Skip to main content
. Author manuscript; available in PMC: 2015 Jan 14.
Published in final edited form as: IEEE/ACM Trans Audio Speech Lang Process. 2014 Dec;22(12):1849–1858. doi: 10.1109/TASLP.2014.2352935

TABLE II.

Performance Comparisons Between Various Targets and Systems on −5 dB Mixtures. “MC-IRM” stands for Multi-Condition Training (on all five noises) and uses IRM as the Training Target

Target/System Factory1 Babble SSN Engine Oproom
STOI PESQ SNR STOI PESQ SNR STOI PESQ SNR STOI PESQ SNR STOI PESQ SNR
Mixture 0.54 1.29 −5.00 0.55 1.42 −5.00 0.57 1.48 −5.00 0.57 1.41 −5.00 0.59 1.40 −5.00
IBM 0.66 1.49 6.63 0.63 1.50 3.98 0.72 1.45 8.71 0.78 1.53 13.24 0.77 1.81 12.24
TBM 0.65 1.33 5.19 0.62 1.32 3.08 0.72 1.45 8.71 0.77 1.52 6.16 0.76 1.60 6.38
IRM 0.67 1.75 8.27 0.63 1.64 4.39 0.73 1.87 10.81 0.80 2.17 15.66 0.79 2.19 15.33
FFT-MAG 0.66 1.73 5.45 0.62 1.50 3.80 0.72 1.76 5.18 0.76 2.02 6.09 0.74 2.01 5.84
FFT-MASK 0.68 1.77 7.59 0.65 1.65 5.52 0.74 1.87 7.58 0.78 2.16 9.73 0.77 2.15 9.89
GF-POW 0.67 1.80 8.23 0.62 1.63 5.98 0.72 1.85 8.62 0.76 2.06 9.83 0.74 2.14 9.31
MC-IRM 0.69 1.80 9.52 0.64 1.65 5.08 0.74 1.88 11.40 0.78 2.12 14.97 0.77 2.16 14.79
ASNA-NMF 0.60 1.55 5.62 0.57 1.53 4.21 0.64 1.61 5.69 0.70 1.84 7.04 0.68 1.81 7.08
SPEH 0.51 1.56 4.13 0.50 1.38 3.07 0.57 1.68 4.34 0.62 1.85 5.73 0.58 1.88 5.98