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Pharmacokinetic models range from being entirely exploratory and empirical, to semi-mechanistic and ultimately complex
physiologically based pharmacokinetic (PBPK) models. This choice is conditional on the modelling purpose as well as the amount and
quality of the available data. The main advantage of PBPK models is that they can be used to extrapolate outside the studied
population and experimental conditions. The trade-off for this advantage is a complex system of differential equations with a
considerable number of model parameters. When these parameters cannot be informed from in vitro or in silico experiments they are
usually optimized with respect to observed clinical data. Parameter estimation in complex models is a challenging task associated with
many methodological issues which are discussed here with specific recommendations. Concepts such as structural and practical
identifiability are described with regards to PBPK modelling and the value of experimental design and sensitivity analyses is sketched
out. Parameter estimation approaches are discussed, while we also highlight the importance of not neglecting the covariance structure
between model parameters and the uncertainty and population variability that is associated with them. Finally the possibility of using
model order reduction techniques and minimal semi-mechanistic models that retain the physiological-mechanistic nature only in the
parts of the model which are relevant to the desired modelling purpose is emphasized. Careful attention to all the above issues allows
us to integrate successfully information from in vitro or in silico experiments together with information deriving from observed clinical
data and develop mechanistically sound models with clinical relevance.

Introduction

Pharmacokinetics is the study of the processes that deter-
mine the concentration–time course of an administered
drug inside the body. As variation in systemic concentra-
tion partly accounts for the variability in therapeutic
response, it is reasonable to develop pharmacokinetic
models in order to interpret mathematically and predict
concentration–time profiles. The complexity of these
pharmacokinetic models can range from being entirely
‘exploratory’ and empirical, to semi-mechanistic and ulti-
mately complex physiologically based pharmacokinetic

(PBPK) models [1]. This choice is conditional on the goal of
the modelling exercise as well as the amount and quality
of the available data. In other words, pharmacokinetic
models can be built based mainly on the observed clinical
data (‘top down’ approach) or based on our broader
understanding of the human body and its mechanisms
(‘bottom up’ approach) [2]. PBPK models have a physi-
ologically pragmatic compartmental structure based on
the actual anatomical characteristics of the body and its
organs/tissues [3, 4]. The concept of PBPK modelling can
be traced back many decades [5] and for many years
its applications were mainly related to environmental
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toxicology research [6, 7]. With regards to the pharmaceu-
tical area, until recently PBPK research was mainly carried
out in academia. However, this approach has been much
more popular and appealing during the last decade, with
applications in both drug development and regulatory
science [8, 9]. This trend can be mainly attributed to three
factors. Firstly, advances in computer science and the
development of modelling and simulation tools facilitated
the PBPK approach in terms of speed, accuracy and acces-
sibility. Secondly, in the past, PBPK models were heavily
reliant on animal tissue data in order to extrapolate to
humans [10, 11]. The development of in silico methods to
predict drug–tissue affinity and distribution [12, 13] allevi-
ated PBPK from the cost, time and ethical constraints
related to the intensive sampling of animal tissues. Finally,
the development and refinement of in vitro-in vivo
extrapolation (IVIVE) methods allows a more accurate pre-
diction of processes involved in absorption, distribution,
metabolism and excretion (ADME) of a compound [14–16].

