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Optimal paediatric pharmacotherapy is reliant on a detailed understanding of the individual patient including their developmental
status and disease state as well as the pharmaceutical agents he/she is receiving for treatment or management of side effects. Our
appreciation for size and maturation effects on the pharmacokinetic/pharmacodynamic (PK/PD) phenomenon has improved to the
point that we can develop predictive models that permit us to individualize therapy, especially in the situation where we are
monitoring drug effects or therapeutic concentrations. The growth of efforts to guide paediatric pharmacotherapy via model-based
decision support necessitates a coordinated and systematic approach to ensuring reliable and robust output to caregivers that
represents the current standard of care and adheres to governance imposed by the host institution or coalition responsible.
Model-based systems which guide caregivers on dosing paediatric patients in a more comprehensive manner are in development at
several institutions. Care must be taken that these systems provide robust guidance with the current best practice. These systems must
evolve as new information becomes available and ultimately are best constructed from diverse data representing global input on
demographics, ethnic / racial diversity, diet and other lifestyle factors. Multidisciplinary involvement at the project team level is key to
the ultimate clinical valuation. Likewise, early engagement of clinical champions is also critical for the success of model-based tools.
Adherence to regulatory requirements as well as best practices with respect to software development and testing are essential if these
tools are to be used as part of the routine standard of care.

Introduction

There is a growing appreciation that pharmacometric
approaches used to support drug registration, drug mono-
graph information [1] and generalized dosing guidance
can play an important role in the management of pharma-
cotherapy for children. In a drug development setting,
modelling and simulation practices are inherently applied
in a feedback loop constantly informed by further experi-
mentation and experience. Likewise, the logical clinical uti-
lization of such a framework is to employ a Bayesian
approach reliant on the current best model with the inten-
tion of challenging model priors or indeed even the model
structure as new data and clinical knowledge come to
light. Ultimately, such an environment would provide a
dynamic system that evolves based on the evidenced-
based knowledge captured in these intelligent tools. The

value for children should be obvious given both the
current knowledge void that paediatric caregivers are pre-
sented with while trying to manage pharmacotherapy and
the dynamic nature of particularly young children with
respect to maturation and development. While much of
the emphasis to date has been very pharmacokinetic (PK)-
centric, pharmacodynamic (PD) and clinical outcome
based response models have also been proposed [2] and
are certainly the focus of several regulatory authorities
(principally the FDA and EMA) [3] and the NIH [4].

Information technology (IT) is ubiquitous in the present
health care industry. The electronic nature of health care
information has meant quick and flexible access to data
enabling health care professionals to access successfully
patient records, though indeed the initial purpose of col-
lecting patient level data was to facilitate billing. IT is con-
stantly empowering health care providers by providing
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tools to more effectively care for their patients though it is
clear that the primary emphasis behind the construction of
electronic medical record (EMR) systems is not decision
support [5, 6]. The complexity of using patient information
has become an increasing cause of concern among physi-
cians and their IT vendors [7] although the potential to
leverage EMR data to guide hospital practice is well appre-
ciated [8, 9]. Regulations outlined in the Health Insurance
Portability and Accountability Act (HIPAA) of 1996 have
contributed to concerns regarding using patient level data
and represents a hurdle which must be taken into consid-
eration when designing such systems.

This manuscript discusses current efforts and organiza-
tions engaged with the construction of models to guide
patient care. A review of the critical issues involved with
the construction of these models, interface with various
software systems, hardware and data architecture issues as
well as concerns regarding governance, testing and imple-
mentation are also provided. Emphasis is placed on
models to guide paediatric pharmacotherapy and ulti-
mately improve patient outcomes as this represents an
especially challenging environment given the data scarcity
and dynamics of the developing child. Experience building
prototype model-based decision support tools at the Chil-
dren’s Hospital of Philadelphia (CHOP) is described with
other collaborative efforts of similar purpose.

Methods

Current status: landscape for model-based
decision support
The development of predictive models to manage drug
therapy and guide medical procedures is not new though
the advent of high performance computing has dramati-
cally affected the nature and vastness of the underlying
data and increased the complexity of the models that can
be solved in a clinically meaningful time frame. Hence, the
current environment for modelling and simulation pro-
vides an opportunity for real time processing, converting
the model utility from research-based generalization to an
opportunity for patient specific clinical guidance. Table 1
illustrates the diversity of patient-centred predictive
models used to support an array of clinical decision
making [10–16]. Table 1 is representative and certainly not
exhaustive with all examples focused on clinical endpoints
in adults.

