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Abstract

Objective—Common neurological diseases or injuries that can affect the right hemisphere, 

including stroke, traumatic brain injury, and frontotemporal dementia, disrupt emotional empathy 

– the ability to share in and make inferences about how other people feel. This impairment 

negatively impacts social interactions and relationships. Accumulating evidence indicates that 

emotional empathy depends on coordinated functions of orbitofrontal cortex, anterior insula, 

anterior cingulate, temporal pole, and amygdala, but few studies have investigated effects of 

lesions to white matter tracts that connect these structures. We tested the hypothesis that percent 

damage to specific white matter tracts connecting these gray matter structures predicts error rate in 

an emotional empathy task after acute right hemisphere ischemic stroke.

Methods—We used multivariable linear variable linear regression with percent damage to 8 

white matter tracts, age, and education as independent variables and error rate on emotional 

empathy as the dependent variable to test a predictive model of emotional empathy in 30 patients 

with acute ischemic right hemisphere stroke.

Results—Percent damage to 8 white matter tracts along with age and education predicted the 

error rate in emotional empathy; but only percent damage to the uncinate fasciculus was 

independently associated with error rate. Participants with right uncinate fasciculus lesions were 

significantly more impaired than right hemisphere stroke patients without uncinate fasciculus 

lesions in the emotional empathy task.
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Interpretation—The right uncinate fasciculus plays an important role in the emotional empathy 

network. Patients with lesions in this network should be evaluated for empathy, so deficits can be 

addressed.

A coherent hypothesis about the neural network underlying emotional empathy has emerged 

from various sources: functional MRI of healthy individuals experiencing empathy1–7, 

resting state functional connectivity studies of individuals with frontotemporal dementia 

(who have impaired empathy)8, focal lesion studies9–11 and voxel-based morphometry 

studies12, 13 of individuals with impaired empathy. Together, these studies have identified 

the important roles of several cortical and limbic areas, including prefrontal cortex, 
orbitofrontal cortex, amygdala, and temporal pole, particularly in the right hemisphere. 

Some of components of this network may be especially critical for specific processes 

underlying emotional empathy14–24. These areas are strongly interconnected with the 

anterior insula and anterior cingulate cortex1, 25, 26, areas which themselves are clearly 

engaged when healthy people empathize with others1, 2, 4–7. Seeley and colleagues8 have 

raised the possibility that Von Economo neurons, found in anterior cingulate and anterior 

insula, are selectively targeted in behavioral variant frontotemporal dementia (bvFTD), a 

neurodegenerative disease in which impaired empathy is prominent feature. Loss of Von 

Economo neurons and fork cells in right anterior anterior insular cortex correlates with 

severity of clinical disease in bvFTD27.

If areas found to be critical for emotional empathy comprise a functional network, then focal 

lesions to white matter connections between them should disrupt emotional empathy. There 

is some evidence favoring this hypothesis from patients with FTD. One of the most 

important white matter connections between orbitofrontal cortex, temporal pole, insula, and 

amygdala is the uncinate fasciculus. In a diffusion tensor imaging study of FTD compared 

to controls, patients with FTD had reduced fractional anisotropy (FA) in uncinate fasciculus, 

anterior corpus callosum, and bilateral anterior descending cingulum tracts, compared to 

controls28. Likewise, even carriers of progranulin mutations (one gene mutation underlying 

FTD) had reduced FA in the uncinate fasciculus29; and patients with advanced FTD had 

reduced FA only in the uncinate fasciculus in another study30. However, reduced FA in the 

uncinate fasciculus in FTD could be a result of degeneration of any of the cortical areas to 

which the uncinate fasciculus is connected rather than direct evidence that the “lesion” itself 

is associated with clinical symptom of impaired empathy in FTD. In the present study, we 

tested the hypothesis that impaired emotional empathy immediately after acute right 

hemisphere ischemic stroke is associated with lesions in the (right) uncinate fasciculus.

