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Abstract

The variation among sequences and structures in nature is both determined by physical laws and 

by evolutionary history. However, these two factors are traditionally investigated by disciplines 

with different emphasis and philosophy—molecular biophysics on one hand and evolutionary 

population genetics in another. Here, we review recent theoretical and computational approaches 

that address the critical need to integrate these two disciplines. We first articulate the elements of 

these integrated approaches. Then, we survey their contribution to our mechanistic understanding 

of molecular evolution, the polymorphisms in coding region, the distribution of fitness effects 

(DFE) of mutations, the observed folding stability of proteins in nature, and the distribution of 

protein folds in genomes.

Introduction

In this review, we highlight the recent results from the theoretical and computational models 

being developed at the interface of biophysics and evolutionary population genetics. These 

models integrate the tools from molecular biophysics that have been developed to determine 

and design properties of proteins, our emerging knowledge of the genotype-phenotype 

relationship (GPR), and established approaches population genetics. Because these models 

are built bottom-up, integrating insights from biophysics and cell biology, they provide a 

robust and mechanistic understanding of the origin of observed genetic and structural 

variation.

This field is still in its infancy. However, it already offers new insights into the molecular 

determinants of the rate of protein evolution, the genetic variation in coding regions, the 

distribution of fitness effects of mutations, and the observed thermodynamic and structural 

properties of proteins in nature.
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Bottom-up and multiscale evolutionary models: the basic elements

The underlying motivation for these multiscale models is to integrate our accumulated 

understanding of the mechanism in biological systems and evolutionary population 

dynamics. There are four elements to these models: (i) the genotype-phenotype relationship 

(GPR), (ii) the representation of the genomes and the protein products, (iii) the sources of 

genetic variation either by mutation or recombination, and (iv) the population dynamics and 

demographic model (Figure 1).

Traditional models in evolutionary biology assume the distribution of fitness effects (DFE) 

and then infer the possible dynamics [1,2], or assume the possible dynamics and then infer 

the DFE [3-5]. Both approaches have potential limitations because demography and the DFE 

are intrinsically coupled [6]. In contrast, in the bottom-up approach (Figure 1), the DFE is 

not an assumption but a consequence of the model. The integrated approach also builds on 

tools in protein folding and engineering, which have matured in the past decade, to estimate 

the effects of random mutations on proteins. Lastly, the bottom-up approach adds molecular 

realism to the traditional models in genetics (e.g., site-independence, 2-allele, etc.) by its 

explicit representation of the genes.

Contribution of biophysics to population and evolutionary genetics: The distribution of 
fitness effects of mutations in coding regions

In order to function, most proteins (with the obvious exception of intrinsically disordered 

domains) must maintain their native 3D structure. This requires folded proteins to be 

sufficiently stable against thermal fluctuations in the cellular environment. Protein folding 

stability, or the free energy difference between folded and unfolded states is a well-defined 

measurable sequence-dependent molecular property of proteins [7-9]. Folding stability 

determines the amount of folded (active) proteins according to the Boltzmann relation in 

statistical mechanics and it further modulates the protein abundance in cytoplasm by 

affecting turnover rates [10**]. The GPRs in these models are motivated by the selection for 

abundance of folded proteins[11,12], toxicity of misfolding proteins [13-15] and metabolic 

flux [16*]. In all these GPR, folding stability therefore is a key molecular parameter of 

fitness because it determines the total abundances of unfolded or folded proteins. The main 

quantity that defines the fate of arising mutations in population genetics is the selection 

coefficient s:

where bbefore and bafter are the finesses of an organism (often defined in terms of growth or 

division rates) before and after the mutation respectively [17]. The selection coefficient 

quantifies the effect of a mutation on the fitness of an organism. In GPR based on protein 

folding stability, and under the assumption that the protein folding thermodynamics is two-

state [7,8,18], the selection coefficient upon a mutation can be approximately expressed as 

[11,12,15]
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(1)

where ΔGwildtype is the folding stability of the protein prior to the mutation, and ΔΔG = 

ΔGmutant − ΔGwildtype is the change in protein folding stability due to the mutation. The 

factor β = 1/kBT (where kBT=0.593 kcal/mol at room temperature). This non-linear 

expression provides a mechanistic interpretation of epistasis in proteins (Fig. 2). The effect 

of a specific arising random mutation ΔΔG is modulated by the pre-mutation (“background” 

or wild type) folding stability ΔG.