The literature is filled with many such models
described in great detail but with no follow-up in clinical
practice, an opportunity unfulfilled. While demonstrated
to be rigorous, perhaps also shown to promote positive or
prevent negative outcomes, there is no evidence of their
clinical application. Hence, clinical implementation is a
goal but also an important metric for establishing the clini-
cal proof-of-concept. There are a growing number of
examples where such tools that front-end (part of an algo-

rithm responsible for collecting input in various forms
from the user) predictive models are, in fact, given an
opportunity to provide clinical guidance. The internet pro-
vides a forum for many of these solutions. Table 2 provides
a representative listing of various web-based forums that
provide guidance to clinical caregivers [17–22]. In each
case the web service provides an input form from which a
user can enter patient specific data and obtain the desired
clinical results based on varying degrees of model sophis-
tication from a simple close form equation to a Bayesian
forecasting algorithm. In most cases there is little docu-
mentation, there is no barrier to who can access the tool
and there is no requirement that the user be a trained
medical professional. There may or may not be reference
material explaining the calculations derived behind the
scene and there are varying degrees of simple disclaimers
that presumably free the developer from any liability in
guidance. Of course, none of these is likely to be used in a
real-time setting. There are no summaries on frequency of
use provided from these web offerings. With the current
emphasis on traceability of decision making it is also diffi-
cult to imagine such output is added to any hospital-based
EMR system.

Finally, with respect to hospital-based EMR decision
support, there are indeed efforts on this front that merit
interest. Many of these rely on prediction engines avail-
able within the EMR systems themselves and are mostly
focused on providing caregivers with guidelines derived
from and/or through EMRs [8, 23, 24]. Likewise, while
they may appear limited with respect to computing
power and functionality, such computational tools are
not warranted in many cases. This is mainly because any
requirement for complex modelling is usually handled
outside of the production environment during model
development. In the implementation stage, the focus is
on prediction and even rigorous Bayesian forecasting
models can be utilized without much computational
overhead. The broader challenge is dealing with ‘big

Table 1
Representative model systems used to inform patient care

Citation Model/patient population

Chu et al. [10] Decision support to facilitate management of patients
with acute GI bleeding

Schurink et al. [11] Bayesian decision-support system for diagnosing
ventilator-associated pneumonia

Rees et al. [12] Physiological models and decision theory to select
appropriate ventilator settings

Freedman et al. [13] Wilkoff mathematical model to assess pacemaker
chronotropic response

Picchini et al. [14] Mathematical model of the euglycaemic
hyperinsulinaemic clamp

Hann et al. [15] Cardiac model of non-linear valve law to guide
ventricular interaction dynamics

Jornil et al. [16] Dose adjustment of nortriptyline based on activity of
CYP3A4 and CYP2D6
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data’ (generally refers to data sets so large and complex
that it becomes difficult to process using basic database
management tools or traditional data processing applica-
tions; exobyte data sets, 1018 bytes). Typically, these
systems are transactional-based with data archival
managed to keep the system responsive. An important
aspect of the new generation of model-based tools is the
ability to drill-down longitudinally within a patient’s
history or across patients perhaps over years of data col-
lection as would be the occasion for rare diseases or
infrequent medication utilization.

Environmental challenges
Regulatory considerations One concern that typically
arises during the development of model-based tools is the
regulatory concern over such applications. This continues
to be a topic of great interest and confusion. Most impor-
tantly, it is one of the primary reasons that many ideas and
actual research efforts are stopped prior to the completion
of a final product for implementation. In the US, the ques-
tion is generally focused on the extent to which the FDA

needs to review these tools and whether they constitute a
device. FDA’s Center for Devices and Radiological Health
(CDRH) is responsible for regulating firms who manufac-
ture, repackage, relabel, and/or import medical devices
sold in the United States. Medical devices are classified
into Class I, II and III. Regulatory control increases from
Class I to Class III. The device classification regulation
defines the regulatory requirements for a general device
type. Most Class I devices are exempt from Premarket Noti-
fication 510(k), most Class II devices require Premarket
Notification 510(k) and most Class III devices require
Premarket Approval. Classification is risk based with the
risk the device poses to the patient and/or the user the
major factor in determining the assigned class. Class I
includes devices with the lowest risk and Class III includes
those with the greatest risk.

