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Magnetic materials are considered as crucial components for a wide range of products and

devices. Usually, complexity of such materials is defined by their permeability classification and

coupling extent to non-magnetic properties. Hence, development of models that could accurately

simulate the complex nature of these materials becomes crucial to the multi-dimensional field-

media interactions and computations. In the past few decades, artificial neural networks (ANNs)

have been utilized in many applications to perform miscellaneous tasks such as identification,

approximation, optimization, classification and forecasting. The purpose of this review article

is to give an account of the utilization of ANNs inmodeling as well as field computation involving

complex magnetic materials. Mostly used ANN types in magnetics, advantages of this usage,

detailed implementation methodologies as well as numerical examples are given in the paper.
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Introduction

Magnetic materials are currently regarded as crucial compo-

nents for a wide range of products and/or devices. In general,
the complexity of a magnetic material is defined by its perme-
ability classification as well as its coupling extent to non-mag-

netic properties (refer, for instance, to [1]). Obviously,
development of models that could accurately simulate the
complex and, sometimes, coupled nature of these materials be-
comes crucial to the multi-dimensional field-media interactions

and computations. Examples of processes where such models
are required include; assessment of energy loss in power de-
vices involving magnetic cores, read/write recording processes,

tape and disk erasure approaches, development of magneto-
strictive actuators, and energy-harvesting components.

In the past few decades, ANNs have been utilized in many

applications to perform miscellaneous tasks such as identifica-
tion, approximation, optimization, classification and forecast-
ing. Basically, an ANN has a labeled directed graph structure

where nodes perform simple computations and each connec-
tion conveys a signal from one node to another. Each connec-
tion is labeled by a weight indicating the extent to which a
signal is amplified or attenuated by the connection. The

ANN architecture is defined by the way nodes are organized
and connected. Furthermore, neural learning refers to the
method of modifying the connection weights and, hence, the

mathematical model of learning is another important factor
in defining ANNs [2].

The purpose of this review article is to give an account of

the utilization of ANNs in modeling as well as field computa-
tion involving complex magnetic materials. Mostly used ANN
types in magnetics and the advantages of this usage are pre-

sented. Detailed implementation methodologies as well as
numerical examples are given in the following sections of the
paper.
Fig. 1 (a) An example 2-layer FFNN, and (b) an example 5-

node HNN.
Overview of commonly used artificial neural networks in

magnetics

For more than two decades, ANNs have been utilized in var-

ious electromagnetic applications ranging from field computa-
tion in nonlinear magnetic media to modeling of complex
magnetic media. In these applications, different neural archi-

tectures and learning paradigms have been used. Fully con-
nected networks and feed-forward networks are among the
commonly used architectures. A fully connected architecture

is the most general architecture in which every node is con-
nected to every node. On the other hand, feed-forward net-
works are layered networks in which nodes are partitioned
into subsets called layers. There are no intra-layer connections

and a connection is allowed from a node in layer i only to
nodes in layer i + 1.
As for the learning paradigms, the tasks performed using
neural networks can be classified as those requiring supervised
or unsupervised learning. In supervised learning, training is

used to achieve desired system response through the reduction
of error margins in system performance. This is in contrast to
unsupervised learning where no training is performed and

learning relies on guidance obtained by the system examining
different sample data or the environment.

The following subsections present an overview of some

ANNs, which have been commonly used in electromagnetic
applications. In this overview, both the used neural architec-
ture and learning paradigm are briefly described.

Feed-Forward Neural Networks (FFNN)

FFNN are among the most common neural nets in use. Fig. 1a
depicts an example FFNN, which has been utilized in several

publications [3–7]. According to this Fig. the 2-layer FFNN
consists of an input stage, one hidden layer, and an output
layer of neurons successively connected in a feed-forward fash-

ion. Each neuron employs a bipolar sigmoid activation func-
tion, fsig, to the sum of its inputs. This function produces
negative and positive responses ranging from �1 to +1 and

one of its possible forms can be:

fsigðxÞ ¼
2

1þ e�x
� 1: ð1Þ

In this network, unknown branch weights link the inputs to
various nodes in the hidden layer (W01) as well as link all nodes
in hidden and output layers (W12).
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The network is trained to achieve the required input–output
response using an error back-propagation training algorithm
[8]. The training process starts with a random set of branch

weights. The network incrementally adjusts its weights each
time it sees an input–output pair. Each pair requires two
stages: a feed-forward pass and a back-propagation pass.

The weight update rule uses a gradient-descent method to min-
imize an error function that defines a surface over weight
space. Once the various branch weights W01 and W12 are

found, it is then possible to use the network, in the testing
phase, to generate the output for given set of inputs.