Methods

Participants

Stroke patients were a consecutive series of 30 individuals who had met the following 

inclusion criteria: (1) acute ischemic right hemisphere stroke; (2) premorbid proficiency in 

English; (3) provided informed consent to participate in the study and were able to complete 

the testing; and none of the exclusion criteria: (1) reduced level of consciousness or on-

going sedation; (2) neurological disease other than stroke; and (3) inability to have MRI due 

to implanted ferrous metal, claustrophobia, or weight >300 pounds. The study protocol was 
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approved by the Johns Hopkins Medicine Institutional Review Board. Patients were enrolled 

from March 17, 2009–November 27, 2012. An additional 19 patients met all criteria and 

were enrolled in the study but could not complete the testing (either the empathy testing or 

the MRI); another 220 patients were screened, but excluded because they met one of the 

above exclusion criteria. Performance on empathy testing was compared to previous data 

from hospitalized controls with normal MRI and normal neurological examination at the 

time of testing with the same demographic characteristics and exclusion criteria as the stroke 

patients.

Imaging

Stroke protocol MRI, included the following sequences: diffusion weighted imaging (DWI), 

Apparent Diffusion Coefficient (ADC), fluid-attenuated inversion recovery (FLAIR), 

Susceptibility Weighted Imaging (SWI), T2 weighted imaging, and 3D time-of-flight 

angiography of the intracranial vessels. Sequences were acquired using single-shot spin-

echo echo-planar imaging, in the transverse plane parallel to the AC-PC line, with whole 

brain coverage. DWI was obtained as an average of diffusion weighted echo planar images 

acquired in three orthogonal gradient directions with a b-value of 1000 (s/mm2), and ADC 

was calculated from the diffusion weighted echo planar images with a least diffusion 

weighting (b0). While edema surrounding acute stroke can affect white matter tracts, edema 

is greatest at 3–10 days after stroke. Edema is present in the first 24 hours only in very large 

infarcts that impair level of consciousness (not included in this study). We evaluated the T2 

sequences for edema, and ruled out significant edema in these cases.

Image processing

To define boundary(s) of acute stroke lesion(s) (hereafter, stroke map) of each participant, a 

threshold of > 30% intensity increase from the unaffected area in the diffusion-weighted 

image was applied, and a neurologist (KO), masked to the clinical information, manually 

modified the boundary to avoid false-positive and false-negative areas on RoiEditor 

(www.MRIstudio.org)31. We then transformed the least diffusion weighted image (b0) with 

T2-weighted contrast to the JHU-MNI-b0 atlas using affine transformation followed by the 

large deformation diffeomorphic metric mapping31. We applied the resultant matrices to the 

stroke map for the normalization. We overlaid the customized version of the JHU-MNI 

Brain Parcellation Map (cmrm.med.jhmi.edu) on the normalized stroke map to investigate 

percentage volume of each of the following white matter tracts (fornix; stria terminalis, 

inferior frontooccipital fasciculus; posterior thalamic radiation; sagittal stratum, superior 

frontooccipital fasciculus; superior longitudinal fasciculus; uncinate fasciculus) that might 

be affected by acute stroke (Figure 1) on DiffeoMap (www.MRIstudio.org). Ten randomly 

selected images were used to test intra and inter-operator reproducibility of the stroke map. 

The Dice overlap coefficient was used to evaluate overlap of the stroke maps, and intraclass 

correlation coefficient (ICC) was used to evaluate consistency of the stroke volumes 

measured by the stroke maps. Intra- and inter-observer reliability of the stroke map were 

excellent; the intra-operator Dice coefficient was: 0.90 (+/− 0.044) with more than 6 months 

interval; the inter-operator Dice coefficient by 2 different neurologists (KO and AVF) was: 

0.86 (+/− 0.085). The ICC was 0.98 both within and across observers.
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Emotional Empathy Testing

Patients underwent testing of emotional empathy within 24 hours of admission to the 

hospital. Testing was restricted to one aspect of emotional empathy – affective perspective-

taking, as described in more detail elsewhere10. In brief, participants were asked yes/no and 

multiple choice questions requiring inferences about emotions of individuals in short 

videotapes or stories that were read to them. To control for deficits in sustained attention and 

recent memory, they were also asked factual questions about the stories. A cut-off score for 

impaired emotional empathy of >20% errors was determined by the score that had the 

highest specificity for acute stroke (i.e., no normal control made >20% errors).