Regarding the designation of a product as a device,
the FDA website provides the following guidance
regarding the classification of devices (http://www
.fda.gov/MedicalDevices/DeviceRegulationandGuidance/
Overview/ClassifyYourDevice/ucm051512.htm):

Table 2
Organizations providing web-based model predictions

Host and URL
Function

Input Output

American Joint Committee on Cancer Melanoma Database
http://www.melanomaprognosis.org/Predictiontools.aspx

Enter patient characteristics (demographics,
pathological questions)

Predicts 1, 2, 5 and 10 year survival rates from
initial diagnosis (with 95% CI) for an individual
patient.

Massachusetts General Hospital [17]
http://www.massgeneral.org/about/pressrelease.aspx?id=1189

Medical history of patient experiencing
ischaemic stroke; underwent brain scans

RRE-90 score (risk of having another stroke within
3 months by looking at stroke risk factors, such
as history of mini-stroke, or TIA, age and type of
first stroke experienced along with information
from brain scans.

Archimedes Quantifying Healthcare
http://archimedesmodel.com/indigo

Patient’s laboratory results, diagnoses,
medications, measurements and risk factors
such as smoking and family history
extracted from electronic sources (e.g. EHRs,
data warehouses, or disease registries).

Individualized guidelines include person-specific
risk of adverse events (e.g. heart attack, stroke,
diabetes onset) and predicted health impact of
interventions (e.g. medications / lifestyle changes
to reduce risk.

PeraTrend for Pediatrics by PeraHealth
http://www.perahealth.com/solutions/pediatric-collaborative/
PeraTrend is fully integrated with Epic, Cerner, Allscripts and McKesson

Patient’s vital and laboratory data through the
patent-protected Rothman Index.

Generates a graphical score that shows a patient’s
trended condition. Rothman Index can flag
patient deterioration much earlier, facilitating a
wide range of possible interventions and care
options.

Pediatric Dose Calculator v1.2
http://www.rubbermallet.com/pedform.html

Patient’s demographics and haemoglobin
data.

Dosages for common anaesthetic agents, vital signs,
tube sizes, fluid requirements and emergency drug
dosages.

Mayo Clinic [19, 20, 22]
http://www.mayoclinic.org/gi-rst/mayomodel1.html
http://www.mayoclinic.org/gi-rst/mayomodel2.html
http://www.mayoclinic.org/gi-rst/mayomodel3.html
http://www.mayoclinic.org/gi-rst/mayomodel4.html
http://www.mayoclinic.org/gi-rst/mayomodel10.html

Patient’s laboratory results, diagnoses,
medications, measurements, demographics.

Individualized natural history predictions for various
liver diseases.

Warfarin Dosing Guidance supported by the Barnes-Jewish
Hospital at Washington University Medical Center, the NIH,
and donations [18]

http://www.warfarindosing.org/Source/Home.aspx

Patient’s demographics, relevant comedications,
target and actual INR, genetic information
(e.g., VCORC1 and CYP 2C9 genotype), liver
disease and smoking status

Individualized, estimated dose to achieve target
INR

Limoges University Hospital and Inserm
Transplantation / Nephrotic Syndrome Patients [21]
https://pharmaco.chu-limoges.fr/

Patient’s demographics and PK data. Output: Dosages for common MPA, CsA and
tacrolimus via Bayesian forecasting routine and
PK report.