To be more quantitative, we provide an example of the fitness effect values realized from 

actual simulations[16*]. In the particular simulation, the population size was N=103. A 

destabilizing mutation of ΔΔG =1 kcal/mol occurring in genes with ΔGpre-mutation = −8 

kcal/mol has a fitness effect of 251658240 Ns ≈ −10−4 however, the same mutation occurring 

in genes with ΔGpre-mutation = −0.5 could be lethal. A stabilizing mutation of ΔΔG = −1 

kcal/mol occurring in genes with ΔGpre-mutation = −8 kcal/mol has a fitness effect 

of 251658240 Ns ≈ +10−4; however, if it occurs in genes with ΔGpre-mutation = −0.5 kcal/mol, 

the mutation is extremely beneficial 251658240 Ns ≈ +102. Thus, in the regime where 

proteins are very stable, both destabilizing and stabilizing mutations have Ns < < 1; 

however, because of the larger supply of destabilizing than stabilizing mutations, most 

mutations that fix are destabilizing. This imbalance gives rise to a mutational drift of ΔG 

towards less stable proteins and away from the flatter part of the fitness landscape. In the 

regime where proteins are less stable, selection for stabilizing and against destabilizing 

mutations lead to the fixation of a larger fraction of stabilizing mutations. Mutation-selection 

balance occurs at the folding stability value where stabilizing and destabilizing mutations 

have equal likelihood of fixation[16*]. This balance indeed occurs in the regime of moderate 

protein folding stability and gives rise to the observation that proteins are “marginally” 

stable [19,20]. It is important to note the common misconception that selection for stability 

must result in very stable proteins and that the observed modest stabilities of proteins (in 

comparison for example with de novo designed ones [21]) therefore implies a “stability-

activity tradeoff’’ [22] or provides the evidence against selection for stability altogether 

[23*]. As discussed here and in [9,11,19,20,24,25*,26*], selection for folding stability 

should not lead to most stable proteins. Rather, it is balanced by mutational drift towards 

destabilization resulting in a mutation selection balance that establishes observable 

distributions of protein stabilities.

We note that the distribution for the parameters on the right hand side of Eq. 1, ΔGwildtype 

and ΔΔG, has been well-established experimentally [27]. The distribution of effects of 

random mutations on folding stability has also been estimated to be universal across several 

classes of protein folds[28]. Stability-centric models successfully reproduced experimentally 

observed distributions of protein stabilities [9,24,26*,29] and distribution of fitness effects 

in viruses [11]. Thus, the distribution of fitness effect s (DFE) of arising random mutations 

is in principle the convolution of the well-established distributions of ΔGwildtype and ΔΔG.

While the DFE has been measured for viruses [30], its measurement in living organisms is 

difficult and resolution-limited [31]. Thus, studies on the DFE have largely relied on 
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Bayesian maximum-likelihood approaches to fit population dynamic and demographic 

models to patterns of polymorphisms and amino acid differences between species [32-35]. A 

consensus result is that the DFE is characteristically skewed and can be described by a 

gamma distribution [32,34,35]. To arrive at a more mechanistic understanding of the DFE 

and polymorphisms, a recent work extended these biophysics-based evolutionary models to 

the polyclonal regime[16*]. The authors assumed that fitness is proportional to the total 

metabolic flux of a prototypical metabolic pathway and the total number of misfolded 

proteins. The PDB structures of proteins representing a prototypical glycolysis pathways 

were used in model cells in [16*]. They could keep track of all arising mutations, their 

history, and biophysical properties. More importantly, they could also mimic “population-

wide deep sequencing” and compare with real SNPs [16*,36].

A major contribution from this work is its recapitulation “from first principles” of the DFE 

derived using the maximum Bayesian approaches. The DFE observed in simulations is 

skewed and can be well fitted to a gamma distribution, in agreement with empirical studies 

that estimated the DFE using maximum likelihood methods in human [32,34,35] and in 

flies[37] .

The near-neutrality of the resulting DFE from this mechanistic approach also shows that the 

near neutral theory of Ohta [38] should not be taken simply as a postulate, but rather as a 

robust consequence of the interplay between biophysics and evolutionary dynamics. 

