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Clinical drug development remains a mostly empirical, costly enterprise, in which decision-making is often based on qualitative
assessment of risk, without properly leveraging all the relevant data collected throughout the development programme. Model-based
drug development (MBDD) has been proposed by regulatory agencies, academia and pharmaceutical companies as a paradigm to
modernize drug research through the quantification of risk and combination of information from different sources across time. We
present here a historical account of the use of MBDD in clinical drug development, the current challenges and further opportunities for
its application in the pharmaceutical industry.

Motivation for model-based drug
development (MBDD)

Increasing late phase attrition rates, decreasing approvals
of new compounds, expiring patents of blockbuster drugs
and increasing price control pressure from payers have all
led to the so-called pipeline problem in the pharmaceutical
industry. Stakeholders have sponsored various initiatives
to evaluate the root causes of the problem and propose
ways to address them [1]. A recurrent reason identified
through these initiatives is the archaic nature of the drug
development process itself, which is based on a model
that has evolved little since the 1960s, although improve-
ment in some regions has been observed over the last
decade. Another plausible reason for the current problem
is the conservative nature of the pharmaceutical industry
compounded by the fear that regulatory agencies may be
reluctant to accept novel approaches as bases for regula-
tory approval. Therefore, it is imperative that modern
approaches to drug development worldwide are estab-
lished quickly, before the cost : benefit ratio for developing
new drugs becomes unsustainable.

Modelling has long been used in drug development as
an efficient tool to summarize and combine information

from a variety of data sources [2]. In addition to modelling
exercises conducted in the field of statistics, pharma-
cokinetic (PK) and pharmacodynamic (PD) models have a
long and successful history of describing what the body
does to drugs and how drugs affect the body, respectively.
They have been used in all critical phases of clinical devel-
opment, providing supportive information for study
design and drug labelling. Usually, the sophistication
and impact of modelling, which requires assumptions,
decrease if a study is regarded as confirmatory from a
regulatory submission aspect, i.e. primary analyses in
pivotal studies rarely involve more than a simple statistical
model, such as an analysis of covariance (ANCOVA) or a Cox
proportional hazards model. This is partly due to the fear of
reliance on assumptions and lack of familiarity with non-
standard methods. However, considerable efficiency
gains can be obtained by utilizing modern modelling
approaches, even in critical analyses in registration studies
[3].

Clinical trial simulation should always go hand-in-hand
with modelling. It functions as a foundation for modern
protocol development by simulating trials under a range
of designs, scenarios and assumptions, thereby providing
operating characteristics (e.g. statistical power, probability

British Journal of Clinical
Pharmacology

DOI:10.1111/bcp.12341

108 / Br J Clin Pharmacol / 79:1 / 108–116 © 2014 The British Pharmacological Society

mailto:hkimko@its.jnj.com


of success) that help understand the effects of changes in
study design on trial results. Traditional study design typi-
cally focuses on a power calculation for a single primary
endpoint under a fixed set of assumptions that are often
derived from the results of a previous study with a smaller
population. Clinical trial simulations are often shunned
because of the comfort level of clinical team members
with traditional hypothesis-testing paradigms and the
relative ease of sample size calculation with conventional
software. However, the actual scientific question(s) to be
addressed by a study may not quite fit into the hypothesis-
testing framework of the traditional approach (e.g. dose
selection), and there may be a high degree of uncertainty
about the validity of the underlying assumptions for a
power calculation (e.g. response rate based on a small
sample population).

Taken together, modelling and simulation (M&S)
provide a powerful paradigm for modernizing clinical
study design and analysis. M&S allows proper quantifica-
tion of risk at each decision-making point in drug develop-
ment (e.g. go/no-go decision after a proof-of-concept
[POC] study by calculating the probability of success of the
next study); provides an efficient framework for combining
information from different studies and other sources (e.g.
Bayesian models); and facilitates an objective assessment
of the sensitivity to assumptions that often rely on flimsy
information. MBDD takes M&S to a higher level: it aims to
represent critical components of clinical study results via a
network of inter-related models that allow simulation of
clinical outcomes from specific aspects of a single study to
entire development programmes. MBDD is expected to
facilitate quantitative decision-making at a portfolio level,
greatly improving upon the current, qualitative and less-
scientific decision process.