CsA, ciclosporin A; INR, International Normalized Ratio; MPA, mycophenolic acid; VCORC1, Vitamin K epoxide reductase complex subunit 1.
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If a product is labelled, promoted or used in a manner
that meets the following definition in section 201(h) of
the Federal Food Drug & Cosmetic (FD&C) Act it will
be regulated by the Food and Drug Administration
(FDA) as a medical device and is subject to pre-
marketing and post-marketing regulatory controls. A
device is:
‘an instrument, apparatus, implement, machine, con-
trivance, implant, in vitro reagent, or other similar or
related article, including a component part, or acces-
sory which is:

• recognized in the official National Formulary, or the
United States Pharmacopoeia, or any supplement to
them,

• intended for use in the diagnosis of disease or other con-
ditions, or in the cure, mitigation, treatment, or preven-
tion of disease, in man or other animals, or

• intended to affect the structure or any function of the
body of man or other animals, and which does not
achieve its primary intended purposes through chemical
action within or on the body of man or other animals
and which is not dependent upon being metabolized
for the achievement of any of its primary intended
purposes.

While the FDA has classified and described over 1700 dis-
tinct types of devices and organized them in the CFR into
16 medical specialty ‘panels’ such as Cardiovascular
devices or Ear, Nose, and Throat devices, none of these
relate to software solutions per se.

In Europe, EU legislation is also focused on the conten-
tion that software constitutes a medical device (http://
ec.europa.eu/health/medical-devices/documents/index
_en.htm) with the most recent 2007 amendment stating
that software intended for medical purposes could be clas-
sified as a medical device. The excerpt from the regulations
states the following:

‘medical device’ means any instrument, apparatus,
appliance, software, material or other article, whether
used alone or in combination, together with any acces-
sories, including the software intended by its manu
facturer to be used specifically for diagnostic and/or
therapeutic purposes and necessary for its proper
application, intended by the manufacturer to be used
for human beings for the purpose of:
– diagnosis, prevention, monitoring, treatment or alle-
viation of disease,
– diagnosis, monitoring, treatment, alleviation of or
compensation for an injury or handicap,
– investigation, replacement or modification of the
anatomy or of a physiological process,
– control of conception, and which does not achieve its
principal intended action in or on the human body by
pharmacological, immunological or metabolic means,

but which may be assisted in its function by such
means;

While there is no collective clarity here, there is no prec-
edent either. For the paediatric in-patient setting, there is
an implicit reliance on the governance regarding the use
of medicines that is defined within a particular institution
(e.g. Drug use evaluation and therapeutics standards com-
mittees or equivalent groups). This is well appreciated
within the American Academy of Pediatrics through the
Child Health Informatics Center (http://www2.aap.org/
informatics/chic.html) and likely the broader international
paediatric community as well.

Security and patient privacy Security rules outlined in
HIPAA require organizations that handle electronic health
data to implement measures for controlling access to con-
fidential medical information and protecting it against
compromise and misuse. Integrated model-based deci-
sion support systems must therefore make every effort to
ensure the protection of human subjects, as mandated by
HIPAA. A separate Institutional Review Board (IRB) applica-
tion is most likely required. At CHOP, IRB approval for our
paediatric knowledge base (PKB) effort [25] was granted in
2005 and has since been renewed annually. As part of the
IRB, all the members of the investigative team are required
to complete the Collaborative Institutional Training Initia-
tive (CITI) program, web based training for the protection
of human subjects in research. The program is an institu-
tionally driven course curriculum with user-friendly pres-
entation modules and assessment tools. Each member of
our team also completed a ‘potential conflict of interest
form’ as instructed by our IRB. Hence, all reasonable pre-
cautionary steps were taken to protect the privacy and
safety of the paediatric patients involved even at the plan-
ning and prototyping stage. It should be noted that the IRB
approval is required for the research phase of the project
only. Once the Therapeutics Standards Committee has
approved the production version of the dashboard solu-
tion and successful production qualification has been
completed, IRB review is no longer required.

One of the primary issues when working with patient
data is the ability to de-identify records even during the
prototype development. For the most part, this is easily
accomplished by stripping the patient medical record
number from the analysis dataset but birth date must also
be removed. This can be accomplished after the calcula-
tion of elapsed age is performed. Data are stored only
on secure, password-protected systems and accessed
only by authorized personnel via user profile meta-data.
This would also seem to be reasonable for web-based
technologies as well when sharing the results of pooled
EMR data. The Children’s Hospital Corporation of Ameri-
ca’s (CHCA) data model used in the Pediatric Health Infor-
mation System (PHIS) has similar controls in place (http://
www.chca.com/index_flash.html).
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Project design
Planning: scoping, team and governance Project team
composition is an essential element that drives the likeli-
hood of project success. The PKB project team at CHOP was
comprised of clinical, computational, pharmacometric,
data management, programming, system architecture and
quality assurance expertise. The efforts of the team were
overseen by a steering committee that provided gui-
dance with respect to clinical benefit, drug dashboard
prioritization and the integration with the hospital EMR. A
paediatric critical care physician and board-certified clini-
cal pharmacologist and paediatrician, headed the Steering
Committee which included the head of the IRB as well. The
Steering Committee also included members from the phar-
macy, IT and clinical pharmacology departments as well as
hospital administration. The Steering Committee served as

