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Natural products are structurally and biologically interesting metabolites, but they have been

isolated in minute amounts. The syntheses of such natural products help in obtaining them in

bulk amounts. The recognition of microbial biotransformation as important manufacturing

tool has increased in chemical and pharmaceutical industries. In recent years, microbial

transformation is increasing significantly from limited interest into highly active area in green

chemistry including preparation of pharmaceutical products. This is the first review published
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on the usage of microbial biocatalysts for some natural product classes and natural product

drugs.
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Introduction

Natural product compounds are structurally and biologically
interesting metabolites. Compounds isolated are often avail-
able in minute amounts. Thus, synthesis of natural products
also provides a powerful means in solving supply problems
in clinical trials and marketing of the drug for obtaining
natural products in bulk amounts. If the structure is complex,
it is often an impossible task to isolate enough of the natural

products for clinical trials [1–3].
The recognition of biotransformation as important manu-

facturing tool has increased within chemical and pharmaceuti-

cal industries in recent years. Biocatalysts can simplify, or in
some instances even enable, the production process of complex
chemicals and drug intermediates. They can add stereospecific-

ity to the process, eliminating the need for complicated separa-
tion and purification steps. The ability of biocatalysts to
selectively produce useful products under relatively mild condi-
tions compared to its chemical catalyst counterpart make bio-

catalysts an interesting and powerful addition. Recent
advances in technology have markedly increased the ability
of industry to discover new biocatalysts and optimize their per-

formance. These advances are coming at a time when both the
chemical and pharmaceutical industries are facing increasing
pressure to produce more effective natural products and to

make them more efficiently [2]. In this report, we discuss the
advances in technology for microbial transformation of natu-
ral product compounds.

Microbial transformation

Biocatalysis scope of study involving microbial transformation

is increasing significantly from limited interest into highly
active area in chemistry today including preparation of phar-
maceutical products. Biotransformation can be clarified as
the specific modification of a definite compound to a distinct

product with structural similarity, by the use of biological cat-
alysts including microorganisms like fungi [4]. The biological
catalyst can be described as an enzyme, or a whole, inactivated

microorganism that contains an enzyme or several enzymes
produced in it. Bioconversion is another term related to micro-
bial transformation for this study in particular. There is only

slight difference between a biotransformation and a bioconver-
sion. A bioconversion utilizes the catalytic activity of living
organisms and hence can involve several chemical reaction

steps. A living microorganism will be continuously producing
enzymes and hence bioconversions often involve enzymes
which are quite unstable for used substrates. The properties
of biotransformations and bioconversions are very similar

and in many cases the terms are cited as interchangeable [5].
On the other hand, fermentation, science under zymology

utilizes microorganisms, yeast was known to turn sugar into

alcohol since 1857 by the French chemist, Louis Pasteur.
The biotransformation processes have advantages overcome
some of the inherent problems and examples of some commer-

cially successful processes [6]. To utilize from this processes,
biocatalysis research have been suggested for the nation’s rich
natural resources mainly with the endophytes available.

Biotransformation processes are far more diverse than ther-

apeutic protein production processes [7]. There are many
microorganism strains and enzymes required to exploit the
selective biotransformation potential for the bioconversion of

a myriad of different substances into the desired products
especially new optically active main pharmaceutical ingredi-
ents. Timeline compressions in the development cycle of

pharmaceuticals, in combination with a missing broad strain
and enzyme choice, result in the fact that biotransformation
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typically represents the second generation process choice in the
manufacturing of a small molecule pharmaceutical. Novel
biocatalysts are needed first and foremost especially oxidore-

ductases and lyases for biotransformation.
Biotransformation is also known to comply with the green

chemistry strategy today. Green chemistry is a term used for

sustainable chemical industrial manufacturing processes
toward achieving minimal waste production and energy
consumption [8]. Thus, biosynthesis and biotransformation

are assumed to play a key role in green chemistry in the years
to come.
Advantages of microbial transformation

Many benefits can be obtained through microbial transforma-
tions studies. The process required in microbial transformation
may most probably have the ability to operate at near neutral

pH, ambient temperatures and atmospheric pressures [6]. In
contrast, chemistry often requires extremes of these conditions
which are not exactly environmentally friendly and industrially

undesired. Furthermore, extreme pH, temperature and pres-
sure may provide harmful effects toward personnel operating
the harsh procedures and may also affect community sur-

rounding the areas.
More importantly biocatalysts are highly reaction specific,

enantiomer-specific and regio-specific [6]. This is mainly and
directly referring to the chemical structure of a compound

one may want to obtain specifically. Many versatile microor-
ganisms can be utilized to carry out extremely specific conver-
sions using substrates of low cost [9].