While various tools for and aspects of MBDD deserve
discussion, it is difficult to review all of these in one paper.
Several review articles in the literature offer focused dis-
cussion on specific MBDD topics [4–7], some of which
include specific application cases. This review intends to
provide an encompassing, high level evaluation of the
past, present and future of MBDD. It also touches upon
representative papers describing M&S tools for MBDD,
which can be referred to for detailed information.

MBDD: The early days

M&S principles have long been used to forecast outcomes
in various fields, including meteorology (e.g. the path of
hurricane Sandy), economics (e.g. return of unemploy-
ment to the pre-Great Recession levels) and manufactur-
ing (e.g. safety of new batteries in the Boeing Dreamliner).
In the field of clinical drug development, the Center for
Drug Development Sciences at Georgetown University,
led by Carl Peck, played an important role in the late
1990s by championing applications of M&S in practice. The

Center organized conferences, demonstrated the value of
M&S to pharmaceutical companies when it was not well
appreciated [8], encouraged the development of user-
friendly commercial software, trained scientists in the
appropriate use of M&S tools and influenced the Food and
Drug Administration (FDA) Modernization Act of 1997. This
early MBDD movement was also stirred by Lewis Sheiner’s
seminal learn-confirm paradigm manifesto to expedite the
drug development process through greater utilization of
model-based approaches [9].

From the early 2000s, the practical value of M&S in
improving the efficiency of drug development has been
increasingly appreciated across the pharmaceutical indus-
try. As a result, M&S became a hot topic at major pharma-
ceutical conferences such as the European Medicines
Agency-European Federation of Pharmaceutical Industries
and Associations (EMA-EFPIA) Workshop [10], the Ameri-
can Association of Pharmaceutical Scientists (AAPS) and
the American Society for Clinical Pharmacology & Thera-
peutics (ASCPT), as well as other smaller workshops.
Papers and books were published on the benefits and
challenges of MBDD, including case studies [4, 6, 8, 11–13].
As of August 2013, a PubMed search found 22 papers that
specifically included MBDD as a keyword, although many
more papers related to MBDD have been published under
various keywords discussed in this commentary. Hence it is
difficult to list so many successful applications of MBDD
related works. Regulatory agencies have also shared their
experiences and expectations on the use of M&S as a tool
to guide regulatory decisions [14–17]. The FDA Critical
Path Initiative Report is the most notable document
reflecting the clear regulatory support for M&S in clinical
development [18]. It systematically examined various
roadblocks to improving the efficiency of then current
drug development, and made impactful suggestions to
promote change and drive innovation. The centrepiece of
the proposed strategy was the adoption of quantitative
clinical trial M&S that would help improve trial designs and
predict outcomes.

The application of M&S in decision-making often
involves thorough analyses to justify the choice of a par-
ticular study design after considering an optimal balance
between cost and the quality of knowledge to be
obtained. Miller et al. [3] shared their experiences of M&S
application for more appropriate compound selection in
early drug development to differentiate candidate com-
pounds and to achieve more informed decision-making
during phase 2 to phase 3 and beyond. A survey of 10 large
and mid-sized pharmaceutical companies showed the
positive impact of M&S in their decision-making process
[19]. These success stories caught the attention of senior
management in pharmaceutical companies and led to an
increased interest in the potential of M&S to improve the
efficiency of drug development. Combined with further
evidence of the acceptance of M&S approaches by regula-
tory agencies [14–17], the appreciation of the potential
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benefits of M&S eventually led to the establishment of
groups, or entire departments, dedicated to its application
in pharmaceutical companies. Consulting companies for
MBDD were also formed to cater to specialized needs
and/or to provide routine pharmacometric services.

Current applications of M&S across
all clinical development phases

An enormous amount of information is produced during
the drug development process, and using it efficiently to
guide decision-making across the various phases is chal-
lenging. Models are particularly useful in summarizing
essential information in a succinct and efficient manner,
allowing the integration of knowledge from different
studies and external sources. Coupled with simulations
and by using appropriate assumptions, such models can
explore the potential outcomes of yet-to-be-conducted
studies, enabling optimization of the study design to
increase the probability of success and de-risk investment.

Quantitative decision-making can be facilitated by
using various modelling approaches in each phase of drug

development (Figure 1), but there is no definite consensus
on the best-suited approach for different kinds of studies.
In order to design clinical studies that can identify the
optimal match of drug, dose and patient population, phar-
maceutical companies should educate talented employ-
ees to apply M&S in an MBDD-supportive company
culture. This would also lead to the right reimbursement
for the companies. To conduct M&S efficiently, a practical
application of the MBDD paradigm with the help of rapidly
improving technology is critical. Further in this review, we
discuss various M&S examples of the current use of MBDD
in each pillar (study) of clinical drug development that may
be also used under other pillar categories.