PBPK models employ a richer information content than
empirical models with regards to the anatomy and physi-
ology of the underlying system and consequently they can
predict drug exposure in inaccessible tissues where the
drug acts or exerts its toxicity [17]. In recent years the latter
has motivated the move from traditional perfusion limited
PBPK models to transporter-incorporated permeability
limited models of certain organs [18]. However, the main
advantage of PBPK models over their empirical counter-
parts is that they provide a rationale to extrapolate not
only from animal to human, but also in special populations
such as paediatrics [19, 20] or the obese [21] and in
complex scenarios such as drug–drug interactions [22]. On
the contrary, empirical models can be safely used only for
interpolation within the studied population and experi-
mental conditions [23]. Nevertheless, these advantages do
not come without cost. Physiologically based models are
systems of differential equations involving a considerable
number of parameters which come from disparate
research fields. These parameters can be broadly classified
as system-related (e.g. blood flows, organ volumes) and
drug-related (e.g. intrinsic metabolic clearance). System-
related parameter values for a PBPK model can be
extracted from several publications [24–26]. However, it
should be noted that these values usually refer to an
‘average individual’ and data for special populations and
different disease states are difficult to find. Moreover, as
PBPK model complexity is increasing there is a need for
more sophisticated system-related parameters (e.g. abso-
lute abundances of hepatic transporters), the determina-
tion of which is very challenging. Drug-related parameters
have to be extrapolated from in vitro experimental data,
which may be limited especially in the first stages of drug
development. Moreover, even when the in vitro data
are available, the extrapolated model parameters will
always carry a certain degree of error due to the uncer-
tainty in the in vitro results or inappropriate system-related

scaling factors. In practice, when in vivo data are available,
parameters which are either unknown or uncertain are
determined through simulation and calibration or more
sophisticated parameter estimation techniques [27].
Although such a ‘middle out’ approach is very beneficial,
as it permits the application of PBPK models with all the
merits described above, it is also prone to limitations
which should not be overlooked.

Structural identifiability

The concept of structural identifiability (also referred in the
literature as ‘a priori identifiabilty’) [28, 29] is important to
ensure that the unknown model parameters of interest are
uniquely identifiable from a specified experiment, assum-
ing noise-free data. This notion particularly applies in PBPK
modelling. In the absence of a unique correspondence
between parameter values and the observed output, it is
impossible for the researcher to quantify the physiological
process that involves the unidentifiable parameter. More
importantly, extrapolation to species or populations
outside the studied conditions may be unjustified and
dangerous. The reader is referred to [30, 31] for further
information with regards to identifiability analysis
techniques in PBPK models. In practice indications for
identifiability issues are failure of the optimization proce-
dure to converge, parameter values sensitive to the initial
estimates used for optimization and highly correlated
parameter estimates [30]. However, it should be noted that
structural identifiability analysis is an element of the
experimental design and is recommended to be per-
formed at an early stage. One of the possible solutions to
resolve identifiability issues is to provide additional infor-
mation either by perturbing the experimental design [32]
(e.g. by sampling in an additional tissue compartment), or
by applying a Bayesian framework where prior knowledge
about model parameters is utilized [33].

Numerical sensitivity

Even when the model is itself structurally identifiable, it
may suffer from practical non-identifiabilities [34]. These
difficulties arise mainly from two sources, separately and in
combination: (i) due to an insufficient number and quality
of observations and (ii) due to lack of sensitivity of the
model’s output to differences in the values of the param-
eter. Both of these conditions particularly apply in PBPK
modelling. Ethical and experimental considerations may
affect the quantity and quality of the data, whilst the
physiological-anatomical topology of the estimated
parameter is remote from the model’s observed output
(usually plasma). Practical non-identifiability is usually
manifested with increased uncertainty (standard errors) in
the parameter estimates and/or problems in the optimiza-
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tion routines to converge to a minimum, as the objective
function related to an insensitive model parameter is rela-
tively flat. However, there are measures to avoid these dif-
ficulties. Firstly, one of the remedies lies again in the
experimental design, as an optimal design approach can
be used to optimize sampling collections and thus
improve the information content of the data [35]. Sec-
ondly, before any attempt to estimate an unknown param-
eter, it is recommended that a sensitivity analysis is
performed in order to investigate if the output is sensitive
to the unknown model parameter. Sensitivity analysis is a
method that examines how the variation in the output of
the model can be attributed, qualitatively or quantita-
tively, to different sources of variation [36]. The reader is
referred to [36] for a comprehensive review of the different
methods and technical issues related to sensitivity analysis
and to [37, 38] for applications in PBPK modelling.