Continuous Hopfield Neural Networks (CHNN)

CHNN are single-layer feedback networks, which operate in
continuous time and with continuous node, or neuron, input
and output values in the interval [�1,1]. As shown in Fig. 1b,

the network is fully connected with each node i connected to
other nodes j through connection weights Wi,j. The output, or
state, of node i is called Ai and Ii is its external input. The feed-

back input to neuron i is equal to the weighted sum of neuron
outputs Aj, where j= 1,2, . . . ,N and N is the number of
CHNN nodes. If the matrix W is symmetric with Wij = Wji,

the total input of neuron i may be expressed as
PN

j¼1WijAj þ Ii.
The node outputs evolve with time so that the Hopfield net-

work converges toward the minimum of any quadratic energy
function E formulated as follows [2]:

E ¼ � 1

2

XN
i¼1

XN
j¼1

WijAiAj �
XN
i¼1

IiAi þ constant: ð2Þ

The search for the minimum is performed by modifying the
state of the network in the general direction of the negative

gradient of the energy function. Because the matrix W is sym-
metric and does not depend on Ai values, then,

@E

@Ai

¼ �
XN
j¼1

WijAjðtÞ � Ii: ð3Þ

Consequently, the state of node i at time t is updated as:

@AiðtÞ
@t

¼gfcðnetiðtÞÞ; netiðtÞ ¼
XN
j¼1

WijAjðtÞ þ Ii;

i ¼ 1; 2; . . . ;N; ð4Þ

where g is a small positive learning rate that controls the con-

vergence speed and fc is a continuous monotonically increasing
node activation function. The function fc can be chosen as a
sigmoid activation function defined by:

fcðxÞ ¼ tanhðaxÞ; ð5Þ

where a is some positive constant [9,10]. Alternatively, fc can

be set to mimic the vectorial magnetic properties of the media
[11,12].
Fig. 2 (a) Realization of an elementary hysteresis operator via a

two-node DHNN [13], and (b) HHNN implementation of smooth

hysteresis operators with 2kd= 0.48 [19].
Discrete Hopfield Neural Networks (DHNN)

The idea of constructing an elementary rectangular hysteresis
operator, using a two-node DHNN, was first demonstrated

in [13]. Then, vector hysteresis models have been constructed
using two orthogonally-coupled scalar operators (i.e., rectan-
gular loops) [14–16]. Furthermore, an ensemble of octal or,
in general, N clusters of coupled step functions has been pro-
posed to efficiently model vector hysteresis as will be discussed
in the following sections [17,18]. This section describes the

implementation of an elementary rectangular hysteresis opera-
tor using DHNN.

A single elementary hysteresis operator may be realized via

a two-node DHNN as given in Fig. 2a. In this DHNN, the
external input, I, and the outputs, UA and UB, are binary vari-
ables e{�1,1}. Each node applies a step activation function to

the sum of its external input and the weighted output (or state)
of the other node, resulting in an output of either +1 or �1.
Node output values may change as a result of an external in-
put, until the state of the network converges to the minimum

of the following energy function [2]:

E ¼ �½IðUA þUBÞ þ kUAUB�: ð6Þ

According to the gradient descent rule, the output of say
node A is changed as follows:

UAðtþ 1Þ ¼ fdðnetAðtÞÞ; netAðtÞ ¼ kUBðtÞ þ I: ð7Þ

The activation function, fd(x), is the signum function
where:

fdðxÞ ¼
þ1 if x > 0

�1 if x < 0

unchanged if x ¼ 0

:

8><
>: ð8Þ

Obviously, a similar update rule is used for node B.

Assuming that k is positive and using the aforementioned
update rules, the behavior of each of the outputs UA and UB

follows the rectangular loop shown in Fig. 2a. The final output
of the operator block, O, is obtained by averaging the two

identical outputs hence producing the same rectangular loop.
It should be pointed out that the loop width may be con-

trolled by the positive feedback weight, k. Moreover, the loop

center can be shifted with respect to the x-axis by introducing
an offset Q to its external input, I. In other words, the switch-
ing up and down values become equivalent to (Q + k) and

(Q � k), respectively.



Fig. 3 (a) A LNN, and (b) hierarchically organized MNN.
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Hybrid Hopfield Neural Networks (HHNN)

Consider a general two-node HNN with positive feedback
weights as shown in Fig. 2a. Whether the HNN is continuous
or discrete, the energy function may be expressed by (6).