Dose selection for first-in-human studies
Traditionally, the dose for a first-in-human study is
selected through allometry combined with information on
the safety margin for the compound, which is obtained
from dose toxicology studies in the most sensitive species.
Regarding the selection of a starting dose based on both
efficacy and safety data from pre-clinical studies, there is
increasing interest in methods that improve predictions of
the full time course of PK in humans via mechanistic

Figure 1
Structure of model-based drug development. The pillars list various models to be considered for designing optimal clinical studies
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understanding of the underlying processes affecting the
PK. A physiologically based pharmacokinetic (PBPK) mod-
elling approach [20] can be utilized with the understand-
ing of (i) drug specific properties, which include tissue
affinity, plasma protein binding affinity, membrane per-
meability, enzymatic stability and transporter activities, (ii)
system specific properties, which include organ mass or
volume and blood flow between anatomical structures of
tissues or organs and (iii) anatomical structure, which is
common for all mammalian species and independent of
the drug.

Compared with this allometric or empirical compart-
ment modelling, PBPK modelling has the potential to
more reliably predict the PK properties (absorption, distri-
bution, metabolism and elimination) of a new drug in
humans. Setting up a PBPK model in early drug develop-
ment also helps improve the market formulation, if neces-
sary, by refining it with drug specific properties derived
from early phase 1 data. Such PBPK approaches have been
intensively discussed as a tool to improve the drug devel-
opment process, especially in early development [20].
Several software programmes (e.g. Simcyp®, Gastroplus®
and PK-Sim/MoBi®) have incorporated relevant PBPK
equations, making the application of such models easier
and widespread. Recent publications on the experiences
of regulatory agencies with PBPK methods have further
encouraged the use of such methods across the pharma-
ceutical industry [21]. The systems pharmacology
approach can be also used in this drug development
phase, and it is discussed further in ‘Further opportunities
for MBDD’ [22].

Designing a study in the learning phase
A POC (phase 2a) study is designed with an aim to dem-
onstrate a sufficiently positive efficacy signal and to detect
a clear toxicity signal, such that the results warrant further
investment after understanding the mechanism of action
of the investigational drug. A phase 2b study is intended to
collect sufficient information to derive an exposure–
response relationship that guides the dosage regimen
decision, with an appropriate benefit : risk balance for the
next large, costly Phase 3 study. In these learning phase
studies, M&S is an essential tool for knowledge building
and decision support for optimizing trial performance.

PK knowledge gained from the first-in-human study,
together with pre-clinical biomarker information, provides
the basis for M&S application in learning phase studies.
Further, the estimated between- and within-individual PK
variability, obtained from the fit of phase 1 study data, is a
basis for the PK simulation model that can be used to
simulate exposure–response relationships, providing
useful information for the design of POC studies. In addi-
tion to pre-clinical PD information, the PD of competitor
drugs (either from internal or external sources) with similar
mechanisms of action can also be utilized to derive dose–
or exposure–response relationships that can simulate the

responses in a POC study before it is conducted [23]. To
avoid potential biases due to the specific characteristics of
a competitor drug, a meta-analysis that includes several
competing drugs may be performed to extract the overall
exposure vs. efficacy or toxicity relationship [24].

To ensure that simulated results resemble reality as
much as possible, dropouts should be also included during
simulation as part of a longitudinal disease progression/
drug–effect model [25]. During the phase 2 study design
process, when no patient dropout data are available, a
dropout model possibly developed using competitor
drugs with a similar indication and/or mechanism of action
can be used. In general, when certain information required
for simulations is unavailable, sensitivity of the assumed
information should be tested, as this would help not only
in effectively relating the uncertainty in the simulated
output with that of the input, but also in identifying influ-
ential model parameters that change sensitively to the
assumptions made during simulation. This indicates the
need for better understanding of the parameters to
predict clinical outcomes with greater certainty [26].

To maximize the knowledge creating opportunity in a
learning phase study, the application of Bayesian adaptive
design methods has recently been advocated [27, 28].
Such models allow for reductions in the number of sub-
jects allocated to ineffective doses, while providing
adequate statistical power to detect the treatment effect
of an effective dose. However, conduct of an adaptive
design study requires careful logistical, operational and
analytical planning due to its greater complexity, and its
benefits and drawbacks need be evaluated beforehand via
various assumptions and simulations.