A questionnaire was given to caregivers of participants on the first follow up visit after 

hospitalization, regarding sequelae of stroke, including items regarding change in: 

personality or behavior, strength, coordination, motor speech, word retrieval, reading, 

writing, sensation, mood, walking, swallowing, sleep, empathy (understanding emotions of 

others and expressing emotion through tone of voice and facial expression), and sexual 

function. A subset of 14 caregivers provided responses at follow-up; 50% of the caregivers, 

including all caregivers of participants with impaired empathy on our testing, reported that 

the stroke survivor had impaired understanding of the emotions of others.

Statistical Analysis

We used multivariable linear regression analysis to identify the independent predictors of 

severity of emotional empathy impairment (error rate on the emotional empathy task). The 

following independent variables were entered as potential predicators: percentage of damage 

to fornix; stria terminalis, inferior frontooccipital fasciculus; posterior thalamic radiation; 

sagittal stratum, superior frontooccipital fasciculus; superior longitudinal fasciculus; 

uncinate fasciculus; age; and education. Education was not recorded at the time of testing in 

10 patients. We were not able to contact 6 patients to determine the education. In 4 patients 

who were contacted, education was 12–14 (mean 12.5) years, not significantly different 

from the entire group.

After finding that the uncinate fasciculus was the main white matter tract where the degree 

of damage was associated with the severity of empathy impairment, we then evaluated 

differences between stroke patients with lesions in the uncinate fasciculus and patients 

without lesions in the uncinate fasciculus, with regard to score on our emotional empathy 

test, age, education, and volume of infarct, using unpaired t-tests.

Finally, to rule out the possibility that damage to the uncinate fasciculus was not simply a 

reflection of damage to nearby gray matter structures, we evaluated the association between 

any damage to the uncinate fasciculus and damage to any of the components of the cortical 

network associated with empathy in our previous study: right prefrontal cortex, orbitofrontal 

cortex, anterior insula, amygdala, temporal pole, or anterior cingulate cortex.

Results

The prediction model contained all of the nine predictors with no variables removed. The 

model was statistically significant, F(10, 10) = 5.7, p = 0.005, and accounted for 
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approximately 70% of the variance of empathy error rate (r2 = 0.851, adjusted r2 = 0.70). 

Empathy error rate was primarily predicated by degree of damage to the uncinate fasciculus. 

The raw and standardized regression coefficients of the predictors and with their correlations 

with empathy error rate, are shown in Table 1. The degree of damage to the uncinate 

fasciculus received the strongest positive weight in the model followed by the degree of 

damage to the superior frontooccipital fasciculus. No other predictors, other than uncinate 

fasciculus, were independently and significantly associated with empathy error rate.

Patients with uncinate fasciculus lesions had significantly higher error rates than patients 

without uncinate fasciculus lesions (64% vs. 19% errors; t=4.12; p<0.0001), but the two 

groups were not significantly different in terms of age (56.8 vs. 53.7 years; t=0.42;p=0.68), 

education (13.0 vs. 14.47 years; t=−1.15; p=0.26), or total error rate on a test of prosody 

comprehension (40% vs. 53%; t=1.44; p=0.17).