Following the gradient descent rule for the discrete case, the
output of, say, node A is changed as given by (7). Using the
same gradient descent rule for the continuous case, the output
is changed gradually as given by (4). More specifically, the

output of, say, node A in the 2-node CHNN is changed as
follows:

@UA

@t
¼ gfcðnetAðtÞÞ; netAðtÞ ¼ kUBðtÞ þ I: ð9Þ

While a CHNN will result in a single-valued input–output

relation, a DHNN will result in the primitive rectangular hys-
teresis operator. The non-smooth nature of this rectangular
building block suggests that a realistic simulation of a typical

magnetic material hysteretic property will require a superposi-
tion of a relatively large number of those blocks. In order to
obtain a smoother operator, a new hybrid activation function

has been introduced in [19]. More specifically, the new activa-
tion function is expressed as:

fðxÞ ¼ cfcðxÞ þ dfdðxÞ; ð10Þ

where c and d are two positive constants such that c+ d = 1

and fc and fd are given by (5) and (8), respectively.
The function f(x) is piecewise continuous with a single dis-

continuity at the origin. The choice of the two constants, c and
d, controls the slopes with which the function asymptotically

approaches the saturation values of �1 and 1. In this case,
the new hybrid activation rule for, say, node A becomes:

UAðtþ 1Þ ¼ cfcðnetAðtÞÞ þ dfdðnetAðtÞÞ; ð11Þ

where netA(t) is defined as before. Fig. 2b depicts the smooth

hyteresis operator resulting from the two-node HHNN. The
figure illustrates how the hybrid activation function results
in smooth Stoner–Wohlfarth-like hysteresis operators with

controllable loop width and squareness [20]. In particular,
within this implementation the loop width is equivalent to
the product 2kd while the squareness is controlled by the

ratio c/d. The operators shown in Fig. 2b maintain a constant
loop width of 0.48 because k is set to (0.48/2d) for all curves
[19].

Linear Neural Networks (LNN)

Given different sets of inputs Ii, i= 1, . . . ,N and the corre-
sponding outputs O, the linear neuron in Fig. 3a finds the
weight values W1 through WN such that the mean-square error
is minimized [13–16]. In order to determine the appropriate

values of the weights, training data is provided to the network
and the least-mean-square (LMS) algorithm is applied to the
linear neuron. Within the training session, the error signal

may be expressed as:

eðtÞ ¼ OðtÞ � ITðtÞWðtÞ; ð12Þ

where W ¼ ½W1W2 . . .WN�T and I ¼ ½I1I2 . . . IN�T.
The LMS algorithm is based on the use of instantaneous

values for the cost function: 0.5e2(t). Differentiating the cost
function with respect to the weight vector W and using a gra-
dient descent rule, the LMS algorithm may hence be formu-
lated as follows:

Wðtþ 1Þ ¼WðtÞ þ gIðtÞeðtÞ; ð13Þ

where g is the learning rate. By assigning a small value to g, the
adaptive process slowly progresses and more of the past data is
remembered by the LMS algorithm, resulting in a more accu-
rate operation. That is, the inverse of the learning rate is a

measure of the memory of the LMS algorithm [21].
It should be pointed out that the LNN and its LMS training

algorithmare usually chosen for simplicity anduser convenience

reasons. Using any available software for neural networks, it is
possible to utilize the LNNapproachwith little effort. However,
the primary limitation of the LMS algorithm is its slow rate of
convergence. Due to the fact that minimizing the mean square

error is a standard non-linear optimization problem, there are
more powerful methods that can solve this problem. For exam-
ple, the Levenberg–Marquardt optimizationmethod [22,23] can

converge more rapidly than a LNN realization. In this method,
the weights are obtained through the equation:

Wðtþ 1Þ ¼WðtÞ þ ðvTvþ dIÞ�1vTeðtÞ; ð14Þ

where d is a small positive constant, vT is a matrix whose col-

umns correspond to the different input vectors I of the training
data, and I is the identity matrix.

Modular Neural Networks (MNN)

Finally, many electromagnetic problems are best solved using
neural networks consisting of several modules with sparse

interconnections between the modules [11–14,16]. Modularity
allows solving small tasks separately using small neural net-
work modules and then combining those modules in a logical
manner. Fig. 3b shows a sample hierarchically organized

MNN, which has been used in some electromagnetic applica-
tions [13].