The basic chemistry reactions include addition reactions,
elimination reactions, substitution reactions, pericyclic
reactions, rearrangement reactions and redox reactions. The

steps may be lengthy and more tedious at times as chemical
substances are easily disturbed by the humid environment in
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Fig. 1 Microbial transformations by Glomerella cin
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Fig. 2 The biotransformation of (�)-carvone (5) and its metabolism

dihydrocarvone (6) and (+)-neodihydrocarveol (7) in 4 days.
tropical areas for instance. Humid tropical climates over here
are recorded by hot, wet climates, with average temperatures
of 18 �C or higher and an average rainfall of 203 cm or more.

Microorganisms have great potential for inducing many
alternatives of innovative and improvised enzyme systems
which are capable for converting unfamiliar substrates. There-

fore, many studies can be performed to a greater extend
regarding different endophyte species toward chemical altera-
tions of molecules and compounds of interest. The genome

of a novel thermophilic fungal species can be assessed to pro-
vide with gene sequences that encode for thermotolerant
enzymes, which are more stable to variations of reaction
temperature.

Not as the name may suggest physically, microbes are crea-
ture incredibly small for the naked eyes to see but carry major
roles today in pharmaceutical industry one way or another.

Microorganisms are capable of producing unique enzymes
which are stable toward heat, alkali and acids. One of the stud-
ies done was regarding hyperthermophilic archaeon Pyrobacu-

lum calidifontis VA1 which produced a thermostable esterase
[10,11].

Their small size has by far the largest surface-to-volume

ratio in comparison with some living organisms. Thus, this
allows them to maximize their metabolic rates because of a
high exchange of molecules and metabolites through their sur-
face. With the right cultivation conditions, microorganisms

grow exponentially [7].
Microorganisms are capable to produce great variety of

enzymes in a short period of time as a result of its natural char-

acteristic to multiply. It is also possible to obtain and cultivate
microorganisms that can survive under extreme environments
such as low or high temperatures and/or acidic or alkali condi-

tions. Microbial transformation can make feasible reactions
that are not likely to be carried out by traditional synthetic
procedures. Also, endophytes may produce natural, biode-

gradable compounds.
OH
HO

OH
HO

2

4

gulata of two saturated acyclic monoterpenoids.
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to the diol 10-hydroxy-(+)-neodihydrocarveol (8) via (+)-trans-
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Fig. 3 Microbial transformation of sesquiterpe phenols.
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Disadvantages and challenges of microbial transformation

Overcoming the existence of well-developed Organic Syntheses
technology however is an inherent challenge to biotransforma-
tion processes to grow and be frequently applied. Often there is

no financial incentive for implementing a new process when
old technology is known and investment in plants have been
paid for [12].

Technology used to enhance biotransformation and bio-

conversion processes may include immobilization techniques,
genetic engineering and the use of enzymes that cope with
organic solvents [6]. Examples of enzyme engineering are pro-

tein engineering and crosslinked enzyme crystals. Expertise
and equipments along with updated knowledge that is evolving
and increasing in the process of microbial transformation are

handy if acquired for useful novel compounds to be obtained.
The use of biocatalysts to carry out biotransformed prod-

ucts is often difficult as it involves the challenges of reactant

or product toxicity or inhibition, high dilution and the use of
pH and temperature labile biocatalysts. However, biological
and process solutions do exist to solve some of these problems
and methods to compare strategies and techniques for

biotransformation operation are being developed [4,13].
Besides that, if the substrate used is toxic, it can kill the

microorganism hindering any biotransformation to occur.

On the other hand, if the microorganism uses the substrate
as an energy source, none of the product desired is likely to
be recovered. Time restriction and missing broad strain or

enzyme choice cause biotransformation typically represents
the second generation process choice in the manufacturing of
a small molecule pharmaceutical [7].