Finally, to evaluate the possibility that damage to the right uncinate fasciculus reflected 

damage to the nearby cortical structures already found to be associated with impaired 

empathy, we directly evaluated the association between the presence of damage the right 

uncinate fasciculus and presence of damage to any of the gray matter structures found to be 

associated with impaired emotional empathy in our previous study10. We found no 

association between a lesion in the uncinate fasciculus and a lesion in this gray matter 

network (chi squared = 0.73; p=0.39). In fact, 60% of the patients with uncinate fasciculus 

lesions in this study did not have lesions in any component of the gray matter network 

(prefrontal cortex, orbitofrontal cortex, anterior insula, anterior cingulate cortex, temporal 

pole, or amygdala). Thus, even “pure” uncinate fasciculus lesions can cause deficits 

(plausibly by disrupting input to cortical areas or connections between cortical areas). At 

least in those 60% of patients, the empathy deficit cannot be explained by damage to cortical 

areas alone (i.e. cannot be an artifact of the anatomical proximity to important cortical 

areas). However, other patients did have damage to adjacent areas of cortex that may have 

contributed to their impairment (see examples of cases of patients with empathy deficits in 

Figure 2).

Discussion

Results confirm that even acute damage to the right uncinate fasciculus can disrupt 

performance on a task of emotional empathy. While clearly the right uncinate fasciculus is 

not the only important neural structure underlying empathy, it does seem to be among the 

most important white matter tracts in this network. The critical role of the uncinate 

fasciculus is not surprising, as it serves as a critical link between structures that have been 

implicated in components of emotional empathy – particularly between orbitofrontal cortex, 

anterior insula, temporal pole, and amygdala. The majority of participants did not have 

damage to the gray matter structures themselves, indicating that disruption of the white 

matter tracts that connect them can also disrupt emotional empathy, as we would expect if 

these structures operate as a network underlying this critical aspect of social cognition.

Studies of neurodegenerative disease have also shown a relationship between reduced 

volume in the uncinate fasciculus and errors on empathy tasks, primarily in FTD28–30. Our 
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data are complementary, as they show that individuals who were neurologically normal just 

days before show acute disruption of empathy that correlates with the degree of damage to 

the uncinate fasciculus. Several cases of herpes encephalitis32, limbic encephalitis due to 

Potassium channel antibody associated encephalopathy33, or Juvenile Neuronal Ceroid 

Lipofuscinosis34 have been reported to have impaired empathy, in some cases associated 

with Klüver–Bucy syndrome32,34. While the damage to bilateral mesial temporal lobe, 

especial temporal pole, is usually emphasized, these individuals likely have damage to the 

uncinate fasciculus as well. Children with neuropsychiatric disorders due to brain injury 

have significantly lower fractional anisotropy in bilateral uncinate fasciculus35.

Our study provides a unique contribution by showing that acute lesions of the uncinate 

fasciculus can also cause impaired empathy. By evaluating patients within the first 24 hours 

of acute ischemic stroke with both MRI and empathy testing, we showed that the empathy 

impairment was associated with damage to the white matter tract itself, rather than 

secondary degeneration of the white matter tract due to a cortical lesion. While either could 

cause empathy deficits, an association between a deficit and secondary degeneration of the 

white matter tract could be due to either the damaged cortical lesion alone (not the 

degeneration of the tract itself), or the disconnection between the cortical area and other 

areas caused by degeneration of the white matter tract. In contrast, if a lesion is associated 

with acute disruption in the white matter tract, it must due to the disconnection between the 

areas connected by that tract (e.g. impaired input to one or more of the cortical areas).

One weakness of our study is that we did not attempt to determine which cognitive process 

underlying empathy depends on the uncinate fasciculus. That is, emotional empathy requires 

a number of cognitive and emotional regulation functions, often broadly divided into stages 

or levels of emotional contagion (sharing in the emotions of another) and perspective-taking 