Fig. 4 (a) Operator-ANN realization of the scalar classical PM,

(b and c) comparison between measured data and model predic-

tions based on both the proposed and traditional identification

approaches [4].
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Utilizing neural networks in modeling complex magnetic media

Restricting the focus on magnetization aspects of a particular
material, complexity is usually defined by the permeability

classification. For the case of complex magnetic materials,
magnetization versus field (i.e., M–H) relations are nonlinear
and history-dependent. Moreover, the vector M–H behavior

for such materials could be anisotropic or even more compli-
cated in nature. Whether the purpose is modeling magnetiza-
tion processes or performing field computation within these
materials, hysteresis models become indispensable. Although

several efforts have been performed in the past to develop hys-
teresis models (see, for instance, [24–28]), the Preisach model
(PM) emerged as the most practical one due to its well defined

procedure for fitting its unknowns as well as its simple numer-
ical implementation.

In mathematical form, the scalar classical PM [24] can be

expressed as:

FðtÞ ¼
ZZ

aPb
lða; bÞĉabuðtÞdadb; ð15Þ

where f(t) is the model output at time t, u(t) is the model input
at time t, while ĉab are elementary rectangular hysteresis oper-
ators with a and b being the up and down switching values,

respectively. In (15), function l(a,b) represents the only model
unknown which has to be determined from some experimental
data. It is worth pointing out here that such a hysteresis model
can be physically constructed from an assembly of Schmidt

triggers having different switching up and down values.
It can be shown that the model unknown l(a,b) can be cor-

related to an auxiliary function F(a,b) in accordance with the

expressions:

lða; bÞ ¼ � @
2Fða; bÞ
@a@b

; Fða; bÞ ¼ 1

2
ðfa � fabÞ; ð16Þ

where fa is the measured output when the input is monotoni-
cally increased from a very large negative value up to the value

a, fab is the measured output along the first-order-reversal
curve traced when the input is monotonically decreased after
reaching the value fa [24].

Hence, the nature of the identification process suggests

that, given only the measured first-order-reversal curves, the
classical scalar PM is expected to predict outputs correspond-
ing to any input variations resulting in tracing higher-order

reversal curves. It should be pointed out that an ANN block
has been used, with considerable success, to provide some
optimum corrective stage for outputs of scalar classical

PM [3].
Some approaches on utilizing ANNs in modeling magnetic

media have been previously reported [29–36]. Nafalski et al.

[37] suggested using ANN as an entire substitute to hysteresis
models. Saliah and Lowther [38] also used ANN in the identi-
fication of the model proposed in Vajda and Della Torre [39]
by trying to find its few unknown parameters such as square-

ness, coercivity and zero field reversible susceptibility. How-
ever, a method for solving the identification problem of the
scalar classical PM using ANNs has been introduced [4]. In

this approach, structural similarities between PM and ANNs
have been deduced and utilized. More specifically, outputs of
elementary hysteresis operators were taken as inputs to a

two-layer FFNN (see Fig. 4a). Within this approach, expres-
sion (15) was reasonably approximated by a finite superposi-
tion of different rectangular operators as:

fðtÞ �
XN
i¼1

XN
j¼1

lðai; bjÞĉaibj uðtÞ;

ai ¼ bi ¼ a1 � 2
ði� 1Þ
ðN� 1Þ a1; ð17Þ

where N2 is the total number of hysteresis operators involved,
while a1 represents the input at which positive saturation of the
actual magnetization curve is achieved.

Using selective and, supposedly, representative measured
data, the network was then trained as discussed in the overview
section. As a result, model unknowns were found. Obviously,

choosing the proper parameters could have an effect on the
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training process duration. Sample training and testing results
are given in Fig. 4b and c. It should be pointed out that similar
approaches have also been suggested [40,41].

The ANN applicability to vector PM has been also ex-
tended successfully. For the case of vector hysteresis, the mod-
el should be capable of mimicking rotational properties,

orthogonal correlation properties, in addition to scalar proper-
ties. As previously reported [7], a possible formulation of the
vector PM may be given by:

MxðtÞ
MyðtÞ

� �
¼

aPb

Rþp=2
�p=2 cosumxða;bÞfxðuÞĉab½�eu �HðtÞ�du

n o
dadb

aPb

Rþp=2
�p=2 sinumyða;bÞfyðuÞĉab½�eu �HðtÞ�du

n o
dadb

2
64

3
75;

ð18Þ

where �eu is a unit vector along the direction specified by the
polar angle u while functions mx, my and even functions fx, fy
represent the model unknowns that have to be determined
through the identification process.