Finally it should be noted here that although a good fit
to plasma concentration profiles is a good diagnostic of
the PBPK model’s performance, it is not necessarily suffi-
cient to regard the model adequate, as particular param-
eter values might be estimated to be outside their true
physiological space in order to provide a good fit. There-
fore it is recommended as good practice firstly to assess if
the parameter estimates are physiologically plausible and
secondly to evaluate the model’s predictive performance
in situations where some of the pathways of the system
are perturbed (e.g. in drug–drug interactions or genetic
polymorphisms).

Correlation between parameters
upon estimation

An additional issue that should be considered when
attempting to estimate parameters in a PBPK model is that
some of these parameters are intrinsically correlated,
through the underlying physiology [2]. High correlation
between model parameters, when neglected, may result
in biased, imprecise and sometimes non-physiologically
realistic parameter estimates. Therefore, in the case of two
highly correlated parameters it is usually recommended
either to use a physiologically plausible value extracted
from the literature for one of them, or to reparameterize
the model in terms of a composite variable. An example of
the latter is to parameterize the model in terms of the
intrinsic clearance of a compound per pmol of enzyme,
instead of separately estimating a different clearance in
each eliminating tissue as a separate parameter.

Parameter estimation approaches,
uncertainty and variability

As discussed in the previous sections, parameter estima-
tion in PBPK models is challenging because of the large

number of involved parameters and the relatively small
amount of observed data usually available. Several
approaches have been performed in the literature in order
to fit PBPK models to observed data. More specifically, one
of the proposed methods is to optimize all model para-
meters together, termed as ‘global optimization’, using
Monte Carlo optimization or the simplex method [39]. It
should be noted that this approach may provide unrealis-
tic parameters for some of the well defined physiological
parameters (e.g. flows and volumes) possibly due to
identifiability problems, and therefore it is recommended
that these parameters should be constrained (see discus-
sion in [39]). Alternatively, more modern methods such as
genetic algorithms, which are based on the concept of
natural selection [40], can be applied to optimize simulta-
neously many parameters in these complex models [41].
However the approach which is more commonly used, is
to fix most of the model parameters (to values known from
physiology or previous in vitro and in vivo experiments)
and optimize only a few unknown model parameters [42].
This is usually done either by a trial and error visual cali-
bration to the observed concentration profiles or by more
formal statistical approaches, such as non-linear least
squares and maximum likelihood methods. However, this
approach is not without limitations and extreme care
should be taken when these parameter estimates are used
for extrapolation. It should be recognized that with such
an approach the parameter estimates are conditional on
the values that have been assumed for the fixed param-
eters [39, 43]. Nevertheless, many of these fixed param-
eters in complex PBPK models involving IVIVE may carry a
certain degree of inaccuracy and/or imprecision as with
every experimentally obtained result. In addition, as model
parameters might be correlated through the underlying
system physiology, fixing some of them while optimizing
for others distorts the covariance structure of the param-
eters and may lead to biased estimates [44]. Finally, it
should be pointed out that as with any optimized param-
eter, the fitted estimate itself is always accompanied with a
level of uncertainty which derives from imperfect data or
any model mis-specifications [45]. It is striking that a large
fraction of the recently published PBPK models (in the
pharmaceutical arena) that performed parameter optimi-
zation estimation do not report any uncertainty on the
fitted estimate, while only a few do [46, 47]. Reporting a
single value for an estimated parameter gives no idea how
reliable this estimate is. More importantly, when this
parameter is related to a mechanistic hypothesis, which is
a subject of extrapolation, any conclusions or predictions
cannot be trusted. On such occasions, sensitivity analysis is
again a powerful tool to examine different scenarios and
support any conclusions.