(making inferences about the emotions of another) (Table 2). There is evidence from 

functional imaging and lesion studies that certain structures within the neural network 

supporting emotional empathy may have differential roles for discrete cognitive components 

or processes. For example, orbitofrontal cortex may have a critical role in emotional 

contagion5, perhaps through recognition of other’s emotions through vocal prosody14 and 

facial expression. Or this area may be important for modulating empathy, depending on 

potential consequences or the relationship between the empathizer and the target of 

empathy15. Right anterior temporal cortex seems to have a role in integrating distinct 

components of emotional empathy, as indicated by case studies of patients with temporal 

pole atrophy who are impaired in several aspects of emotional empathy16, 17 or a more 

general process, such as representing social concepts18, 19. The amygdala also plays an 

important role in emotional empathy, as shown by functional imaging of healthy 

controls20–22 and individuals with amygdala lesions10, 23. The role of the amygdalae may be 

in identifying emotional valence of stimuli24. Understanding and sharing in another’s 

emotions requires all of these components of emotional empathy, as well as integration of 

these components. The uncinate fasciculus, which connects many of the key structures, may 

be critical for their integration.

Another weakness is that several white matter tracks were not well evaluated because there 

were too few patients who had any damage to the tract to determine its contribution. In fact, 
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in the cases where only a few patients had damage (e.g., the fornix), it appeared that the 

greater the damage, the lower the error rate (so the predictive weight was negative, although 

non-significant; see Table 1). Although there was little power to evaluate these tracts, it does 

not seem that damage caused acute disruptions in empathy (as the trend was in the opposite 

direction). We also did not evaluate the effects of damage to the left uncinate fasciculus. 

Finally, we have not reported stability or recovery of empathy over time; we are evaluating 

the course of recovery of empathy in an ongoing study. The current study does not yield 

evidence regarding the importance of the uncinate fasciculus for recovery of empathy.

Despite the study’s limitations, our results add to the accumulating evidence for a network 

of structures involving at least right orbitofrontal cortex, anterior insula, temporal pole, 

anterior cingulate, insula, amygdala, and uncinate fasciculus in supporting the ability to 

share in, and make inferences about, the emotions of others. The clinical implications of the 

findings of the current study are that patients with deep right frontal and temporal lesions, 

particularly involving the uncinate fasciculus, may have difficulty inferring how other 

people feel. This important social disability should be recognized, and appropriate 

counseling provided to caregivers. Additionally, innovative treatments to improve empathy, 

such as intranasal oxytocin23,36, should be evaluated in individuals with uncinate fasciculus 

lesions.
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Figure 1. 
A pre-defined set of three-dimensional ROIs [right fornix (pink contour), right stria 

terminalis (purple contour), right inferior fronto-occipital fasciculus (yellow contour), right 

posterior thalamic radiation (orange contour), sagittal stratum (cyan contour), superior 

fronto-occipital fasciculus (blue contour), superior longitudinal fasciculus (green contour), 

and uncinate fasciculus (red contour)] on the atlas space was overlaid on the normalized 

stroke map to report % volume of each ROI affected by the infarction. In this figure, the 

normalized stroke map (red area) was overlaid on the normalized DWI.
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Figure 2. 
Representative three individuals (A, B and C) with acute infarction in the uncinate 

fasciculus (red contour). The normalized stroke maps (red area) were overlaid on the DWIs 

normalized to the JHU-MNI atlas space and pre-defined ROIs were overlaid on the 

normalized images. The right inferior fronto-occipital fasciculus (yellow contour) and the 

sagittal stratum (cyan contour) were also visualized in these slices.
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Table 2

Hypothesized cognitive and emotional processes underlying emotional empathy

EMOTIONAL CONTAGION

Suppression of one’s own (earlier) affective state

Arousal and awareness (conscious or unconscious) of the affective state of the other person (through observation or imagination)

Adoption of a new affective state that is isomorphic to that of another person

AFFECTIVE PERSPECTIVE-TAKING

Suppression of one’s own perspective

Recognition of the affective state of another person by adopting the other’s perspective (through observation or imagination) e.g., recognizing 
another’s anger or joy by adopting that person’s perspective

INTEGRATION OF AFFECTIVE PERSPECTIVE-TAKING & EMOTIONAL CONTAGION

Attribution of the source of one’s newly adopted affective state and perspective to the other person
Emotional regulation
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