Substituting the approximate Fourier expansion formula-
tions; fx(u) � fx0 + fx1cos u, and fy(u) � fy0 + fy1cos u in

(18), we get:

MxðtÞ
MyðtÞ

� �
�

X
aiPbj

mx0ðai; bjÞSx
ð0Þ
aibj
þ
X
aiPbj

mx1ðai; bjÞSx
ð1Þ
aibjX

aiPbj

my0ðai; bjÞSy
ð0Þ
aibj
þ
X
aiPbj

my1ðai; bjÞSy
ð1Þ
aibj

2
6664

3
7775;
ð19Þ

mx0ða; bÞ ¼ fx0mxða; bÞ; mx1ða; bÞ ¼ fx1mxða; bÞ;
x ¼ x; y; ð20Þ

where
Fig. 5 (a) The ANN configuration used in the model identifi-

cation, (b) sample normalized measured and ANN computed first-
Sx
ð0Þ
aibj

Sx
ð1Þ
aibj

Sy
ð0Þ
aibj

Sy
ð1Þ
aibj

2
66666664

3
77777775
�

XN
n¼1

cosunĉaibj ½�eun
�HðtÞ�Du

( )
DaDb

XN
n¼1

cos2 unĉaibj ½�eun
�HðtÞ�Du

( )
DaDb

XN
n¼1

sinunĉaibj ½�eun
�HðtÞ�Du

( )
DaDb

XN
n¼1

sin 2un

2
ĉaibj ½�eun

�HðtÞ�Du

( )
DaDb

2
666666666666666664

3
777777777777777775

; ð21Þ

un ¼ �
p
2
þ n� 1

2

� �
Du; and Du ¼ p

N
: ð22Þ
order-reversal curves involved in the identification process, and (c)

sample measured and predicted Hr � d values.
The identification problem reduces in this case to the deter-
mination of the unknowns mx0, mx1, my0 and my1. The FFNN
shown in Fig. 5a has been used successfully to carry out the

identification process by adopting the algorithms and method-
ologies stated in the overview section. Sample results of the
identification process as well as comparison between predicted
and measured rotational magnetization phase lag d with re-

spect to the rotational field component are given in Fig. 5b
and c, respectively.

Development of a computationally efficient vector hystere-

sis model was introduced based upon the idea reported [13]
and presented in the overview section in which an elementary
hysteresis operator was implemented using a two-node DHNN

(please refer to Fig. 2a). More specifically, an efficient vector
PM was constructed from only two scalar models having
orthogonally inter-related elementary operators was proposed
[14]. Such model was implemented via a LNN fed from a four-

node DHNN blocks having step activation functions as shown
in Fig. 6a. In this DHNN, the outputs of nodes Ax and Bx can
mimic the output of an elementary hysteresis operator whose

input and output coincide with the x-axis. Likewise, outputs
of nodes Ay and By can represent the output of an elementary



Fig. 6 (a) A four-node DHNN capable of realizing two

elementary hysteresis operator corresponding to the x- and y-

axes, and (b) suggested implementation of the vector PM using a

modular DHNN–LNN combination [14].
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hysteresis operator whose input and output coincide with the
y-axis. Symbols k^, Ix and Iy are used to denote the feedback
between nodes corresponding to different axes, the applied in-

put along the x- and y-directions, respectively. Moreover, Qi

and k//i are offset and feedback factors corresponding to the
ith-DHNN block and given by:

Qi ¼ �
ai þ bi

2

� �
and k==i ¼

ai � bi

2

� �
: ð23Þ

The state of this network converges to the minimum of the
following energy function:
Fig. 7 Comparison between measured and computed: (a) scalar

training curves used in the identification process, (b) orthogonally

correlatedHx–Mydata, and (c) rotational data, fork^i/k//i = 1.15 [14].
E ¼� IxðUAx þUBxÞ þ IyðUAy þUByÞ þ k==UAxUBx

�
þ k==UAyUBy þ

k?
2
ðUAx �UBxÞðUAy þUByÞ

þ k?
2
ðUAy �UByÞðUAx þUBxÞ

�
: ð24Þ

Similar to expressions (6)–(8) in the overview section, the

gradient descent rule suggests that outputs of nodes Ax, Bx,
Ay and By are changed according to:

UAxðtþ1Þ

UBxðtþ1Þ

UAyðtþ1Þ

UByðtþ1Þ

2
666666664

3
777777775
¼

sgnðþk?½UAyðtÞþUByðtÞ�þk==UBxðtÞþIxÞ

sgnð�k?½UAyðtÞþUByðtÞ�þk==UAxðtÞþIxÞ

sgnðþk?½UAxðtÞþUBxðtÞ�þk==UByðtÞþIyÞ

sgnð�k?½UAxðtÞþUBxðtÞ�þk==UAyðtÞþIyÞ

2
666666664

3
777777775
:

