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Abstract Incorporation of hysteresis models in electromagnetic analysis approaches is indispens-

able to accurate field computation in complex magnetic media. Throughout those computations,

vector nature and computational efficiency of such models become especially crucial when sophis-

ticated geometries requiring massive sub-region discretization are involved. Recently, an efficient

vector Preisach-type hysteresis model constructed from only two scalar models having orthogonally

coupled elementary operators has been proposed. This paper presents a novel Hopfield neural net-

work approach for the implementation of Stoner–Wohlfarth-like operators that could lead to a sig-

nificant enhancement in the computational efficiency of the aforementioned model. Advantages of

this approach stem from the non-rectangular nature of these operators that substantially minimizes

the number of operators needed to achieve an accurate vector hysteresis model. Details of the pro-

posed approach, its identification and experimental testing are presented in the paper.
ª 2012 Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
Introduction

Incorporation of hysteresis models in electromagnetic analysis

approaches is indispensable to accurate field computation in
complex magnetic media (refer, for instance, to [1–3]). Exam-
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ples of applications requiring such sophisticated field computa-
tion approaches include harmonic and loss estimation of
power devices, magnetic recording processes and design of

magnetostrictive actuators [4,5]. Throughout those applica-
tions, vector nature and computational efficiency of such mod-
els become especially crucial when sophisticated geometries

requiring massive sub-region discretization are involved.
Recently, an efficient vector Preisach-type hysteresis model

constructed from only two scalar models having orthogonally

coupled elementary operators has been proposed [6,7]. This
model was implemented via a linear neural network (LNN)
whose inputs were four-node discrete Hopfield neural network

(DHNN) blocks having step activation functions. Given this
DHNN–LNN configuration, it was possible to carry out the
.V. All rights reserved.
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identification process using well established widely available
NN algorithms.

This paper presents a novel Hopfield neural network ap-

proach for the implementation of Stoner–Wohlfarth-like oper-
ators that could lead to a significant enhancement in the
computational efficiency of the aforementioned model [8].

Advantages of this approach stem from the non-rectangular
nature of these operators that substantially minimizes the
number of operators needed to achieve an accurate vector hys-

teresis model. Details of the proposed approach, its identifica-
tion and experimental testing are presented in the following
sections.

Proposed methodology

It has been previously shown that an elementary hysteresis

operator may be realized using a two-node discrete Hopfield
neural network (HNN) having step activation functions and
positive feedback weights [9]. In a discrete HNN, node inputs
and outputs (or states) are discrete with values of either �1 or

1. Each node applies a step activation function to the sum of
its external input and the weighted outputs of the other nodes.
The activation function, fd(x), is the signum function where:

fdðxÞ ¼
þ1 if x > 0

�1 if x < 0

unchanged if x ¼ 0

8><
>: ð1Þ

In a continuous HNN, on the other hand, node inputs and
outputs are continuous with values in the interval [�1, 1].
Node activation functions are continuous and differentiable
everywhere, symmetric about the origin, and asymptotically

approach their saturation values of �1 and 1. An example of
such an activation function fc(x) may be given by:

fcðxÞ ¼ tanhðaxÞ ð2Þ

where a is some positive constant.

Each node constantly examines its net input and updates its
output accordingly. As a result of external inputs, node output
values may change until the network converges to the mini-

mum of its energy function [10].
Consider a general two-node HNN with positive feedback

weights as shown in Fig. 1a. Whether the HNN activation
Fig. 1 Implementation of an elementary rectangular hysteresis

operator using a two-node HNN having discrete activation

function: (a) the HNN configuration and (b) the input–output

hysteresis relation.
function is continuous or discrete, the energy function may
be expressed in the form:

E ¼ �½IðUA þUBÞ þ kUAUB� ð3Þ

where I is the HNN input, UA is the output of node A, UB is

the output of node B and k is the positive feedback between
nodes A and B.