Due to involvement of complex biological systems, very low

chemical yields are obtained. Enzymes are very specific and
therefore the chances of getting high probability of transfor-
mation is normally less and slow compared to chemical

transformation. Improvement is highly encouraged for the effi-
ciency of microbial transformation to perform incomparably
or better industrially in a large scale with greater potential.

Microbial transformation of terpene compounds

Monoterpenes

The microbial transformations by Glomerella cingulata of two

saturated acyclic monoterpenoids, tetrahydrogeraniol (1) and
tetrahydrolavandulol (3), were investigated by Nankai et al.
[14]. Both compounds were hydroxylated regioselectively at
the isopropyl group. Tetrahydrogeraniol was transformed to

hydroxycitronellol (2), while tetrahydrolavandulol was trans-
formed to 5-hydroxytetrahydrolavandulol (4) (Fig. 1) [14].

The cyclic monoterpene ketone (�)-carvone (5) was

metabolized by the plant pathogenic fungus Absidia glauca.
After 4 days of incubation, the diol 10-hydroxy-(+)-neodihy-
drocarveol (8) was formed via (+)-trans-dihydrocarvone (6)

and (+)-neodihydrocarveol (7) in 4 days (Fig. 2) [15].

Sesquiterpenes

Microbial and chemical transformation studies of the
marine sesquiterpene phenols (S)-(+)-curcuphenol (9) and



Fig. 4 Cunninghamella echinulata and Rhizopus oryzae transformation of sesquiterpene lactones.
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Microbial biotransformation and drug development 23
(S)-(+)-curcudiol (18), isolated from the Jamaican sponge
Didiscus oxeata, were accomplished. Preparative-scale fermen-
tation of sesquiterpenoid 9 with Kluyveromyces marxianus var.

lactis (ATCC 2628) has resulted in the isolation of six new
metabolites: (S)-(+)-15-hydroxycurcuphenol (10), (S)-(+)-
12-hydroxycurcuphenol (11), (S)-(+)-12,15-dihydroxycurcu-

phenol (12), (S)-(+)-15-hydroxycurcuphenol-12-al (13),
(S)-(+)-12-carboxy-10,11-dihydrocurcuphenol (19), and
(S)-(+)-12-hydroxy-10,11-dihydrocurcuphenol (20). Four-

teen-days incubation of 9 with Aspergillus alliaceus (NRRL
315) afforded the new compounds (S)-(+)-10b-hydroxycurcu-
diol (21), (S)-(+)-curcudiol-10-one (22), and (S)-(+)-4-[1-(2-
hydroxy-4-methyl)phenyl)]pentanoicacid (25). Rhizopus arrhi-

zus (ATCC 11145) and Rhodotorula glutinus (ATCC 15125)
afforded (S)-curcuphenol-1(R)-D-glucopyranoside (14) and
(S)-curcudiol-1(R)-D-glucopyranoside (23) when incubated
for 6 and 8 days with 9 and 18, respectively.

Reaction of 9 with NaNO2 and HCl afforded (S)-(+)-4-
nitrocurcuphenol (15) and (S)-(+)-2-nitrocurcuphenol (16) in
a 2:1 ratio. Acylation of 9 and 18 with isonicotinoyl chloride

afforded the expected esters (S)-(+)-curcuphenol-1-O-isonico-
tinate (17) and (S)-(+)-curcudiol-1-O-isonicotinate (24),
respectively (Fig. 3A and B) [16].

Incubations of the fungi Cunninghamella echinulata and
Rhizopus oryzae with the sesquiterpene lactones (+)-costuno-
lide (26), (+)-cnicin (27), (+)-salonitenolide (28), (�)-dehyd-
rocostuslactone (30), (�)-lychnopholide (38), and (�)-
eremantholide C (41) were performed. Incubation of 26 with
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C. echinulata afforded D 11(13)-dihydrogenation and D1(10)-
epoxidation products (29, 33–35). C. echinulata also
hydrolyzed the side chain of 27, and transformed 30 into