Innovation in the design and interpretation of
confirmatory studies
Once a model representing drug specific data from an
early study is available, realistic confirmatory study results
can be simulated using hypothetical study designs by inte-
grating indication-specific, but drug independent, infor-
mation. Wang et al. [29] used four registration studies to
develop a drug independent model that linked biomarkers
(e.g. tumour size) to clinical outcome (overall survival) in
oncology. They used baseline prognostic factors and early
change in tumour size as predictors. With this type of
general indication specific model, one can predict clinical
outcomes based on the understanding of the drug specific
relationship between a candidate drug’s exposure and its
biomarker level [30], facilitating the selection of an appro-
priate design for an expensive, large scale study. Such an
understanding of dose (or exposure)–response relation-
ships for the desired (effectiveness) and undesired (toxic-
ity) effects obtained after a phase 2a and a phase 2b study
can be discussed with the FDA at an end of phase 2a [31]
and end of phase 2b meeting, respectively, and dose selec-
tion can thus be optimized for subsequent studies.

Modelling and simulations of clinical trials
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Predicting the effect size is as important for the refer-
ence arm (i.e. active comparator or placebo) as for the
drug under investigation, because confirmation of effi-
cacy is based on comparisons between the reference and
the drug. If an active competitor drug is used as a com-
parator, a model describing the time course of the active
comparator response could be set up using published
data. On the other hand, if a placebo is used, placebo
data (or natural disease progression data without placebo
given, if available) from studies with similar patient popu-
lations could be used to develop a disease progression
model [32], with which the time course of the placebo
response could be simulated for virtual statistical com-
parison to evaluate candidate clinical study designs of
interest.

During the analysis of a confirmatory study, handling of
missing data plays an important role in influencing conclu-
sions regarding the study outcome. M&S approaches can
be used to impute values for missing data in a variety of
scenarios, including missing at random. Sensitivity analy-
ses can then be used to assess the robustness of the results
[33]. Models can also be used under a missing-at-random
assumption to analyze the observed data only (including
intermediate visit data), through likelihood or Bayesian
estimation. Sponsors should discuss the results of such
sensitivity analyses with regulatory agencies to agree on a
suitable method for handling missing data to facilitate
objective interpretation of study results.

Special population studies
The most important information in a drug label is the
dosage regimen derived by balancing efficacy and safety
data for all types of patients. However, considering the
heterogeneity of the patient population in clinical trials,
studying all kinds of factors such as use of co-medications,
specific organ impairment, ethnicity and co-morbid condi-
tions (e.g. obesity) may not be feasible. If factors that dif-
ferentiate one patient population from another can be
foreseen, dedicated studies to evaluate the impact of
these factors may need to be conducted based on the
knowledge of the drug molecule and its mechanism of
action. However, with the use of PBPK modelling [21, 34],
systems pharmacology [22] or covariate analysis of popu-
lation modelling [35], certain special population studies
may be exempted following scientific discussions with the
appropriate regulatory agency.

M&S approaches find a special role in the design and
analysis of paediatric studies, wherein blood sample
volume is limited owing to the smaller body size. The
population modelling approach allows prediction of indi-
vidual PK/PD profiles from sparse samples by borrowing
information from other patients [36].

Lifecycle management
For post-marketing lifecycle management, it is important
to assess the competitive landscape by comparing clinical

effect sizes, time to achieve a target response, and safety
signals of competitive drugs using meta-analyses, and the
information thus obtained can help differentiate a drug
under development from others in the market [24]. Addi-
tionally, when a sponsor develops a lifecycle management
strategy after a drug is approved for a certain indication
with a given formulation, predicting the clinical outcome
profile of a new strategic drug product and comparing it
with competitors can not only facilitate the management’s
go/no-go decisions on the strategy but also help demon-
strate the superiority, if any, of the approved drug over
other drugs [37].