the project advocates for the PKB team during the presen-
tation of the individual dashboards to the hospital Thera-
peutics Standards Committee (TSC) that has ultimate
jurisdiction over the hospital formulary and the institution-
specific drug and dosing guidance.

Figure 1 provides a schematic illustrating the idealized
project team composition and governance for a model-
based decision support system interfaced to an EMR
system. It illustrates both the workflows, interaction
between governing bodies and feedback to the project
team. Project scoping prior to the definition of functional
requirements is a critical first step and acknowledges the
role of the clinician champion to speak for the eventual
end-user community ensuring that tool functionality
meets the needs of the target audience as well as the look
and feel of the system including ease of operation. While

Project team Governance infrastructure

Clinical
champions

(RN, PharmD,
or MD)

Application
developers

(Programming,
web services,
API inerface)

DUE
(Drug use
evaluation

committee)

TSC
(Therapeutic

standards
committee)

Clinical
pilot

(Super-user
community)

Production
launch

Clin pharm
M&S

(Modellers,
programming)

Hospital IT
(EMR support,
sys architect,

security)

∑ Needs assessment
∑ Pharmacotherapy options
∑ Review of functionality
∑ Prototype performance
∑ Consistency with current practice
∑ Hospital compliance
∑ Recommendations to team
∑ Recommendations toTSC

∑ Project scoping
∑ Functional requirements
∑ Screen/display mock-up
∑ Prototype development
∑ Present to DUE and TSC
∑ Clinical validation
∑ User testing
∑ Production/launch
∑ Implementation

∑ Historical assessment
∑ Baseline metrics, performance
∑ Requirements for testing outcomes
∑ Pre-study questionnaire
∑ In-life assessment
∑ Useability feedback
∑ User testing
∑ Periodic review requirements
∑ Lifecycle management

∑ Reviews DUE assessment
∑ Clinical champion feedback
∑ Prototype performance
∑ Develops hospital expectations
∑ Clinical validation requirements
∑ User testing expectations
∑ Defines requirements for launch
∑ Defines implementation

Figure 1
Project team composition and organizational interface with governance infrastructure and workflow for development
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there is an opportunity to educate caregivers on clinical
pharmacologic principles, this cannot dictate the design of
a system whose ultimate goal is to deliver pharmaco-
therapy guidance.

Evaluation
Process: benchmarks, end-user satisfaction, validation In
order to ensure accuracy, quality and maintenance as well
as complete coverage of the user requirements and com-
pliance with federal regulatory policies of HIPAA and
21-CFR Part-11, user acceptance sign-off following formal
system and user acceptance testing is essential. Our
method for ensuring the quality and requirement com-
pleteness of PKB is via continuous process quality assur-
ance embedded in each step of the development process
coupled with a comprehensive acceptance and validation
testing phase at the end of development.

Key process steps include:

• Development of formal user test cases from requirements
• Development of unit test and system test cases with each

design specification
• Categorization of test cases into ‘Critical’ or ‘Nice to have’
• Development and maintenance of requirements trace-

ability matrix
• Integrating unit testing with source code development
• Versioning source code and build packages to ensure

consistency of software releases
• Iterative integration/deployment cycles to detect soft-

ware defects early in the development phase
• Regression testing with every new point release (Note, in

this context regression testing refers to the identification
of software bugs, or ‘regressions’, in existing functional
and non-functional areas of a system after changes, such
as enhancements, patches or configuration changes have
been made).