(+)-11R,13-dihydrodehydrocostuslactone (31), a new natural
product. R. oryzae converted 30 into both D11(13)-dihydroge-
nation and D10(14)-epoxidation products (32 and 37). Both

fungi transformed 38 into (�)-16-(1-methyl-1-propenyl)erem-
antholanolide (42), providing experimental evidence for the
biosynthesis of the eremantholide hemiketal unit. Formation

of 33–35 can be explained by enzymatic epoxidation of 26 to
1b,10a-epoxicostunolide (36), and subsequent electrophilic
opening of the epoxide with concomitant rearrangement to
the eudesmanolide skeleton, as presumably occurs in plant

biogenesis of 1b-hydroxyeudesmanolides. Reaction of 38 with
Sodium borohydride (NaBH4) gave the alcohol product 40,
and treatment with Bu3–SnH only causes isomerization of

the lateral chain, leading to 39. Compounds 28 and 41 were
not metabolized by either fungus under the test conditions
(Fig. 4) [17].

Biotransformation studies conducted on (+)-(S)-ar-turm-
erone (43) and (+)-(S)-dihydro-ar-turmerone (44) by the fun-
gus Aspergillus niger have revealed that 43 was metabolized to

give four oxidized metabolites, (+)-(7S)-hydroxydehydro-
ar-todomatuic acid (45), (+)-(7S,10E)-12-hydroxydehydro-
ar-todomatuic acid (46), (+)-(7S,10E)-7,12-dihydroxydehy-
droar-todomatuic acid (47), and (+)-(7S)-15-carboxy-9,

13-epoxy-7-hydroxy-9,13-dehydro-ar-curcumene (48), and
(+)-(S)-dihydro-ar-turmerone (44) was metabolized to (+)-
7,11-dihydroxy-ar-todomatuic acid (49) (Fig. 5) [18]. The

absolute configurations of 45 at the C-7 position were
established to be S after conversion into tetrahydro-2-(4-car-
bomethoxyphenyl)-2,6,6-trimethyl-4H-pyran-4-one (50).

Diterpenes

Microbial transformation of 13R,14R,15-trihydroxylabd-7-ene
(54) and 13R,14R,15-trihydroxylabd-8(17)-ene (55) by the
fungus Debaryomyces hansenii gave 13R,14R,15-trihydroxy-6-
oxolabd-8-ene (51) and 7a,13R,14R,15-tetrahydroxy-labd-
8(17)-ene (53), respectively. While, microbial transformation

of 54 by A. niger afforded 3b,13R,14R,15-tetrahydroxy-labd-
7-ene (52), and 13R,14R,15-trihydroxylabd-8,17-ene (56) gave
53 and 3R,14R,15-3-oxotetrahydroxy-labd-7-ene (54) (Fig. 6)

[19].
The microbiological transformation of candidiol (15a,18-

dihydroxy-ent-kaur-16-ene, 57) by Mucor plumbeus led to

3b,15a,18-trihydroxy-ent-kaur-16-ene, 6a,15a,18-trihydroxy-
ent-kaur-16-ene (61), 3b,15a,18-trihydroxy-entkaur-16-ene
(58), 3a,15a,18-trihydroxy-entkaur-16-ene (59), 11b,15a,18-tri-
hydroxy-ent-kaur-16-ene (62) and 15a,17,18-trihydroxy-
11b,16b-epoxy-ent-kaurane (83), while the incubation of
15a,19-dihydroxy-ent-kaur-16-ene (69) gave 9b,15a,19-trihy-
droxy-ent-kaur-16-ene (80), 3a,15a,19-trihydroxy-ent-kaur-16-
ene (70), 11b,15a,19-trihydroxy-ent-kaur-16-ene (74),
6a,15a,19-trihydroxy-ent-kaur-16-ene (61), 15a,17,19-trihy-
droxy-11b,16b-epoxy-ent-kaurane (82), 19-(b-D-glucopyrano-

syl)-15a-hydroxy-ent-kaur-16-ene (76) and 19-(b-D-
glucopyranosyl)-15-oxo-ent-kaur-16-ene (78). An interesting
rearrangement in dilute acid medium of 9b,15a,19-trihy-
droxy-ent-kaur-16-ene (80) into 16-oxo-19-hydroxy-ent-abiet
8(9),15-diene (84). The possible mechanism of formation of
this 8,15-seco-entkaurene diterpene is shown in Fig. 7b, a com-
pound of this type, named hebeiabinin A (85) (Fig. 7A and B)

[20]. The following compounds 60, 63, 66–68, 71, 73, 75, 77,
79, and 81, were acetylated products to decrease polarity of
its original compounds. Compound 65 suggested to be an

artifact formed during the isolation procedure from the true
biotransformed metabolite 64.