Challenges to MBDD

Despite the increased interest and use of MBDD in clinical
development, there remain considerable hurdles to its
broader adoption by pharmaceutical companies and regu-
latory agencies. The first challenge is the natural resistance
to change in a highly conservative industry such as
biopharmaceuticals. A common reason for sticking with
traditional approaches is the notion that regulators may
not approve of deviations from previously used methods.
Since regulatory agencies have themselves played a key
role in advocating the modernization of drug develop-
ment, this argument does not hold, although the regula-
tory position towards MBDD is still highly dependent on
the division and disease under consideration [38]. Open
and frequent dialogue between industry and regulatory
agencies, presentations and publications of case studies
using MBDD approaches with buy-in from regulators
and release of regulatory guidelines focusing on M&S
approaches would all contribute towards increasing the
industry’s comfort level with MBDD. Communication skills
also play an important role in the acceptance and under-
standing of MBDD approaches and need to be encouraged
among both sponsors and regulators. Part of the reluc-
tance to embrace the change presented by the MBDD
paradigm may be related to a loss of decision making
power, perceived or real, that some stakeholders might
fear. For example, M&S results could highlight the futility
of a study before or during its conduct, which can form the
basis for terminating the study instead of continuing to
collect data in the hope of a good result. Therefore, edu-
cating clinical team personnel on the basic principles and
benefits of MBDD, as well as clear upper management
support to changes, would go a long way to addressing
this hurdle.

Another challenge is a self-inflicted one, resulting from
overpromises on the benefits of MBDD that often failed to
be fully substantiated, leading to frustration and backlash.
MBDD certainly has the potential to improve greatly the
efficiency of drug development, but it should not be con-
strued as a panacea. It is incumbent upon those leading
the MBDD implementation efforts to provide a realistic
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picture of the advantages of M&S in order to avoid poten-
tial hypes that may eventually fail to meet expectations.
Indeed, this problem is not unique to MBDD [39]. It has
been observed in many other paradigm-shifting disci-
plines such as artificial intelligence and data mining. As the
area matures and gains greater acceptance, the tempta-
tion to oversell benefits for short term gains will disappear
to achieve a plateau of productivity, making this a tran-
sient challenge to MBDD, hence realizing its full potential.

An internal challenge to the success of MBDD applica-
tion in clinical drug development is related to ownership:
which traditional function within clinical drug develop-
ment, if any, should house MBDD activities and groups?
As a discipline, MBDD lies at the intersection of several
traditional drug development functions, most notably
biostatistics and clinical pharmacology. Historically, clini-
cal pharmacology has played a more active role in the
development of the methodological underpinnings of
MBDD, but many of those methods also fall within the
realm of biostatistics. The issue is not due to infrastructural
division, but rather due to competition for influence in
development programmes and on clinical teams. Different
quantitative disciplines often regard themselves as the
owners of the M&S space, leading to confusion and ineffi-
ciencies caused by duplication of effort. Alignment among
different M&S stakeholders is critical for the future of the
discipline. Perhaps, because of this contest for the owner-
ship of MBDD, the new discipline of pharmacometrics has
been created to embody the principles of MBDD, with
pharmacometricians specialized in the methodological
development and application of MBDD. Consistent with
this trend, some pharmaceutical companies and regula-
tory agencies have opted to create separate functional
departments to house MBDD activities. This process is
still unfolding and the prevailing paradigm is yet to be
ascertained.

Further opportunities for MBDD

An enormous amount of effort and resources are required
to translate the pre-clinical success of new molecular enti-
ties into demonstrated efficacy and safety in the clinical
setting, with the ultimate goal of regulatory approval and
subsequent benefit to patients. The conventional para-
digm of utilizing assumption poor models and analysis
methods to guide decision-making in clinical develop-
ment has led to costly programmes, both in terms of the
size of clinical studies and the limited knowledge gained
from them. In this section, we briefly consider MBDD tools
that have recently drawn attention and that are likely to
experience increasing use in future.

Systems pharmacology
Drug research has mainly focused on identifying molecu-
lar targets without fully understanding the consequent

physiological interactions. Although a successful early POC
study is possible even with this limited understanding,
clinical outcomes that reflect systemic changes may turn
out to be negative at a later stage of drug development.
Systems pharmacology is a relatively new discipline that
lies at the interface between systems biology and PK/PD
[22, 40]. It is a response to the growing concern that phar-
maceutical companies need to reduce the high late attri-
tion rate for drugs in their pipeline caused by insufficient
efficacy or missed toxicity signals in POC or phase 2
studies. This discipline is intended to provide a framework
for integrating the information gained from understand-
ing pathophysiological pathways (perturbed system due
to disease vs. normal body function system), which can be
used as pharmacological targets [41], in order to help
select compounds that are more likely to translate into
clinical efficacy and safety through iterative learning from
modelling and experimentation. However, adoption of
this approach in certain disease areas may take a while
because quantitative prediction of pharmacological
modulation of biological targets and their cascades
requires more thorough research on pathophysiological
systems than currently available.