At this point it should be mentioned that the term
uncertainty mentioned above is clearly distinct from the
term variability and the reader is referred to [48] for an
excellent discussion related to these two terms in PBPK
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modelling and simulation. Briefly, variability refers to dif-
ferences attributable to environmental or genetic factors
and is a fundamental property of the studied system that
cannot be reduced. On the contrary uncertainty is varia-
tion that derives from errors in the experimental proce-
dure, measurement, modelling and assumptions of the
studied system. It is not itself a system property and it can
be reduced through optimization of the experiment.
Although difficult, it is desirable to disentangle and sepa-
rate uncertainty and variability in a parameter estimation
process. Ideally, it is desirable to derive parameter esti-
mates not only for the ‘average individual’, but also their
distribution in the population. However, a part of the
observed variability is a priori related to differences in key
system related parameters mechanistically affected by
well established covariates (e.g. age, weight) and this infor-
mation should not be neglected [2, 49].

In the majority of published studies using PBPK mod-
elling only a structural model is developed allowing only
‘average individual’ predictions. In practice, clinical data
that are used for fitting are extracted from published
studies and therefore only average population and no
individual concentration profiles are usually available. It
should be noted that in this case, not only is inter-
individual variability on model parameters unattainable,
but also parameter estimates might be biased as averag-
ing of data can produce a distorted picture of the indi-
vidual model function [50]. In addition, it is commonly
observed in the PBPK modelling literature, that even when
individual data are available, these are treated as if they
arise from the same unique human/animal, an approach
usually referred to as ‘naive pooled data’. However the
limitations of such an approach have been repeatedly
described and the use of hierarchical population model-
ling is strongly recommended [51, 52].

The Bayesian perspective

Many of the shortcomings mentioned in the above section
can be avoided when a Bayesian approach is combined
with population hierarchical modelling. As explained
before, the information contained in the available data is
usually insufficient to estimate the numerous parameters
in a complex PBPK model. In addition these parameters are
mechanistic in nature and thus prior information about
their range can be extracted from physiology literature, in
vitro experiments and previously published models. There-
fore, it makes sense to use the current data in order to
update any prior information and beliefs with regards to
the model parameters. This Bayesian approach rather than
providing single point estimates, outputs statistical distri-
butions of the model parameter values (called ‘posterior
distributions’), which are consistent both with the fitted
data and prior knowledge. When this approach is com-
bined with a hierarchical population model, it yields pos-

terior distributions not only at the individual but also at the
population level [53, 54]. In a typical Bayesian analysis
these distributions are produced by Markov-chain Monte
Carlo (MCMC) methods. The reader is referred to [44] for an
introduction on the Bayesian hierarchical approach and to
[33, 43, 55–58] for related applications in physiologically
based toxicokinetic and pharmacokinetic modelling.

The advantages of an approach that uses prior infor-
mation in PBPK modelling can be summarized as follows: it
is natural in that it updates prior beliefs in the light of new
data, it sets biologically plausible ranges for the well
known physiological parameters and it can stabilize the
estimation procedure in terms of identifiability with
regards to parameters that cannot be informed from the
available data. However, the approach does have a
number of problems. The first is that sometimes it is diffi-
cult to summarize prior knowledge in terms of appropriate
statistical prior distributions. This particularly applies to
the contemporary IVIVE incorporated PBPK models, where
most of the prior information with regards to drug-related
parameters comes from in silico methods and in vitro
experiments, which either produce point estimates (e.g.
mechanistic predictions of partition coefficients) or esti-
mates in which uncertainty and variability cannot be sepa-
rated (e.g. intrinsic clearance predictions from pooled
human liver microsomes). In addition it should be noted
that if the analyzed data do not contain enough informa-
tion with regards to the model parameters upon estima-
tion, these parameter estimates will shrink towards the
prior information which could not be updated. Finally, one
of the most important shortcomings is that the Bayesian
population approach is very computationally intensive
and time-consuming, even with present day fast comput-
ers [59, 60].