ð25Þ

Considering a finite number N of elementary operators, the

modular DHNN of Fig. 6b. evolves – as a result of any applied
input – by changing output values (states) of the operator
blocks. Eventually, the network converges to a minimum of

the quadratic energy function given by:

E ¼�
XN
i¼1
þ Hx �

ai þ bi

2

� �� �
ðUAxi þUBxiÞ

�

þ Hy �
ai þ bi

2

� �� �
ðUAyi þUByiÞ þ

ai � bi

2

� �
UAxiUBxi

þ ai � bi

2

� �
UAyiUByi þ

k?
2
ðUAxi �UBxiÞðUAyi þUByiÞ

þ k?
2
ðUAyi �UByiÞðUAxi þUBxiÞ

�
: ð26Þ
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Overall output vector of the network may be expressed as:

Mx þ jMy ¼
XN
i¼1

li

UAxi þUBxi

2

� �
þ j

UAyi þUByi

2

� �� �
: ð27Þ

Being realized by the pre-described DHNN–LNN configu-
ration, it was possible to carry out the vector PM identification

process using automated training algorithm. This gave the
opportunity of performing the model identification using any
available set of scalar and vector data. The identification pro-

cess was carried out by first assuming some k^i/k//i ratios and
finding out appropriate values for the unknowns li. Training
of the LNN was carried out to determine appropriate li values

using the available scalar data provided as explained in the
overview section and as indicated by expression (13). Follow-
ing the scalar data training process, available vector training
data was utilized by checking best matching orthogonal to par-

allel coupling (k^i/k//i) for best overall scalar and vector train-
ing data match. Sample identification and testing results are
shown in Fig. 7 (please refer to [14]). The approach was further

generalized by using HHNN as described in the overview sec-
tion [19]. Based upon this generalization and referring to (10)
and (11), expression (25) is re-adjusted to the form:

UAxðtþ 1Þ
UBxðtþ 1Þ
UAyðtþ 1Þ
UByðtþ 1Þ

2
6664

3
7775 ¼

cfcðnetAxðtÞÞ þ dfdðnetAxðtÞÞ
cfcðnetBxðtÞÞ þ dfdðnetBxðtÞÞ
cfcðnetAyðtÞÞ þ dfdðnetAyðtÞÞ
cfcðnetByðtÞÞ þ dfdðnetByðtÞÞ

2
6664

3
7775; ð28Þ
Fig. 8 (a) Comparison between the given and computed

normalized scalar data after the training process for Ampex-641

tape, and (b) sample normalized Ampex-641 tape vectorial output

simulation results for different k^ values corresponding to

rotational applied input having normalized amplitude of 0.6 [15].

Fig. 9 (a) DHNN comprised of coupled N-node step activation

functions, (b) circularly dispersed ensemble of V similar DHNN,

and (c) elliptically dispersed ensemble of V similar DHNN blocks

[18].
where

netAxðtÞ
netBxðtÞ
netAyðtÞ
netByðtÞ

2
6664

3
7775 ¼

Ixþ kUBxðtÞ þ kcðUAyðtÞ þUByðtÞÞ
Ixþ kUAxðtÞ � kcðUAyðtÞ þUByðtÞÞ
Iyþ kUByðtÞ þ kcðUAxðtÞ þUBxðtÞÞ
Iyþ kUAyðtÞ � kcðUAxðtÞ þUBxðtÞÞ

2
6664

3
7775: ð29Þ

This generalization has resulted in an increase in the mod-
eling computational efficiency (please refer to [19]).

Importance of developing vector hysteresis models is
equally important for the case of anisotropic magnetic media
which are being utilized in a wide variety of industries. Numer-

ous efforts have been previously focused on the development
of such anisotropic vector models (refer, for instance, to
[24,42–46]). It should be pointed out here that the approach
proposed by Adly and Abd-El-Hafiz [14] was further general-
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ized [15] to fit the vector hysteresis modeling of anisotropic
magnetic media. In this case the training process was carried
out for both easy and hard axes data. Coupling factors were

then identified to give best fit with rotational and/or energy
loss measurements. Sample results of this generalization are
shown in Fig. 8.