Key steps for acceptance and validation testing
include:

• Test design, test plan and test case development
• Validation plan and identification of required

documentation
• Review and approval by project team
• Test case execution and documentation of test results
• Defect reporting and retest results
• Issue of final testing and validation report
• User training
• Bug tracking and reporting on production usage

To fulfill the user testing phase, it is essential to identify a
small user test group that collectively spans the full range
of functionality with each user focusing on a specific area
or sub-component of the larger system. A formal test
design and test plan is first developed, reviewed and
approved by the project sponsor and IT leaders of the

project. In addition, a validation plan identifying required
documents to support the effort will need to be developed
and approved in collaboration with the QA and validation
group. Once all approvals are in place, detailed test cases
can be developed to cover functionality, as well as a sepa-
rate set of test cases developed to cover issues arising from
21-CFR Part-11 compliance and HIPAA requirements. The
resulting test cases will again be reviewed and approved
by the user community and IT leaders as well as the project
sponsors and stakeholders. Once all approvals are in place
the testing and operational environments can be prepared
with required documentation and signoffs.

Actual testing is executed by one or more persons
(from end user and IT personnel) who are not part of the
development team. The conduct of the tests is carried out
in an isolated and qualified environment and audited by
an outside reviewer, typically by a member from the QA or
validation team. Qualification of the environment and
application installation are verified by signed documenta-
tion identifying the events captured. Each test is marked
‘pass’ or ‘fail’ and a defect report produced. Any defects
identified are subsequently corrected, repackaged and
retested until all critical test cases have passed, ensuring
reliable operation. Tests categorized as ‘Nice to have’ will
not be required to ‘pass’ as long as acceptable work-
around procedures can be identified to achieve the same
result. After testing is complete, a final testing and valida-
tion report is issued before deploying the system into pro-
duction. Documents can be archived and made available
for review by internal and external audit personnel.

A key step in ensuring proper use of a newly deployed
application is user training. User training is required of all
users before granting access to the system. Evidence of
satisfactory training and achievement scores should also
be maintained. And finally, a bug-tracking system to track
and report errors in production or improper usage should
be instituted to monitor ongoing performance for quality
improvements and identifying areas requiring additional
training.

Implementation: production, maintenance, life cycle man-
agement The operational and clinical performance and
impact of the model-based decision support can be
assessed by capturing utilization including physician
acceptance measures and changes in prescribing practices
relative to baseline. Questionnaires can be used to get
direct feedback from the user community (prior to and
post-launch). This should allow an assessment of the
usability of the system and the critical data defining the
path of decision making. Such data will have impact on
the efficiency of current therapeutic practices relative to
patient outcomes, the pharmacoeconomics of the formu-
lary and an independent measure of patient safety based
on pharmacotherapeutic intervention.

Periodic reports that summarize the usage of the
system (# users, # site hits, duration of usage, etc.)
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can assist with the program maintenance as well as the
life cycle management. By examining changes in drug
utilization of targeted agents (e.g. individual drug dash-
boards) at finite time windows relative to baseline (pre-
deployment), we can examine the effectiveness (or not) of
the system. Specific dosing guidance provided by caregiv-
ers utilizing these model-based decision support tools
relative to prescribing habits dictated by the standard of
care (formulary) can easily be assessed relative to out-
comes. Finally, surveying the end-user community, from
which we can assess user friendliness, user satisfaction and
perceived clinical benefit will drive satisfaction with the
tools and ultimately dictate their value. This implicitly
recognizes that teams exist as part of a long term commit-
ment and evolve as necessary to changes in the underlying
science (PK/PD knowledge, etc), practice and user
feedback.

Results

The CHOP experience
We have been developing a PKB at CHOP in attempt to
personalize paediatric pharmacotherapy by leveraging
our EMR system. Such a platform would be able to: (1)
provide dosing guidance consistent with formulary stand-
ard of care, (2) examine patient pharmacotherapeutic
indices with respect to individual agent performance rela-
tive to historical controls derived from the hospital data
warehouse, (3) explore treatment, diagnoses, drug cor-
relation in conjunction with utilization and (4) educate
physicians on clinical pharmacologic principles specific
to population and drug combinations of interest. Static
compendial information (Lexi-Comp, Physician’s Desk Ref-
erence, etc) can be searched, indexed and summarized for
easy viewing. Forecasting of relevant drug exposure or
clinical markers (laboratory values, pharmacodynamics,

adverse events) is made available in the ‘Drug dashboard’
modules. This concept has been discussed previously [25].