Following the gradient descent rule for the discrete case, the

output of say node A is changed as:

UAðtþ 1Þ ¼ fdðnetðtÞÞ; where netðtÞ ¼ kUBðtÞ þ I ð4Þ

Using the same gradient descent rule for the continuous
case, the output is changed gradually as:

dUA

dt
¼ gfcðnetðtÞÞ; where netðtÞ ¼ kUBðtÞ þ I ð5Þ

In (5), g is a small positive learning rate that controls the con-
vergence speed.

It should be stressed here that using continuous activation
function will result in a single-valued input–output relation.
On the other hand, a discrete activation function will result

in the primitive rectangular hysteresis operator shown in
Fig. 1b. The non-smooth nature of this rectangular building
block suggests that a realistic simulation of a typical magnetic
material hysteretic property will require a superposition of a

relatively large number of those blocks (refer, for instance,
to Mayergoyz [11]).

In order to obtain a smoother operator, a new hybrid acti-

vation function is introduced in this paper. More specifically,
the proposed activation function may be expressed in the form:

fðxÞ ¼ cfcðxÞ þ dfdðxÞ ð6Þ

where c and d are two positive constants such that c+ d = 1.

The function f(x) is piecewise continuous with a single discon-
tinuity at the origin. The choice of the two constants, c and d,
controls the slopes with which the function asymptotically ap-

proaches the saturation values of �1 and 1. In this case, the
new hybrid activation rule for, say, node A becomes:

UAðtþ 1Þ ¼ cfcðnetðtÞÞ þ dfdðnetðtÞÞ ð7Þ

where net(t) is defined as before. Fig. 2 depicts the smooth hys-

teresis operator resulting from the novel two-node hybridHNN.
The figure illustrates how the hybrid activation function results
in smooth Stoner–Wohlfarth-like hysteresis operators with con-
trollable loop width and squareness. In particular, within this

implementation the loop width is equivalent to the product
2kd while the squareness is controlled by the ratio c/d.

Extrapolating the proposed implementation to the vector

hysteresis modeling approach presented by Adly and Abd-
El-Hafiz [6], consider the four-node HNN network shown in
Fig. 3. In this Fig, kc denotes a coupling factor between nodes

corresponding to different vectorial directions. Indeed, this
network is capable of realizing a couple of smooth Stoner–
Wohlfarth-like hysteresis whose inputs Ix, Iy and outputs
Ox, Oy correspond to the x- and y-directions. The state of this

network converges to the minimum of the following energy
function:

E¼�
IxðUAxþUBxÞþkUAxUBxþ IyðUAyþUByÞþkUAyUByþ
kc
2
ðUAx�UBxÞðUAyþUByÞþ kc

2
ðUAy�UByÞðUAxþUBxÞ

( )
ð8Þ

where node outputs are updated in accordance with the follow-

ing expressions:



Fig. 2 Proposed novel hybrid HNN implementation of smooth

Stoner–Wohlfarth-like hysteresis operators with controllable loop

width and squareness (k = 0.48/d for all curves, thus maintain

constant loop width).

Fig. 3 A four-node HNN having hybrid activation function

capable of realizing two orthogonally coupled smooth Stoner–

Wohlfarth-like hysteresis operators.

Fig. 4 Output x- and y-components of the proposed HNN

resulting from a rotating unit value input (k= 0.48/d and kc= 0.3).

Fig. 5 Correlation between mutually orthogonal input–output
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UAxðtþ 1Þ ¼ cfcðnetAxðtÞÞ þ dfdðnetAxðtÞÞ;
netAxðtÞ ¼ Ixþ kUBxðtÞ þ kcðUAyðtÞ þUByðtÞÞ ð9Þ

UBxðtþ 1Þ ¼ cfcðnetBxðtÞÞ þ dfdðnetBxðtÞÞ;
netBxðtÞ ¼ Ixþ kUAxðtÞ � kcðUAyðtÞ þUByðtÞÞ ð10Þ

UAyðtþ 1Þ ¼ cfcðnetAyðtÞÞ þ dfdðnetAyðtÞÞ;
netAyðtÞ ¼ Iyþ kUByðtÞ þ kcðUAxðtÞ þUBxðtÞÞ ð11Þ