Another approach to model vector hysteresis using ANN
was introduced [17,18] for both isotropic and anisotropic mag-
netic media. In this approach, a DHNN block composed of

coupled N-nodes each having a step activation function whose
output U e {�1,+1} is used (please refer to Fig. 9a). General-
izing Eq. (6) in the overview section, the overall energy E of
this DHNN may be given by:

E ¼ �H �
XN
i¼1

Ui�ei � kij
XN
i¼1

XN
j ¼ 1

j–i

ðUi�ei �Uj�ejÞ; and

kij ¼
�ks for �ei � �ej ¼ �1
þkm otherwise

�
ð30Þ

where �H is the applied field, ks is the self-coupling factor be-
tween any two step functions having opposite orientations,
km is the mutual coupling factor, while Ui is the output of

the ith step function oriented along the unit vector �ei.
According to this implementation, scalar and vectorial per-

formance of the DHNN under consideration may be easily

varied by simply changing ks, km or even both. It was, thus,
Fig. 10 Comparison between computed and measured; (a) set of

the easy axis first-order reversal curves, and (b) data correlating

orthogonal input and output values (initial Mx values correspond

to residual magnetization resulting from Hx values shown between

parentheses) [18].

Fig. 11 Measured and computed (a) M and (b) strain, for

normalized H values and applied mechanical stresses of 0.9347

and 34.512 Kpsi [13], and (c) M–H curves for CoCrPt hard disk

sample [5].
possible to construct a computationally efficient hysteresis
model using a limited ensemble of vectorially dispersed

DHNN blocks. While vectorial dispersion may be circular
for isotropic media, an elliptical dispersion was suggested to
extend the model applicability to anisotropic media. Hence, to-

tal input field applied to the uth DHNN block �Htu for the ith
circularly and elliptically dispersed ensemble of V similar
DHNN blocks (see Fig. 9b and c), may be respectively given

by the expressions:

Htu ¼ �Hþ �Hoiu ¼
Hþ Rie

juiu for isotropic case

Hþ ejuiuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 uiu
R2
i�e
þsin2 uiu

R2
i�h

q for anisotropic case

8><
>:

ð31Þ



Fig. 12 (a) Sub-region CHNN block representing vectorialM–H

relation, and (b) integral equation representation using a modular

CHNN, each block represents a sub-region in the discretization

scheme.

Fig. 13 Flux density vector plot computed using the CHNN

approach for; (a) a transformer, (b) an electromagnet, and (c) an

electromagnetic suspension system [11,12].
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where uiu ¼ 2p
V
ðu� 1

2
Þ.

Using the proposed ANN configuration it was possible to
construct a vector hysteresis model using only a total of 132
rectangular hysteresis operators which is an extremely small

number in comparison to vector PMs. Identification was car-
ried out for an isotropic floppy disk sample via a combination
of four DHNN ensembles, each having N= V= 8, thus lead-

ing to a total of 12 unknowns (i.e., ksi, kmi and Ri for every
DHNN ensemble). Using a measured set of first-order rever-
sals and measurements correlating orthogonal inputs and out-

puts, the particle swarm optimization algorithm was utilized to
identify optimum values of the 12 model unknowns (see for in-
stance [47]). Sample experimental testing results are shown in

Fig. 10.
It was verified that 2D vector hysteresis models could be

utilized in modeling 1D field-stress and field-temperature ef-
fects [48–50]. Consequently, it was possible to successfully uti-

lize ANNs in the modeling of such coupled properties for
complex magnetic media. For instance, in [13] a modular
DHNN–LNN was utilized to model magnetization-strain vari-

ations as a result of field-stress variations (please see sample re-
sults in Fig. 11a and b). Similar results were also obtained in
[16] using the previously discussed orthogonally coupled oper-

ators shown in Fig. 6. Likewise, modular DHNN-LNN was
successfully utilized to model magnetization-field characteris-
tics as a result of temperature variations [5] (please see sample
results in Fig. 11c).
Utilizing neural networks in field computation involving

nonlinear magnetic media

It is well known that field computation in magnetic media may
be carried out using different analytical and numerical ap-
proaches. Obviously, numerical techniques become especially

more appealing in case of problems involving complicated
geometries and/or nonlinear magnetic media. In almost all
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numerical approaches, geometrical domain subdivision is usu-
ally performed and local magnetic quantities are sought (refer,
for instance, to [51,52]). 2-D field computations may be carried

out in nonlinear magnetic media using the automated integral
equation approach proposed in Adly and Abd-El-Hafiz [11].
This represented a unique feature in comparison to previous

HNN representations that dealt with linear media in 1-D prob-
lems (refer, for instance, to [9,53]).

According to the integral equation approach, field compu-

tation of the total local field values may be numerically ex-
pressed as [54–56]:

HðqÞ ¼ HappðqÞ þ 1

2p

XN
i¼1
rq

Z
Ri

�MðpÞ � rp lnðrpqÞdSp; ð32Þ

where N is the number of sub-region discretizations, q is an
observation point, p is a source point at the center of the mag-

netic sub-region number i whose area is given by Ri, |rpq| is the
distance between points p and q while H, Happ and M denote
the total field, applied field and magnetization, respectively.