Triterpenes

Two new metabolites, 15a,16a-dihydroxy-3,4-secocycloarta-4
(28), 17 (20), 17 (E), 24 (E)-triene-3,26-dioic acid (87) and
16a, 20a-dihydroxy-18 (13 fi 17b) abeo-3,4-secocycloarta-4
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(28), 12 (13), 24 (Z)-triene-3,26-dioic acid (88) were isolated

and identified from the co-cultures of nigranoic acid (86) and
Trichoderma sp. JY-1. Compound 87 was found to possess
an unusual 17(20), 17 (E)-ene structure and compound 88 fea-
tured an unprecedented 18(13 fi 17b)-abeo-secocyloarta skele-

ton (Fig. 8) [21].
Microbial transformation of 4-olean-type pentacyclic triter-

penes (OPTs), 3-oxo oleanolic acid (89), oleanolic acid (93),

and esculentoside A (97) was studied. After the screening of
12 strains of microbes, preparative biotransformation by two
strains of Streptomyces griseus ATCC 13273 and Aspergillus
ochraceus CICC 40330 resulted in the isolation of 10 metabo-

lites (90–92, 94–101). The microbial catalyzed high efficient
regio-selective methyl oxidation and glycosylation were discov-
ered, which could be provided as an alternative method to
expand the structural diversity of OPTs (Fig. 9) [22].

Steroids

Microbial transformation of diosgenin (3b-hydroxy-5-spiros-
tene) (102) using white-rot fungus Coriolus versicolor afforded
four previously unreported polyhydroxylated steroids, 25(R)-
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spirost-5-en-3b,7a,15a,21-tetraol (106), 25(R)-spirost-5-
en-3b,7b,12b,21-tetrol (107), (25R)-spirost-5-en-3b,7a,12b,21-
tetraol (108), and (25R)-spirost-5-en-3b,7b,11a,21-tetraol
(109), along with three known congeners, 25(R)-spirost-5-
en-3b,7b-diol (103), 25(R)-spirost-5-en-3b,7b,21-triol (104),
and 25(R)-spirost-5-en-3b,7b,12b-triol (105) (Fig. 10) [23].
Microbial transformation of bioactive natural products

Biotransformation of artemisinin

Artemisinin, a sesquiterpene lactone has an endoperoxide

bridge, which was isolated from the Chinese herbal plant, Arte-
misia annua L. in 1972 [24]. Because of its high therapeutic val-
ues in treating malaria, tremendous efforts have been made
toward structure modification and analogue synthesis with
the aim of developing more potent antimalarial agents with
in vivo stability since it was discovered. The structural modifi-

cations usually took place at the lactone moiety of artemisinin
(110) due mainly to the difficulty of introducing functionalities
on the ring systems by conventional chemical methods. Trans-

formation of artemisinin (110) with S. griseus ATCC13273,
affording artemisitone-9 (113), 9a-hydroxy-artemisinin, 9b-
hydroxy-artemisinin and 3a-hydroxy-deoxyartemisinin (111)
[25] (Fig. 11). Metabolites of 9a-hydroxy-artemisinin (114)

and 9b-hydroxy-artemisinin (112) were further oxidized to give
artemisitone-9 (113). A pathway for the production of
artemisitone-9 from artemisinin by S. griseus ATCC 13273

was proposed as well. In the case of using fungi for biotrans-
formation, artemisinin was converted 10b-hydroxy-artemisinin
and 3a-hydroxy-deoxyartemisinin by C. echinulata AS 3.3400
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and A. niger AS 3.795 [26], as well as biotransformation
products of artemisinin by Penicillium chrysogenum ATCC
9480 [27]. The product 10b-hydroxy-artemisinin was obtained

in 67% yield when artemisinin was treated with ferrous sulfate
in acetonitrile/water [28]. Furthermore, other oxidative and
analogues at different positions products of artemisinin have

been reported as well. These include deoxyartemisinin,
3a-hydroxy-artemisinin, 10 hydroxy-artemisinin and 9b-
hydroxy-11a-artemisinin [27–30].