UByðtþ 1Þ ¼ cfcðnetByðtÞÞ þ dfdðnetByðtÞÞ;
netByðtÞ ¼ Iyþ kUAyðtÞ � kcðUAxðtÞ þUBxðtÞÞ ð12Þ

There is no doubt that if the input is restricted to vary along
a single direction, output behavior will be as shown in Fig. 2.
The far-reaching capabilities of the proposed four-node hybrid

HNN, however, may be demonstrated when vector input–out-
put variations are considered. For instance, consider output
components Ox, Oy resulting from a rotating unit input value

and corresponding to different k, c and d values as shown in
Fig. 4. This figure clearly demonstrates two facts. First, it dem-
onstrates that the qualitatively expected rotational behavior
may be quantitatively tuned. Second, it stresses the smoothly

varying nature of the proposed hybrid HNN outputs in com-
parison to previously reported results based upon primitive
rectangular hysteresis building blocks (refer Adly and Abd-

El-Hafiz [6]). Those two facts are further highlighted by the re-
sults shown in Fig. 5 which demonstrate how mutually corre-
lation between orthogonal inputs and outputs of the proposed

HNN may be tuned. In this figure, initial Oy components and
remnant Ox components, which are initially achieved by
increasing Ix to unity then back to zero, are plotted versus
an increasing Iy input for different coupling and d values.

Building up on the reasoning previously presented by Adly
and Abd-El-Hafiz [6] and making use of the significant scalar
and vector results shown in Figs. 2, 4, and 5 corresponding

to the proposed HNN block, a computationally efficient
Preisach-type vector hysteresis model comprised of a reduced
number of blocks may be constructed. In particular, this vector

hysteresis model is constructed from an ensemble of vector
operators, each being realized by the proposed hybrid activa-
tion function four-node HNN. Since the ensemble of blocks
should correspond to loops having different widths and/or
components for the proposed HNN (k = 0.48/d).
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center shifts, different feedback values as well as input offsets
should be imposed. It should be stated here that while a vector-
type behavior of a single block is not perfectly isotropic, a

superposition of blocks (having different coupling and offset
values) would significantly lead to isotropicity. Moreover,
computational efficiency is enhanced as a result of the incorpo-

ration of smooth non-primitive Stoner–Wohlfarth-like opera-
tors that only need to cover the hysteretic loop zone. Since
this zone is usually restricted within the coercive field values

(i.e., covers no more than 50% of a typical loop domain),
the proposed implementation could, reduce the number of
block ensembles needed to construct a vector hysteresis model
to only (50%)2 = 25% of those needed in a typical

implementation.
Referring to the typical configuration of a Preisach-type

model [11] as well as the proposed hybrid activation function

four-node HNN, a vector magnetic hysteresis model may then
be constructed as depicted in Fig. 6. The configuration under
consideration is, basically, a modular combination of the pro-

posed HNN blocks via a linear neural network (LNN) struc-
ture. In Fig. 6, Hx, Hy, Mx, My, OSi and li represent the
applied field x-component, the applied field y-component, the

computed x-component magnetization, the computed y-com-
ponent magnetization, the applied field imposed offset corre-
sponding to the ith HNN block and a density value
corresponding to the ith HNN block, respectively. As previ-

ously stated, the advantage of the proposed methodology is
clearly highlighted in restricting offset values OS and positive
feedback factors k to generate an ensemble of Stoner–Wohlf-

arth-like smooth operators within the hysteretic loop zone only.
More specifically, for a particular operator whose switching up
and down thresholds are given by ai and bi, respectively, its cor-
responding ith HNN imposed OSi and ki may be given by:

OSi ¼ �
ai þ bi

2

� �
and ki ¼

ai � bi

2

� �
; where ai > bi

ð13Þ

It should be noted that while the ratio between d and

c= (1 � d) could affect the shape of a hysteresis operator, this
ratio has no effect on its switching thresholds a and b but
rather on the squareness of the loop. Moreover, varying the

coupling factor kc would mainly affect the vector performance
of an HNN block.
Fig. 6 Implementation of the vector Preisach-type model of

magnetic hysteresis using a modular combination of the proposed

HNN blocks and LNN structure.
Considering a finite numberN of the proposed HNN blocks
– as shown in Fig. 6 – identification of the model unknowns is
thus reduced to appropriate selection of d (which implicitly de-

fines c), appropriate selection of coupling factors kc and deter-
mination of the unknown HNN block density values li.