Two prototype dashboards (methotrexate and
tacrolimus) have been constructed following the previ-
ously discussed paradigms although clinical validation has
not been completed. Table 3 shows the general agree-
ment between drug attributes and desired functionality
for each dashboard developed by the project team from
the initial scoping phase. Forecasting tools permit dosing
scenarios to be explored via a user-friendly interface that
front-ends a paediatric population-based PK/PD model.
The model represents the current, best description of the
dose–exposure relationship. The forecasting routine relies
on the population priors in a Bayesian context to predict
future events influenced by individual patient data. While
there is no functionality at present to incorporate artificial
intelligence into the system, the computational framework
is there to do this if desired. Mock-up screens were devel-
oped largely from the feedback of the clinical champions
and the end-user community. The details of the metho-
trexate model [26] and dashboard performance [27] have
been previously presented. Supplemental materials (Table
S1 and Figure S1) provide examples of the source materials
used during the methotrexate dashboard prototype quali-
fication. Tacrolimus is an immunosuppressive drug that is
used after allogenic organ transplant to reduce the activity
of the patient’s immune system, thereby reducing the risk
of organ rejection. The need for guidance in dosing
tacrolimus is critical given the high variability in tacrolimus
pharmacokinetics [28–30] in children making it difficult
to predict what drug concentration will be achieved from
a given dose adjustment. It has a narrow therapeutic
window with a great need to avoid toxicities at higher
concentrations and prevent rejection at lower concentra-
tions [28]. The incidence of toxicity is 45% at plasma con-
centrations > 15 μg l−1 with a 30% incidence of acute
rejection at concentrations < 5 μg l−1. Our initial prototype

Table 3
Alignment of drug attributes with initial desired dashboard functionality for methotrexate and tacrolimus prototypes developed at CHOP

Drug characteristics Dashboard functionality

Methotrexate • Anti-folate chemotherapeutic agent
• Renal excretion; enterohepatic recirculation
• Toxicity at high or prolonged low exposure
• Therapeutic failure at prolonged low exposure
• Highly variable PK
• Patients receive MTX based on one of several CHOP / COG protocols
• TDM guided adjustment

• Views and predictions of:
– MTX concentrations, creatinine clearance
– Time to reach threshold plasma concentration
• Guidance for dose titration
• Diagnosis of delayed MTX clearance due to acute nephrotoxicity
• Rescue therapy guidance

Tacrolimus • Inhibits IL-2-dependant T cell activation; multiple transplant settings
• Variable PK
• Wide range of oral doses (1–44 mg day−1) to maintain trough levels of 5–20 μg l−1

• Toxicities related to exposure include nephro and neurotoxicity, infection and
lymphoproliferative disease with over-immunosuppression

• TDM: 12 h trough concentration

• Provide predictions of:
– TAC concentrations
– Liver function
– Adjustments to maintain threshold plasma concentration
• Guidance for dose titration
• Avoid toxicities at high levels; prevent rejection at low levels:
– 45% toxicity incidence > 15 μg l−1

– 30% incidence of acute rejection < 5 μg l−1
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tacrolimus dashboard was constructed through collabora-
tion with the nephrology department though future ver-
sions of the dashboard are planned to extend across
transplant type and thus will be reliant on multiple paedi-
atric population PK models.

Figure 2 shows screen captures of the tacrolimus dash-
board’s view to clinical signs (laboratory values) that the
clinician user has deemed essential to guide therapy
including tacrolimus plasma concentrations. Historical
data within and across patient subgroups (e.g. age, trans-
plant type, bodyweight) can also be viewed. The dash-
board also permits forecasting of plasma concentrations at
select time points consistent with specific clinical protocols

used to both limit and manage toxicity. The current dash-
board prototype pulls in data directly from the EHRs. Anno-
tation of ‘other’ events is possible however and the system
captures the date/time stamp so that the audit trail can be
maintained. The forecasting tool permits dosing scenarios
to be explored via a user-friendly interface that front-ends
a paediatric population-based PK model based on data
collected from paediatric renal transplant patients.

