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Abstract
Genome-wide association studies are becoming computationally more demanding with the growing amounts of
data. Combinatorial traits can increase the data dimensions beyond the computational capabilities of the current
tools. We addressed this issue by creating an application for quick association analysis that is ten to hundreds of
times faster than the leading fast methods. Our tool (RegScan) is designed for performing basic linear regression
analysis with continuous traits maximally fast on large data sets. RegScan specifically targets association analysis of
combinatorial traits in metabolomics. It can both generate and analyze the combinatorial traits efficiently. RegScan
is capable of analyzing any number of traits together without the need to specify each trait individually. The main
goal of the article is to show that RegScan can be the preferred analytical tool when large amounts of data need
to be analyzed quickly using the allele frequency test.
Availability: Precompiled RegScan (all major platforms), source code, user guide and examples are freely available
at www.biobank.ee/regscan.
Requirements: Qt 4.4.3 or newer for dynamic compilations.
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INTRODUCTION
Genome-Wide Association Studies (GWAS) have

successfully identified common variants of the

human genome associated with the common diseases

and traits. International research consortia have un-

covered the effects of thousands of genetic makers in

complex traits and diseases [1]. Traditionally, linear

regression is used to study the association of marker

frequencies and continuous traits and the P-value of

association is the main metric for initial filtering [2].

It is becoming commonplace to study tens of

thousands of individuals, tens of millions of markers

and the combinations of various continuous traits

(so-called combinatorial traits), mostly ratios, leading

to a large number of combinations to be tested. The

number of traits is especially large in the metabolo-

mics studies where the trait ratios are considered

interesting owing to their potential to shed light on

metabolic pathways [3–6]. These analyses are often

limited by the available computational resources.

Yet, the GWAS consortia, among the others, are

looking for ways to efficiently study combinatorial
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traits. The field is in need of a tool with a strong

emphasis on speed.

We created a tool (RegScan) that considerably

accelerates association studies. RegScan performs

linear regression analysis (allele frequency test) and

identifies the statistically significant associations be-

tween markers and traits maximally fast. Its compu-

tational speed benefit is best used in studying large

numbers of combinatorial traits.

IMPLEMENTATION
RegScan is a command line application written pri-

marily in Cþþ/Qt [7]. It uses the least squares

approach to fit the linear regression model without

introducing new modifications to the standard tech-

nique. The fast execution speed as compared with

the other tools is achieved entirely by using special

efficient computational techniques. In some func-

tions, this means resorting to C-style programming

instead of Cþþ. Computational overhead is reduced

as much as possible by avoiding the slower Cþþ/Qt

functions where execution speed is rate limiting and

relying on Qt framework only for higher-level func-

tions. Every function is created with the goal to min-

imize the number of elementary operations and

choosing methods that require less time. The order

of conducting individual steps is carefully considered

and the fastest combinations are favored. The stand-

ard techniques of efficient programming, such as

reducing time complexity, are honored wherever

possible. The main speed gain is derived from an

original data file reading mechanism making efficient

use of C language function fread(). Reading large

data from file and writing it into the file is generally

the most time-consuming step. RegScan reduces the

number of individual read/write events by reading

data in large chunks in the binary mode and then

efficiently parsing the data in the memory to retrieve

the information. The parsing step is carried out by an

original method that sequentially compares each byte

in the stream with all integers to block-wise recon-

struct the original values. Computational speed gain

becomes more pronounced with the increasing

number of traits because analyzing additional traits

involves no additional significant read events. Care

is taken to ensure that the files are read no more

than once and the information that is often referred

to is stored in the memory early on during runtime.

The operations are always carried out with the

minimal number of significant digits to save time.

Approximations are used if they do not lead to

sacrificing the analytical quality. Look-up tables are

preferred to runtime calculations. If the value that is

looked up is not present in the table, fast and accur-

ate interpolation techniques are used to fill in the

missing value. This technique is used in the

P-value calculation. Additional methods of acceler-

ating the analysis include setting various restrictive

filters before the analysis to bypass the calculations

that are not of interest to the user. These optional

filters are fully controlled by the user and are

explained in the RegScan User Manual.

RegScan uses allele dosage to perform linear

regression analysis. It works with the Oxford GEN/

SAMPLE file format [8] and can also read gzip-

compressed GEN files. RegScan can automatically

generate all possible combinatorial traits and channel

them into fast linear regression analysis. It is capable of

handling missing phenotypes and has adequate error-

catching mechanisms. While designed for the analysis

of combinatorial traits, this is not a requirement.

The general workflow of Regscan is presented in

Figure 1. The analytical pipeline also uses R (script

provided with RegScan) for adjustments and trans-

formations. Effect size, P-value, standard error (SE) of

slope and minor allele count can be used to filter

the results during runtime if needed. The output

can be additionally filtered and analyzed with

RegScan to detect true positives or create subsets.