With the assumption that d (and consequently c) and kc are

pre-set, the modular HNN network shown in Fig. 6 is expected
to evolve – as a result of any applied input – by changing out-
put states of the HNN blocks such that the following mini-

mum quadratic energy function is achieved:

E¼�
XN
i¼1

ðHx�OSiÞðUAxiþUBxiÞþðHy�OSiÞðUAyiþUByiÞ
þkiUAxiUBxiþkiUAyiUByi

þkc
2
ðUAxi�UBxiÞðUAyiþUByiÞþ kc

2
ðUAyi�UByiÞUAxiþUBxiÞ

8><
>:

9>=
>; ð14Þ

where OSi and ki are as given in (13).
In this case, the network (i.e., model) outputs may be ex-

pressed as:

Mx ¼
XN
i¼1

li

UAxi þUBxi

2

� �
;

My ¼
XN
i¼1

li

UAyi þUByi

2

� �
ð15Þ

It turns out that as a result of the pre-described HNN–
LNN configuration, it is indeed possible to carry out the vector

Preisach-type model identification process using an automated
training algorithm. As a result of this algorithm, any available
set of scalar and vector data may be utilized in the identifica-

tion process.
The identification process is carried out by first making

some d and kc assumptions launching the automated training
process using available scalar training data. Thus, appropriate

li values are determined during this training phase using the
available scalar data provided to the network and the least-
mean-square (LMS) algorithm implicitly adopted in the

LNN neuron whose output corresponds to Mx. Since d is clo-
sely related to the hysteresis loop squareness, the training pro-
cess is repeated to identify the optimum value of this

parameter that would lead to the minimum matching error
with the available scalar data. Once the scalar data training
process is completed, available vector training data may then

be utilized to determine the optimum kc value.

Simulations and experimental results

In order to evaluate the validity and efficiency of the proposed
approach, simulations and experimental testing have been car-
ried out. Measurements acquired for a floppy disk sample,
using a vibrating sample magnetometer equipped with rota-

tional capability, have been utilized for this purpose. Although
the H and M limits of the simulated magnetic hysteresis curve
were normalized (i.e., restricted to ±1), it was only sufficient

to utilize proposed Stoner–Wohlfarth-like operators whose
switching values were uniformly distributed subject to the
inequalities �0:45 6 a; b 6 þ0:45; and a P b. Consequently,
only about 400 HNN blocks were utilized as opposed to
1830 DHNN blocks in the approach presented by Adly and
Abd-El-Hafiz [6]. Moreover, since li values corresponding to
operators whose switching values are symmetric with respect

to the a = �b line should be the same as explained by May-
ergoyz [11], unknown block density values were reduced to
about 200 (as opposed to 1000 for the approach previously re-

ported by Adly and Abd-El-Hafiz [6]).



Efficient Modeling of Hysteresis Using HNN Implementation of Stoner-Wohlfarth Operators 407
During the identification (i.e., training) phase a set of first-
order reversal curves – comprised of 960 Hx–Mx pairs – rep-
resenting the scalar training data was used through the LNN

algorithm to determine the unknown li. Mean square error
was calculated over the whole training cycle and the training
cycle was repeated until the mean square error reached an

acceptable value (which was in the order of 10�2 in this case).
This whole process was repeated for different pre-set d (and
consequently c) and kc values. Sample results for this training

phase corresponding to d= 0.1 and d = 0.5 (i.e., c = 0.9 and
c = 0.5) are shown in Figs. 7 and 8, respectively. In each of
these two figures, results are given for kc values of 0.6, 0.8
and 1.0. Those results clearly demonstrate that scalar data is