Other initiatives
It is hoped that a compilation of dashboards for a broader,
global PKB will be possible through external collabora-
tions. Such a strategy may be possible through a secure,

A

Figure 2
Screen captures of prototype tarcrolimus dashboard showing (A) overlays of tacrolimus concentration with user-selected biomarkers , TAC; , SRCR;

, ALT and (B) concentration–time course relative to dose adjustments and the occurrence of adverse events. , TAC; , DOSE; , CLIN_EVENT
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web-based environment that accumulates relevant paedi-
atric data in a secure, HIPAA-compliant informatics system.
Similar work has been initiated at Cincinnati Children’s
Hospital [31, 32], Seattle Children’s Hospital [33], Uppsala
University Hospital [34–36] and Children’s Mercy Hospital
[37] with others soon to follow. Equivalent work in adults
has been initiated by many and the longstanding work of
Dr Roger Jelliffe [38–40] is being continued by Dr Michael
Neely [41] and soon to produce the next generation
of model-guided dose individualization tools. Other web-
based prediction tools focused on dosing require-
ments are under development by Drs Bruce Green
(http://www.doseme.com) and Nick Holford (http://www
.firstdose.org and http://www.nextdose.org). This review is
not exhaustive as it most certainly does not capture early

efforts where public knowledge is not as well informed or
where proprietary issues are a concern. Nonetheless, it
illustrates the global recognition of the effort as well as the
basis for the approach.

Discussion

The promise of personalized medicine is to be able to
deliver individualized pharmacotherapy to patients in
a manner that recognizes their unique physical character-
istics and disease status and acknowledges the various
therapies, procedures and other medicines that are a part
of a patient’s past and current treatment plan. This ideal
would seem to be best accommodated by personalized

B

Figure 2
Continued
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health records that maintain patient data in an analysis-
ready format that is automated to project patient response
to treatment and future outcomes based on the input of
new data in real time. Such a system does not currently
exist but it is hardly science fiction even today.

Children stand to benefit the most from such an envi-
ronment and decision support system. They still represent
an understudied population and are always likely to lag
behind adults with respect to clinical investigation and
availability of drug experience. Their growth and develop-
ment present a challenge for dosing but one in which
great strides have been made to accommodate enzyme
ontogeny [42, 43], maturation [44] and developmental
[45, 46] considerations. The greatest barriers to designing
and implementing such tools and systems have little to
do with clinical pharmacology, pharmacometrics or thera-
peutics. Poor application designs excluding the caregiver
end-users, lack of multidisciplinary teams, lack of govern-
ance around the project planning and life cycle manage-
ment and the social dynamics of patient care represent
the ultimate challenges to development and actual
implementation.

Regarding the importance of multidisciplinary teams,
Collins et al. [47] provide an excellent example of the
necessity of developed ‘tools’ to communicate with
various team members and the failures associated with
ignoring this involvement in the planning and design.
Positive examples, team engagement, good communica-
tion and transparency are essential to ensure user accept-
ance and overall project success [24]. This has been our
experience as well and will be critical to achieve the
broader goal of engaging the global community to invest
in the shared, systematic development of drug dash-
boards, that front-end model-based decision support
systems.

While recent emphasis has been placed on EMR-
interfaced designs, it may well be that web-based, hosted
systems reliant on cloud solutions are more reliable and
easier to manage. Data from pilot web-based systems are
encouraging in terms of utilization [48] and education/
adherence to guidelines [48]. There have been good exam-
ples where EMR-based solutions were transitioned to web-
based platforms [49, 50]. Several computerized physician
order entry/clinical decision support (CPOE/CDS) systems
have been implemented with great success and the review
of longstanding systems [51] illustrates common practices
which are consistent with the planning and design dis-
cussed herein. If we simply connect drug databases to
EMRs [52], we will underachieve. A transparent, model-
based environment that evolves based on evidence-based
results is indeed a challenge but a worthy goal, especially
when the governance of such a system pushes us to chal-
lenge the status quo. While the future of such systems may
benefit from the input of patients and family to improve
the quality of the underlying data further improving out-
comes [53], it will also put a further burden on well-

designed and governed systems. The collective wisdom of
paediatric clinical pharmacologists, caregivers and IT spe-
cialists would be well served by this task.
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