Additionally, this mechanistic models shows that the patterns of polymorphisms, when 

framed in very direct observables such as changes in folding stability, supports the argument 

for a predominantly non-adaptive tempo of evolution at least for the coding region of the 

human genome (see Fig. 6 in ref. [16*]).

Contribution of population genetics to molecular biophysics: Environmental determinants 
of the evolution of protein folding stability

Under the assumption of mutation-selection balance, the selection coefficient of fixed 

mutations would be N|s|~1 (Fig. 2) [39]. Specifically, under the assumption that proteins are 

under selection to avoid the cytotoxic effects of misfolding, the selection coefficient is s ≈ 

AeβΔGpre-mutation (Eq. 2, ref. [40]) where A stands for the protein copy number in cytoplasm. 

This expression for s translates to (ref. [40])

(Eq. 2)

Equation 2 is significant because it quantifies the direct effect of Darwinian selection on 

folding stability through its dependence on the effective population size Ne [11,40]. In 

particular, weak selection in low population sizes is predicted to lead to the evolution of less 

stable proteins; conversely, stronger selection in large population sizes will lead to the 

evolution of more stable proteins. Equation 2 also quantitatively defines the contribution of 

protein cellular abundance (A) on folding stability. Highly abundant proteins are predicted to 

be more stable than proteins with low copy number in the cell. The third term in Equation 2 

gives the distribution of changes on protein folding stability (ΔΔG) due to random 

mutations. This distribution is approximately a Gaussian with mean ΔΔGmean=1 kcal/mol 
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and standard deviation ΔΔGsd = 1.7 kcal/mol [9]. Both parameters are estimated from 

empirical measurements of folding stability changes due to single point mutations 

(ProTherm database[27]). Altogether, Equation 2 quantifies the direct and nonnegligible 

contribution of non-biophysical parameters (population size and abundance) on the 

evolution of protein folding stability.

The magnitude of the contribution of different selection and cellular factors can be 

quantified in terms of resulting statistical variation of protein stabilities suggested by Eq.2. 

Protein cellular abundances span ~10 to ~106 copies per cell (as shown in yeast [41] and E. 

coli [42]), which is equivalent to variation of ~7 kcal/mol in protein stability (Eq[2]). 

Effective population sizes in nature range from 104 (vertebrates) to 109 (bacteria)[43], which 

could impose a ~6 kcal/mol spread in folding stability. Thus, the variation of protein folding 

stability in nature could be largely due to protein abundance and population size, however, 

this requires more proteomic measurements to prove.

Meanwhile, the range in abundance should systematically manifest itself in the structural 

properties of proteins across a genome. The observation that highly abundant, slow evolving 

proteins and proteins from thermophilic bacteria share similar amino acid composition [44] 

lends support to the dependence of stability on abundance. To demonstrate this prediction 

more unambiguously, it was shown that protein domains in yeast that are highly abundant in 

the cell show more favorable van der Waals interaction energy and more extensive hydrogen 

bond network [40].

As noted in [11,25*,45] population size may affect the cellular distribution of important 

signatures of folding stabilities such that organisms with small effective population sizes 

(e.g., endosymbiotic parasites that undergo episodic bottle-necking) will evolve less 

thermodynamically stable proteins, simply because deleterious mutations will fix at a higher 

probability in smaller population sizes. On the contrary, organisms with higher population 

sizes, which experience stronger purifying selection, are predicted to evolve more stable 

proteins. Additionally, assuming that all other things are equal, vertebrates (with effective 

population sizes of 104–105 [46] are predicted by Eq. 2 to evolve proteins that are on 

average 6 kcal/mol less stable than proteins in prokaryotes (whose population sizes are ~108 

[46]). Interestingly, protein structures of viruses, which undergo episodic bottlenecking (and 

hence have a low effective population size), show weak van der Waals interaction and low 

hydrogen-bond contact densities [47]. Large variations in effective population sizes also 

occur even among closely related species. In bacteria, species that are endosymbiotic have 

lower effective population sizes compared to the free-living counterparts. Mendez and co-

workers argued that the bias towards higher AT (adenine and thymine) content among 

obligate endosymbiotic bacteria could be the response against less effective purifying 

selection against protein misfolding [48]. These bioinformatic studies strongly support the 

coupling between biophysical properties and evolutionary population variables, but a 

systematic survey of biophysical properties of proteins (such as folding stability) in genomes 

should be an exciting subject of future experimental work.