RegScan is a collection of analytical scripts that pro-

vide functions additional to the association analysis

by linear regression: (i) counting and extracting

markers associated with combinatorial traits or traits

associated with markers, (ii) applying unlimited

Figure 1: General RegScan workflow. Creating com-
binatorial traits and adjustments/transformations are
optional (dashed boxes).
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number of filters to identify associations of interest or

extract any subset from the results, (iii) evaluating the

statistical significance of the combinatorial trait–

marker associations (elaborated below). If needed,

RegScan can be efficiently used to prepare condensed

data sets for other tools for the types of analyses not

supported by RegScan, as it is capable of quickly

assessing the associations.

SPEEDTESTING
SNPTEST 2.4.1 [9] and QuickTest 0.97 [10] were

used as references in the tests, as these two widely used

computational tools perform linear regression analysis

and output all of the three commonly used statistical

parameters: P-value, effect size (b) and SE. We con-

ducted tests to estimate (i) the analysis speed gain of

RegScan over the reference tools, (ii) computational

speed as a function of data size and various settings.

The results are presented in Supplementary Data.

Briefly, compared with the other software packages,

RegScan was always the fastest, and QuickTest the

second fastest. QuickTest was therefore chosen for

computational speed comparison tests. A typical

RegScan analysis was 10� faster than QuickTest on

a 2.3 GHz (Scientific Linux 6.3) with one trait and

various numbers of individuals (Figure 2). RegScan

analyzed our test data set (TDS, 38.02 million mar-

kers, 3315 individuals) and one trait in 3.4 h (0.34 ms/

marker) as opposed to the QuickTest time of 36.2 h.

The analysis speed per trait increased significantly

when multiple traits were analyzed in one go.

Experiments with 6216 traits led to computational

times <10 min/trait with the TDS. The linear regres-

sion analysis proceeded at 0.011 ms/trait/marker

(30� faster than with a single trait).

The computational times can be additionally shor-

tened by allowing RegScan to allocate more

Random-access memory (RAM). Further significant

speed gain results from setting various restrictive filters

such as a higher minor allele count level, lower SE

level, etc. Combining all methods of computational

speed reduction can result in analysis speed that is

several orders of magnitude faster than with the

other common GWAS tools.

Computational speed can be of greatest import-

ance in certain situations such as creating large data-

bases of associations by brute force or studying

combinatorial traits. For example, a data set with

only 112 metabolite concentrations will create

6160 pair-wise combinations. When analyzed indi-

vidually with other tools and the TDS (see above)

the time spent will be >26 processor years. Analyzing

these traits individually with RegScan would take

about 2.6 processor years. However, when fed into

the RegScan analysis all at once, these traits will re-

quire only about one processor month, or even less

when applying additional optional RegScan filters.

QUANTITATIVE COMPARISONOF
RESULTS
An allele frequency test was performed with RegScan

and the reference tools on a data set of 40 765 ran-

domly chosen markers from the 1000 Genomes ref-

erence panel and 873 individuals to quantitatively

Figure 2: Analysis time (RegScan versus QuickTest) with 1 million markers, one trait and variable number of
individuals (750^3315). (A) Relative speed gain of RegScan over QuickTest; slope¼10.14, (B) Computational speed
of RegScan and QuickTest as a function of the number of individuals. A colour version of this figure is available at
BIB online: http://bib.oxfordjournals.org.
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compare the results [11]. The results for P-value,

effect size (b) and SE agreed well between all tools

(Table 1). The somewhat larger, albeit minor,

P-value differences between RegScan and the other

tools originated from a different computational

method used—interpolation of precomputed

values—and from the rounding effects (Table 2).

The tests, however, confirmed that (i) the RegScan

results do not differ significantly from the other com-

monly used tools for the allele frequency test, and

(ii) SNPTEST and QuickTest results differed from

each other to an extent similar to their differences

from the RegScan results.

EXAMPLESANDMETHOD
VALIDATION
We conducted proof-of-principle tests with 1000

Genomes-imputed 38.02 million markers [11], 873

individuals and 44 clinical traits of blood and all of

their ratios to validate RegScan. The details are in

Supplementary Data. In the first experiment, we

tested whether RegScan was capable of detecting

the associations well established by other tools in

the other studies. For bilirubin, we identified the

top three published markers with RegScan P-

values <10�50 [1]. This shows that RegScan can

function as a general GWAS tool. In the second

test, we studied combinatorial traits involving

plasma iron levels. For these combinatorial traits,

we detected 20 markers that associated with trait

ratios involving iron concentration at a genome-

wide significance level. The candidates were

ranked by RegScan based on a score that takes into

account the P-values of the corresponding single

traits. This score allows filtering of the hits based

on statistical significance and is called here the

Reliability Score, RS (Supplementary Data). The

RS indicates how much stronger the association

between the combinatorial trait and a given marker

is compared with the corresponding single traits. The

RS is calculated as RS¼Psmaller_single/Pcombinatorial,

where Psmaller_single is the P-value of association for

the single trait that yielded the lower P-value of the

two single traits; Pcombinatorial is the P-value of asso-

ciation for the combinatorial trait. As an example, if

P(A)¼ 10�6, P(B)¼ 10�2, P(A/B)¼ 10�10, then

RS(A/B)¼ 10�6/10�10
¼ 104. We suggest that this

simple score is effective in identifying the associations

that are likely to be biologically more relevant.