Solution of (32) is only obtained after a self-consistent mag-
netization distribution over all sub-regions is found, leading to
an overall energy minimization as suggested by finite-element

approaches. Assuming a constant magnetization within every
sub-region, and taking magnetic property non-linearity into
account, expression (32) may hence be re-written in the form:

Hi ¼ Happi þ
XN
j¼1

Ci;jMj Hj


 �
: ð33Þ

where Ci;j is regarded as a geometrical coupling coefficient be-
tween the various sub-regions. In the particular case when
i= j, Ci;j represents the ith sub-region demagnetization factor.

Since the M–H relation of most non-linear magnetic mate-
rials may be reasonably approximated by M � c

ffiffiffiffiffiffiffi
jHjn

p
�eH [57],

where n is an odd number, c is some constant and �eH is a unit

vector along the field direction, this relation may be realized by
a CHNN as shown in Fig. 12a. Since this single layer G-node
fully connected CHNN should mimic a vectorial M–H rela-

tion, the G-nodes are assumed to represent a collection of sca-
lar relations oriented along all possible 2-D directions. Hence:

�m ¼
XG
k¼1

�euk
fðj�hj�eh � �euk

Þ p
G
; fðhÞ ¼ ac

ffiffiffi
h

n
p

;

uk ¼ k� 1

2

� �
p
G
� p; ð34Þ

m � c
ffiffiffi
h

n
p
¼
XG
k¼1

cosukfðhcosukÞ
p
G
)

ac ¼ G

p
cXG

k¼1
ðcosukÞ

1þn
n

; ð35Þ

where ac is the activation function constant.
The evolution of the network states is in the general direc-

tion of the negative gradient of any quadratic energy function
of the form given in expression (2). A modular CHNN that in-
cludes ensembles of the CHNNs referred to as sub-region

blocks was then used. Since each block represented a specific
sub-region in the geometrical discretization scheme, it was pos-
sible to construct expression (33) as depicted in Fig. 12b. Evo-

lution of this modular network followed the same reasoning
described for individual sub-region blocks and, consequently,
the output values converged based on the energy minimization
criterion.

Verification of the presented methodology has been carried
out [11] for nonlinear magnetic material as well as different
geometrical and source configurations. Comparisons with fi-

nite-element analysis results have revealed both qualitative
and quantitative agreement. Additional simulations using the
same ANN field computation methodology have also been car-

ried out [12] for an electromagnetic suspension system. Sample
field computation results from [11,12] are shown in Fig. 13.

It should be mentioned here that some evolutionary com-
putation approaches – such as the particle swarm optimization

(PSO) approach – has been successfully utilized as well for the
field computation in nonlinear magnetic media (refer, for in-
stance, to [58–61]). Nevertheless, in those approaches a discret-

ization of the whole solution domain has to be carried out.
This fact suggests that the presented CHNN methodology is
expected to be computationally more efficient since it involves

limited discretization of the magnetized parts only.
Discussion and conclusions

In this review article, examples of the successful utilization of
ANNs in modeling as well as field computation involving com-
plex magnetic materials have been presented. Those examples

certainly reveal that integrating ANNs in some magnetics-re-
lated applications could result in a variety of advantages.

For the case of modeling complex magnetic media, DHNN
as well as HHNN have been utilized in the construction of ele-

mentary hysteresis operators which represent the main build-
ing blocks of widely used hysteresis models such as the
Preisach model. FFNN, LNN and MNN have been clearly uti-

lized in constructing scalar, vector and coupled hysteresis mod-
els that take into account mechanical stress and temperature
effects. The extremely important advantages of this ANN uti-

lization include the ability to construct such models using any
available mathematical software tool and the possibility of car-
rying out the model identification in an automated way and

using any available set of training data.
Obviously, the presented different ANN implementa-

tions may be easily integrated in many commercially avail-
able field computation packages. This is especially an

important issue knowing that most of those packages are
not capable of handling hysteresis or coupled physical
properties. Moreover, almost all implementations involving

rectangular operators may be physically realized for real
time control processes in the form of an ensemble of Sch-
mitt triggers.

On the other hand, it was demonstrated that CHNN
could be utilized in the field computation involving nonlin-
ear magnetic media through linking the activation function
to the media M–H relation. This has, again, resulted in

the possibility to construct field computation tools using
any available mathematical software tools and perform such
computation in an automated way by the aid of built in

HNN routines.
Finally, it should be stated that this review article may be

regarded as a model for the wide opportunities to enhance;

implementation, accuracy, and performance through interdis-
ciplinary research capabilities.
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