more sensitive to d rather than kc values. The same results also
Fig. 7 Comparison between the measured and computed first-

order-reversal curves at the end of the scalar training (identifica-

tion) process corresponding to d= 0.1 for; (a) kc = 0.6, (b)

kc = 0.8, and (c) kc = 1.0.
demonstrate that the best match with scalar training data was
achieved by considering the computed li values corresponding
to d = 0.5 (i.e., Fig. 8). It should be pointed out here that the

number of iterations required to train both the LNN under
consideration and that reported by Adly and Abd-El-Hafiz
[6] are proportional to the number of data points. Since both

neural networks which assemble the DHNN blocks are linear,
the reduction in the computation time gained by adopting the
proposed approach is proportional to the reduction in the

number of blocks.
To determine the most appropriate kc value, vector mea-

surements were utilized in the second identification phase.
Namely, rotational experimental measurements were utilized.

Measurements were acquired by first reducing the field along
Fig. 8 Comparison between the measured and computed first-

order-reversal curves at the end of the scalar training (identifica-

tion) process corresponding to d= 0.5 for; (a) kc = 0.6, (b)

kc = 0.8, and (c) kc = 1.0.
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the x-axis to a negative value large enough to drive the
magnetization to almost negative saturation, then increased
to some value Hr. The field was then fixed in magnitude and

rotated with respect to the sample, yielding two magnetization
components; a fixed one along the x-axis, and a rotating com-
ponent which lags Hr. It should be pointed out here that the

fixed component vanishes as the rotating field magnitude
approaches the saturation field value [11]. This sequence was
repeated for different Hr values and the rotational magnetiza-

tion components parallel and orthogonal to Hr (denoted by
M parallel and M orthogonal) were recorded. Measured and
computed results corresponding to the d and kc values of
Fig. 8 are shown in Fig. 9. Results shown in this figure clearly

demonstrate very good qualitative and quantitative match
Fig. 9 Comparison between the measured and computed rota-

tional data corresponding to d= 0.5 for; (a) kc = 0.6, (b)

kc = 0.8, and (c) kc = 1.0.
between measured and computed results for kc = 1.0. By the
end of this identification phase all model unknowns (i.e., li,
d, c = 1 � d and kc) are found.

Further testing of the model accuracy was carried out by
comparing its simulation results with other vector magnetiza-
tion data that was not involved in the identification process.

More precisely, a set of vector measurements correlating mutu-
ally orthogonal field and magnetization values was utilized. In
these measurements, the field was first reduced along the x-axis

to a negative value large enough to drive the magnetization to
almost negative saturation then increased to some value
Hx corr and back to zero. This resulted in some residual mag-
netization component along the x-axis. The field was then in-

creased along the y-axis to a positive value large enough to
drive the y-axis magnetization to almost positive saturation
while monitoring both Hy and Mx variations. This sequence

was repeated for different Hx corr values. Measured and com-
puted results corresponding to the pre-identified model un-
knowns are shown in Fig. 10. Prediction accuracy of the

proposed model is clearly demonstrated in this figure.

Discussion and conclusions

It has been shown that the proposed HNN approach for the
implementation of Stoner–Wohlfarth-like operators in a Preis-
Fig. 10 Comparison between the measured and computed

orthogonally correlated Hy–Mx data corresponding to the pre-

identified model unknowns for; (a) positive residual magnetization

and (b) negative residual magnetization.
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ach-type vector hysteresis model could lead to a significant
enhancement in computational efficiency without compromis-
ing accuracy. Moreover, the identification problem of the pro-

posed modular hybrid HNN–LNN implementation may
utilize automated well-established neural network algorithms.
Figs. 8–10 clearly highlight the implementation ability to

match scalar and vector hysteresis data with significant quali-
tative and quantitative accuracy. Results reported in this paper
suggest that further enhancement of the proposed implementa-

tion may have wider applications in other coupled physical
problems.
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