RegScan has functions to compute the RS and

filter the results based on its value.

To validate the use of the RS in studying the

combinatorial traits we conducted theoretical

simulations that represent the theoretical ‘real-life

situations’. We generated data for the scenario

where the genetic marker affects a phenotype ratio

as well as the scenario where the marker has linear

effects on one or both phenotypes, but not on their

ratio. The study indicated that the RS is able to

identify the correct model in >95% of cases (details

in Supplementary Data).

A sample GWAS with the above data set was per-

formed for blood serum urate concentration and all

trait ratios that contained urate concentration. The

relatively small number of individuals used in this

example was sufficient to identify a known region

in chromosome 4 [12]. However, using all trait ratios

exposed at least four additional genomic regions

(data not shown) that could be involved in urate

metabolism in combination with some of the other

43 traits tested (Figure 3). This example highlights

the power of using combinatorial traits by RegScan

Table 2: Deviation (%) between P-, b and SE values
computed by SNPTEST (ST), QuickTest (QT) and
RegScan (RS) based on 40765 random markers

Parameter RS
versus
QT

RS
versus
ST

QT
versus
ST

Mean deviation of P-values (%) 0.119 0.114 0.006
P-values with >5% deviation (%) 0.000 0.010 0.010
P-values with >1% deviation (%) 2.956 2.951 0.010

Mean deviation of b (%) 0.018 0.017 0.036
b values with >5% deviation (%) 0.373 0.383 0.010
b values with >1% deviation (%) 1.820 1.828 0.010

Mean deviation of SE (%) 0.004 0.004 0.0002
SE values with >5% deviation (%) 0.000 0.007 0.007
SE values with >1% deviation (%) 0.000 0.010 0.010

The deviation (%) is calculated as themean of the deviations of allmar-
kers (each calculated as the larger value divided by the smaller value
times100).

Table 1: Pearson correlation coefficients between P-,
b and SE values computed by SNPTEST (ST), QuickTest
(QT) and RegScan (RS) based on 40765 random
markers

Parameter RS versus QT RS versus ST QTversus ST

P-values 0.999998 0.999951 0.99995
b 1 0.999999 0.999999
SE 1 1 1
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in detecting new candidate genomic regions for trait

associations [5, 13].

QUALITATIVE COMPARISONWITH
THEOTHERTOOLS
The main advantages of RegScan include the

following:

(i) Speed. Carrying out simple linear regression ana-

lysis maximally fast is the primary goal of Reg

Scan, as it opens doors to studying large data sets.

(ii) Unlike the reference tools tested, RegScan

allows an automatic analysis of any number of

traits at the same time. The user does not have

to specify individual phenotypes to be analyzed.

All phenotypes present in the input files are

automatically analyzed against all markers pre-

sent. This avoids the need to treat each trait

separately and leads to major computational

speedup.

(iii) Easy creation of combinatorial traits. RegScan

can conveniently convert phenotype files into

combinatorial phenotype files.
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Figure 3: Manhattan plot showing the chromosome regions associated with blood plasma urate concentration (A),
and with combinatorial traits involving urate concentration (B) as determined by RegScan.
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(iv) Two types of output files. In addition to the

standard output listing statistical parameters for

each marker, a summary information file can

be created that finds the strongest-associating

trait from among all traits tested for each

marker. This is done based on (a) the statistical

parameter selected by the user, or (b) the max-

imal effect size.

(v) Post-run data analysis for combinatorial traits.

Several functions allow studying the association

analysis results. We introduced a simple, yet

useful, method (RS) for identifying associations

with combinatorial traits based on the statistical

parameters of the corresponding single traits.

The main disadvantage of RegScan is the absence

of higher-level analytical functions in addition to the

allele frequency association analysis. RegScan also

relies on external R scripts for data adjustments.

CONCLUSIONS
RegScan’s main focus is to find marker–trait associ-

ations in metabolomics in the context of combinator-

ial traits. Another predicted use is marker associations

with gene expression. RegScan addresses the main

obstacle in these studies—the heavy computational

burden to find the main associations. RegScan is

currently lacking several common analytical options.

Our intent is to develop RegScan into a full-

capability GWAS tool based on the user feedback.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� Depending on the data size, RegScan performs association
analysis between markers and continuous traits ten to several
hundred times faster than the other GWAS tools. Analyses
that used to takeweeks ormonths now take days.

� RegScan can automatically generate and analyze combinatorial
traits; it can analyze any number of traits in one go.

� RegScan provides functions for filtering and additional analysis of
the association analysis results; it introduces the concept of RS
to study the combinatorial traits.

� RegScan is designed for metabolomics GWAS but is not limited
to that.
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