A recent bioinformatics analysis highlighted the important role of selection for protein 

stability [49*]. In this work the adaptation in catecaens to changing environment was linked 
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to molecular events in evolution of their Myoglobins (Mb) through ancestor sequence 

reconstruction on the branches of the Mb phylogenetic tree. Seven positively selected sites 

were identified which contribute to protein stability according to experimental 

measurements and computational predictions. Furthermore, the authors noted correlated 

evolution of stability and abundance of Mb lending empirical support to GPR assumptions 

of integrated evolutionary models. A recent study [50*] provided a similar phylogenetic 

analysis of evolution of stability and activity for another important protein RUBISCO - a 

classic model to study chaperonin-dependent folding [51].

Application of the integrated approaches to the evolution of protein folds

The explosion of genomics data also led to notable observations of the distribution of 

protein folds in nature. First, it is finite and small, numbering only less than 10,000 [52]. 

Second, some folds are highly represented while others are rare, giving rise to a distribution 

of usage of protein folds in a genome that is skewed and uneven [53]. This uneven 

distribution resembles a power law [54,55], an observation that is robust to the details 

associated with defining protein folds. The universality of the power law distribution 

suggests fundamental features of protein and genome evolution.

The models that explain the power law distribution can be broadly classified into two 

classes. First class of models posits that observed distributions of protein folds reflects 

certain biophysical properties of proteins such as, e.g. their designability [56-58], propensity 

to participate in protein-protein interactions [59*,60] or folding rates [61]. Another class of 

models posits that the observed distribution is simply a consequence of the duplication-

divergence dynamics of emergence of new folds without biases due to individual properties 

of proteins [55,62]. Nevertheless, certain biases are introduced in phenomenological 

duplication and divergence models just to fit the empirical observations. Additionally, these 

models should be cognizant of the fact that selection acts at the level of populations of 

organisms and not individual genes or proteins. This detail is crucial because numerous 

observations in the genome architecture (beyond the distribution of protein folds), could also 

be explained by a largely nonadaptive mode of evolution [63,64]; in this view, population 

size is a crucial parameter.

Many of these works have been recently reviewed [65-67]. Thus, here we instead focus on 

the studies to reconcile these two classes of models. These models also need to be consistent 

with evolutionary dynamics arising from neutral drift and Darwinian selection. Indeed, a 

more robust understanding of fold evolution can only arise by providing molecular and 

mechanistic details to the phenomenological duplication and divergence schemes.

Zeldovich et al. explicitly modeled the emergence of new folds in a multiscale model with 

explicit representation of proteins and selection acting at the organism level[68]. Their 

model cells contained variable number of genes that encoded model lattice proteins. They 

assumed that the fitness of the organism is a function of the folding stability of the encoded 

proteins; in particular, the death rate of the organism is a function of the least stable protein 

in the cell. From simulations that started with random sequences, they observed that once 

favorable sequence–structure combinations are discovered, the population grows 

exponentially, and the initially diverse structural repertoire collapses into limited number of 
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selected fold architectures. This repertoire remained stable and abundant at timescales 

greater than organismal lifetime. The emergence of protein families and superfamilies and 

ensuing power law distributions that match distributions for real proteins arise as a 

consequence of properties of the physical model, which suggests new folds from dominant 

folds by satisfying energetically favored native conformations. Cuypers et al. [69] also 

modeled genome evolution using a population of virtual cells evolving to maintain 

homeostasis. Although the work was not aimed at explaining fold distributions (no details 

on the protein folds is included), they nonetheless observed that an initial rapid expansion of 

the genome was followed by a prolonged phase of mutational load reduction. This load 

reduction was achieved by the deletion of redundant genes, generating a streamlining 

pattern. This integrated biophysics-population dynamics model of fold evolution could 

potentially explain the dependence of the power law exponent on genome size, [70,71]. We 

note that there is a well-known correlation between genome size and population size [43], 

and that the decreasing power-law exponent could be partly due to the population size 

variation. This conjecture remains to be proven explicitly.