Biotransformation of Taxol and its analogues

Paclitaxel (Taxol�), first isolated from the bark of Taxus

brevifolia, is one of the most effective anticancer agents from
natural sources. It has been widely used for the treatment of
ovarian, breast and lung cancers. In order to reduce side effects
and increasing oral bioavailability, more than 500 microorgan-

isms were screened for their ability to achieve useful biotrans-
formation of taxol derivative (cephalomannine) (115). Taxol/
cephalomannine (115) was biotransformated by Streptomyces

sp. MA 7065, yielding 10-hydroxyacetyl-10-deacetyltaxol
(116), 30-(4-hydroxyphenyl)-30-dephenyltaxol (117) and 400-
Hydroxycephalomannine (118) [31] (Fig. 12).

Biotransformation of panaxosides (ginsenosides)

Panaxosides or ginsenosides are the main effective constituents
isolated from the traditional Chinese herb ginseng, the roots of

Panax ginseng C.A. Meyer. It has been found that the intesti-
nal bacterial metabolites of ginsenosides are responsible for the
major pharmacological activities of ginseng roots [32,33].

Investigation on antitumor activities of 20(S)-protopanaxatriol
showed that it did not directly inhibit tumor growth in vivo,
but that it stimulated splenic NK cells to become cytotoxic

to tumor cells [34]. There have been a number of reports on
the biotransformation of ginsenosides (119). The ginsenosides
20(S)-Protopanaxatriol (119) was transformed by a fungus

Mucor spinosus AS 3.3450, yielding various novel compounds
including 12-oxo-15a-hydroxyl-20(S)-protopanaxatriol (128),
N
N

H N

O

H3C

Penicilliumjanthinellum A

130

Fig. 14 Biotransformation of evodiamine
27-hydroxyl-20(S)-protopanaxatriol (123), 12-oxo-26-hydro-
xyl-20(S)-protopanaxatriol (129), 12-oxo-27-hydroxyl-20(S)-
protopanaxatriol (125), 12-oxo-23b-hydroxyl-20(S)-proto-
panaxatriol (126), 20S,24R-epoxy-dammaran-3b,6a,25-triol-
12-one (124), 29-hydroxyl-20(S)-protopanaxatriol (121), 12-
oxo-11b-hydroxyl-20(S)-protopanaxatriol (127), 28-hydroxyl-
20(S)-protopanaxatriol (122) and 12-oxo-20(S)-protopanaxat-
riol (120) (Fig. 13). MTT assay indicated that eight metabolites
had more potent inhibitory effects against HL-60 cell line than

the parent compound [35,36]. Transformation of ginsenoside
Rg3 by Myrothecium verrucaria furnished the rare ginsenoside
Rh2 [37], a more potential molecule than ginsenoside Rg3.
Ginsenoside Rh2 can also prepared by enzymatic hydrolysis

of ginsenoside Rg3 using b-glucosidase or cell-free extract of
Fusarium proliferatum ECU2042 [38,39]. Ginsenoside Rh1
was obtained through transforming ginsenoside Rg1 by

A. niger AS 3.1858 or Absidia coerulea AS 3.3538 [40]. A
gypenoside-a-(1fi6)-L-rhamnosidase isolate from Absidia
sp.90 can hydrolyze the b-(1fi6)-L-rhamnoside at C-20 posi-

tion of gypenoside-5 into ginsenoside Rd [41]. A novel b-gluco-
sidase (G-II) from Cladosporium fulvum was also reported.
This glucosidase could specifically cleave the b-D-glucosidic

linkage at the C-20 position of ginsenoside Rb1 to produce
ginsenoside Rd, and did not hydrolyze the other b-D-gluco-
sidic linkages in protopanaxadiol-type ginsenosides [42].
Pythium irregular was used to convert 20(S)-protopanaxadiol

ginsenosides such as Rb1, Rb2, Rc, Rd and gypenoside XVII.
Nearly all of the 20(S)-protopanaxadiol ginsenosides were
metabolized into the minor ginsenoside F2 [43]. Notably,

Rb1, the major ginsenoside, was converted to 20(S)-ginseno-
side Rg3 by Microbacterium sp. GS514 [44].

