right of the vertical line display the atlas warped to the template 

brain. Cytoarchitectonic boundaries are depicted, and each of the 11 defined nuclei is 

uniquely colored. Images to the left of the vertical line show color-coded maps of statistical 

significance illustrated on the template brain. The color bar provides the color coding for P 

values associated with the main effect of diagnosis. The statistical model includes age and 

sex as covariates. Yellows and reds indicate protruding surfaces, presumably from larger 
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underlying volumes, and blues and purples indicate indented surfaces, presumably from 

smaller volumes underlying those regions. Maps are shown for images that have been 

corrected for multiple comparisons using false discovery rate (FDR). Widespread areas of 

the thalamic surface are affected by the presence of Tourette syndrome. Most affected 

surfaces are red, indicating bulging surfaces. Specifically affected were large portions of the 

lateral surface and the posterior half of the left medial surface. As depicted by the 

cytoarchitectonic boundaries, these areas overlie the ventroanterior nucleus (VA), 

ventrolateral nucleus (VL), ventroposterior nucleus (VP), lateral posterior nucleus (LP), and 

the pulvinar (Pu). The 11 nuclei defined in the atlas include the anterior nucleus (AN); 

central nuclei including the central medial, central lateral, center median, and parafascicular 

nuclei (Ce); lateral dorsal nucleus (LD); lateral geniculate nucleus (LGN); LP; medial dorsal 

nucleus (MD); medial geniculate nucleus (MGN); Pu; VA; VL; and VP. All central nuclei 

are delineated in grayish blue. The central medial nucleus is visible in the anterior view, and 

the parafascicular nucleus is visible in the medial view. The LGN was defined in the atlas 

but is not shown.
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Figure 2. 
Post hoc analyses. A, Sex effects. The topographic color map demonstrates the sex × 

diagnosis interaction present in a statistical model that covaries for age. The color coding 

represents false discovery rate–corrected P values associated with the interaction term 

calculated at each point on the surface of the right and left thalamus. Only the left thalamus 

is shown from the lateral view. The color bar, orientation, and abbreviations are as described 

in Figure 1. A single point, located under the white circle, was probed to further define the 

nature of the association. The point was selected by a computerized algorithm to 

demonstrate a maximal P value for the effect of tic severity. At the point underlying the 

white circle, female participants with Tourette syndrome (TS) showed a substantive outward 

deformation compared with female normal control participants (NCs), surpassing that seen 

in male NCs. Male participants with TS, on the other hand, showed minimal change in 

surface contour compared with male NCs. B, Correlation with tic severity. The topographic 

color map demonstrates the interaction of sex and tic severity in a statistical model that 

covaries for age. The color coding represents false discovery rate–corrected P values 

associated with the severity term calculated at each point on the surface of the right and left 

thalamus. Only the left thalamus is shown from the posterior view. The same point as in part 

A, located under the white circle, was probed to further define the nature of the association. 

The scatterplot demonstrates a correlation between tic severity and surface deformation in 

female participants only.
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Table 2

Final Model for Conventional Volumesa

Variable df F Value P Value

TS 1,275 4.96 .03

Age 1,275 2.45 .12

Sex 1,275 0.03 .86

Hemisphere 1,281 0.76 .38

OCD 1,275 0.09 .76

ADHD 1,275 0.20 .65

WBV 1,275 42.11 <.001

Age×hemisphere 1,282 5.55 .02

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; df, degrees of freedom; OCD, obsessive-compulsive disorder; TS, Tourette 
syndrome; WBV, whole-brain volume.

a
The model was determined through a backward stepwise procedure for variable selection in which all main effects were forced into the model and 

the least significant higher-order terms were successively removed, with the constraint that the model was hierarchically well formulated at each 
step. The significant main effect of TS reflected larger overall thalamic volumes in the TS group. Additional significant terms included WBV, 
indicating the presence of scaling effects in the data (the larger the brain, the larger the thalamus), and the age×hemisphere interaction, indicating 
that the association of age with volume varied by hemisphere independent of tic status. The value for the mean volume of the right thalamus was 
larger than that for the left thalamus regardless of age; however, least squares means analysis suggested that the volume difference between 
hemispheres was significantly larger in adults (estimate, 268.92; SE, 48.15; t118=5.59; P <.001) than children (estimate, 92.48; SE, 41.57; 

t162=2.22; P=.03).
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