Conclusion and Outlook

We have shown in this review that an approach that integrates molecular biophysics and 

evolutionary population genetics provides more mechanistic insights into the origin of 

protein fold and sequence variation in nature. These works have largely focused on protein 

folding stability for reasons that are both scientific (folding stability is the most universal of 

protein biophysical properties) and pragmatic (there are available biophysical tools to 

estimate the effects of random mutations on protein folding stability). In the near future, 

together with developments in protein folding and engineering and drug discovery, we will 

be able to include in the evolutionary models the effects of random mutations on enzymatic 

activity or protein-protein interactions using realistic protein structures. Additionally, 

because the approach is bottom-up, it can be coupled to the current efforts that build 

comprehensive cellular model of the genotype-phenotype relationship [72]. Lastly, in very 

well defined biological systems such as viral evolution and development of antibiotic 

resistance, this integrated molecular biophysics and population dynamics approach offers the 

possibility of predicting near term evolutionary trajectories.

An important direction of current and future research is to establish more realistic and robust 

GPR. The progress towards this goal requires synergistic experimental and theoretical 

efforts. “Top down’’ directed evolution approaches aim to evolve a particular phenotype 

first and subsequently determine a genomic variation that caused phenotypic changes. 

However the major challenge here is to establish a causal link between the evolved 

phenotype and genomic changes given ensuing massive genomic variation (the “passenger-

driver problem’’ [73]). An alternative approach is “bottom up’’ where genetic variation is 

introduced either rationally by genomic editing [10**][74] or via targeted random or 

saturating mutagenesis [75**,76] with subsequent analysis of fitness changes. The latter can 

be evaluated either from competition assays or direct measurements of growth rates [10**,

74] or through deep sequencing approaches [76-78]. The “bottom up’’ approach provides, in 

principle, a direct link between mutational changes in molecular properties of proteins and 

phenotypic change. In practice the relation can be quite complex due to many intervening 
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factors such as protein homeostatsis in cellular milieu mitigating the molecular effects of 

mutations [10**,79-81]. With the advent of new CRISPR-based [82] and other new tools of 

genomic editing we will witness major progress in our understanding of GPR in many 

organisms which in turn will lead to the development of new generation of more accurate 

and predictive microscopic multiscale evolutionary models.
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Highlights

1. The natural variation of proteins is a consequence of both biophysics and 

population dynamics.

2. Recent theoretical and computational efforts integrate biophysics and 

evolutionary population biology.

3. These integrated approaches provide more mechanistic insights into 

fundamental questions in biophysics and evolution.
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Figure 1. Schema of a bottom-up and multi-scale evolutionary models
A model population consists of N organisms each with explicit genomes that encode 

proteins. The fitness of an organism is proportional to the folding stability of the proteins in 

the cytoplasm. The protein products are represented by their 3D structures from the protein 

databank (PDB)[16*]. When a random mutation occurs in the genome, tools in protein 

engineering and the 3D structure are used to estimate its effect on folding stability and, 

consequently, fitness. Alternatively, the proteins can be represented by 3D lattice models 
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that allows for the exact calculation of biophysical properties [65] or for the possibility of a 

change in fold. The entire population is subject to mutation, drift, and purifying selection.
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Figure 2. Fitness effects of mutations on a protein folding thermodynamic landscape
The integrated biophysics-population dynamics models typically assume that the fitness of 

the model organism is proportional to the total number of folded (functional) proteins in the 

cytoplasm. That is, fitness f ∝1/(1+eβΔG). Under this assumption, equation 2 defines how 

molecular changes (ΔΔG) map to fitness effect (s) [11,12,15]. In the regime of very stable 

proteins, the factor eβΔG → 0, thus N|s| ≈ 0 even if ΔΔG values are nonzero. Additionally, 

because arising mutations are predominantly destabilizing, most mutations that fix in this 

regime are destabilizing giving rise to a mutational drift of ΔG towards the less stable 

regime. Conversely, in the regime of unstable proteins, N|s| > > 1 and selection dominates. 

Hence, in the unstable regime, mutations that fix are predominantly stabilizing. Mutation-
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selection balance occurs at the folding stability value where N|s| ≈ 1. Altogether, the 

epistatic interactions mutations on the thermodynamic fitness landscape results in the near 

neutrality of the fitness effects of fixed substitutions even if their molecular effects (ΔΔG) 

are non-neutral.
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