In order to overcome this latter obstacle without losing
the advantages of using prior information, a maximum a
posteriori (MAP) estimation method can be applied, which
is commonly referred to in population pharmacokinetics
literature with the contradictory phrase ‘use of frequentist
priors’. This method was introduced by Gisleskog et al.
[61], as a way to stabilize a sparse data population analysis
with information from previous studies when the data
from the latter are inaccessible or impractical to pool.
Briefly, this is achieved by incorporating a penalty term on
the objective function upon minimization, which reflects
a representation of the available prior knowledge with
regards to model parameters. However, this approach
should be clearly distinguished from a Bayesian method in
that it does not assume a distribution governing random-
ness on the parameter estimate, but rather outputs point
parameter estimates which are considered as unknown
constants in the model. Nevertheless, this method has
been successfully applied in PBPK modelling [59] provid-
ing parameter estimates which were in close agreement
with those from a typical Bayesian analysis [56], but with a
substantial improvement in computation times.

Parameter estimation in PBPK models
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Overparameterization, lumping and
semi-mechanistic approach

In practice, in a typical pharmacokinetic study it is not
usually achievable (or statistically significant) to fit more
than three exponentials to a plasma concentration profile,
even with reasonably noise free data sampled over a long
period after the dose [32]. Therefore, complex PBPK
models with numerous compartments and parameters
can be considered as a priori overparameterized. The
increased dimensionality of such models cause computa-
tional and numerical problems during estimation and
therefore simpler but still physiologically satisfactory
models are desired. This can be achieved with model order
reduction techniques, which aim to reduce formally the
dimensionality of a system of differential equations
without losing the key dynamic information [62]. One of
these methods, that is proper lumping of tissue compart-
ments, has been applied in PBPK to derive simpler models
with kinetic behaviour similar to that of the original
complex model and a formal methodology for this proce-

dure has been proposed [63]. Other lumping procedures
have been also applied to PBPK models [64, 65], with the
latter being appealing in that it imposes fewer restrictions
on lumping conditions and allows concentration predic-
tions in the tissues of the original non-lumped model.
However, it should be stated that lumping procedures are
valid only locally in the parameter space for a particular set
of parameter values [66]. This is of high importance in the
context of PBPK models where most of the model param-
eters are not precisely known and carry a certain degree of
uncertainty and variability. In order to address this issue to
some extent, a Bayesian automated lumping method has
been proposed [67] that is optimal on average as it makes
compromises between the different parameter values.

Finally, an appealing approach that avoids some of
the parameter estimation difficulties in complex PBPK
models is the use of minimal or semi-mechanistic models.
These models offer great flexibility as they retain their
physiological mechanistic nature only in the parts of
the model that are relevant to the desired modelling
purpose (see [68] as an example). In the same vein a
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generalized minimal PBPK model was recently published
[69] that allows the estimation of physiologically relevant
pharmacokinetic parameters and offers a reasonable alter-
native to full PBPK modelling when only plasma concen-
tration data are available.

Conclusions and recommendations

Until recently PBPK models were mainly used to simulate
concentration profiles using parameter values informed
from in vitro or in silico experiments. Parameter estimation
in these complex models from observed clinical data was
rarely carried out and simpler empirical compartmental
models were mainly utilized for this purpose. However,
depending on the modelling purpose there are situations
where mechanistic modelling offers advantages and a
trend towards it has been recently observed. Therefore the
combination of physiologically based modelling with
parameter estimation techniques seems to be the way
forward and already its impact on the PBPK literature pro-
gressively increases. An overview of this ‘middle out’
approach together with some of the key concepts
described in this manuscript is schematically presented in
Figure 1. Although such an approach is not without limita-
tions, some of which were raised here, further methodol-
ogy research in this field and the rapid advances in
computer science can address many of them. The main
advantage of this approach is that it allows us to integrate
information from in vitro or in silico experiments together
with information deriving from observed clinical data
and therefore develop mechanistically sound models with
clinical relevance. Subsequently, it is apparent that
‘bottom up’ and ‘top down’ modelling strategies, which
were traditionally separated, need to approach and
borrow skills from each other.
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