Biotransformation of opiate alkaloid

The biotransformation of alkaloids by microbes and plants
was recently reviewed by Rathbone et al. [45,46], in which they

provide a summary of the progress of alkaloid biotransforma-
tions from mid-1980s to 2002. It is difficult to modify struc-
tures of alkaloids because of the complex polycyclic nature
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Fig. 15 Biotransformation pathways of resibufogenin and cinobufagin by Pseudomonas aeruginosa.
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of these compounds. Biotransformation offers a versatile tool
for structural modification of alkaloids in addition to known
chemical methods. Evodiamine is one of the major active alka-

loids in Evodia rutaecarpa, a traditional chinese medicine,
which has been widely used in China for over two thousand
years. Biotransformation of evodiamine (130) by Penicillium

janthinellum AS 3.510 resulted in two metabolites, 10-hydrox-
yevodiamine (131) and 11-hydroxyevodiamine (132) [47–49]
(Fig. 14). The microorganisms and rats used similar metabolic
pathway for evodiamine. Many fungi have shown to possess

enzymes of catalyzing N- and O-demethylation of alkaloids.
For example, Mucor piriformis selectively N-demethylated
thebaine [48], and Streptomyces and C. echinulata strains

N-demethylated a indole alkaloid lergotrile [50], while various
Cunninghamella and Fusarium strains N-demethylated codeine
[51].

Moreover, biotransformation of a thebaine derivative using
the filamentous fungus C. echinulata NRRL1384 was reported.
The thebaine analog was converted to a mixture of
N-demethylated and N,O-demethylated products [52].

Biotransformation of bufalin

The biotransformation of steroid compounds by microbes was

reviewed by Fernandes in 2003 [53], but considerable progress
has been made since then. Many steroids from natural sources,
such as bufadienolides, possess significant anticancer activities.
Thus, biotransformation has played a role in generating new

and more active derivatives. Microbial hydrolysis can achieve

very high yield. For instance, cinobufagin (133) and resibufog-

enin (135) could be completely metabolized by Alternaria alter-

nata AS 3.4578 to generate their 12b-hydroxylated products in

greater than 90% yield within 8 h [54]. A. alternata could also

convert 3-epi-desacetylcinobufagin into 3-epi-12b-hydroxyl
desacetylcinobufagin (137) as the major product (70%). In

addition, four dehydrogenated products, 3-keto-resibufogenin

(136), 3-keto-cinobufagin (134), 3-ketodeacetylcinobufagin

(138) and deacetylcinobufagin (137), were obtained from the

biotransformation of resibufogenin and cinobufagin by

Pseudomonas aeruginosa AS 1.860 [55] (Fig. 15). However,

the biotransformation of resibufogenin by Mucor polymor-

phosporus AS 3.3443 produced 22 different metabolic products

with low yields [54].

Biotransformation of resibufogenin, cinobufagin, and
bufalin by Nocardia sp. NRRL 5646 was also reported [56].

Resibufogenin was converted to 3-acetyl-resibufogenin and
3-acetyl 15b-hydroxyl bufotalin, which showed significantly
increased cytotoxic activity than the substrate, while cinobufa-

gin and bufalin were converted to 3-acetyl cinobufagin and
3-acetyl bufalin respectively, in which the biotransformation
reaction showed great regio-selectivity on bufadienolides. On

the other hand, when Cunninghamella elegans was employed
for the biotransformation of cinobufagin, 5 metabolites
including 12a-hydroxybufagin, 11a-hydroxybufagin, 12b-
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hydroxydesacetylcinobufagin, 3-oxo-12a-hydroxybufagin and
12b-hydroxybufagin were produced [57].

Conclusions

Microbial transformation has been studied for centuries. This
phenomenon allows for the modification of a compound

through an environmentally friendly approach. Microorgan-
isms are capable of producing a great variety of enzymes in
a short period of time as a result of a high rate of cell multipli-

cation. In this sense, a reasonable number of compounds of
various biological interests can be obtained by microorgan-
isms-driven transformations of natural products.
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