Optimal sampling design
Clinical studies based on optimal sampling techniques
provide more accurate and precise estimates of model
parameters, resulting in better predictions of clinical out-
comes [42]. Although the theory of optimal sampling has
been available for a long time [43], logistic and operational
difficulties often make recommended optimal sampling
times infeasible in practice. However, more effort should
be made to balance operational concerns with the value of
information collected in a study (e.g. increase in precision
of the parameters of interest).

Decision analysis
The application of MBDD in clinical development has fre-
quently focused on either efficacy or safety endpoints in
isolation within a single study. The use of a clinical utility
index to combine efficacy and safety information, even
from several clinical trials, into a single metric has consid-
erable promise within the MBDD paradigm [44]. If accept-
able clinical utility index criteria can be agreed upon by a
clinical team, M&S can be used to determine optimal treat-
ments (e.g. dosage regimen), which can subsequently lead
to effective study designs aimed at identifying or confirm-
ing such optimal treatments.

Many studies are conducted before the confirmatory
study for learning purposes. In these exploratory studies,
the probability of reaching a correct decision or achieving
a target value should be the main concern rather than a
statistical metric (e.g. P value) for treatment vs. control.
Such decision analysis tools, coupled with M&S, can be
used to quantify the risk : benefit ratio of alternative port-
folio strategies, providing useful information to guide
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decision making in governance bodies. Bayesian methods,
which combine previous and current information, are par-
ticularly useful in this context [45]. Another area in which
MBDD can and should be more effectively applied is port-
folio level decision making support. Novel methods and
tools (e.g. the DDMoRe project) are being developed to
support this effort [46, 47].

Adherence monitoring: pharmionics
Pharmionics is the study of whether patients actually take
prescribed medicines. A meta-analysis of 95 clinical studies
showed that almost 40% of treated subjects stopped
taking medications by the end of 1 year [48]. Partial adher-
ence to the dosage regimen specified in a study protocol
may complicate the interpretation of study results. It can
lead to inappropriate conclusions such as lack or underes-
timation of efficacy and serious toxicity. To achieve
increased adherence for drugs already on the market,
software applications that remind patients to take their
medication and record drug administration (e.g. http://
www.care4today.com) have been introduced in clinical
practice. Such tools, in addition to devices that record the
opening of a pill bottle or a pill package, will enhance the
understanding of drug effectiveness.

Final remarks

In its early days during the mid-1990s, M&S was mainly
regarded as a supporting tool used as part of trouble-
shooting efforts to explain unexpected and undesirable
findings during a regulatory review or post-marketing sur-
veillance. Recently, many pharmaceutical companies have
realized the benefits of model-based drug development in
the early phases, rather than model-supported drug devel-
opment. As a result, M&S groups have sprouted across the
pharmaceutical industry and in regulatory agencies. One
of the factors limiting the growth of MBDD is the lack of
M&S experts. Academic departments in leading universi-
ties have only recently established programmes focused
on training new pharmacometricians [49]. This limitation
may remain a hurdle for the broader cross-industry imple-
mentation of MBDD in the coming years. Training clinical
pharmacologists, biostatisticians and other quantitative
scientists in the use of pharmacometrics tools could
address this problem in the short term.

With more pharmacometricians trained in each
country, more regulatory reviewers who can appreciate
the usefulness of M&S have become available. However,
since regulatory policies vary widely around the world,
pharmaceutical companies often have to contend with the
‘lowest common denominator’. In other words, if one
regulatory agency is not willing to accept novel MBDD
approaches, pharmaceutical companies end up using con-
ventional, and sometimes inefficient, approaches, which
negates the value of M&S. It would be beneficial to harmo-

nize the policy for MBDD to some extent, similar to the
International Conference on Harmonization guidelines for
clinical trials.

The drug development process is in dire need of
improvement in efficiency, pace, success rate and costs,
to deliver the promise of exciting new treatments offered
by the explosive growth in scientific discoveries (e.g.
mapping of the human genome) over the past decade.
Modelling provides an essential tool for representing
and combining information collected in development
programmes, which can be used to improve greatly the
efficiency of drug development. MBDD alone will not
transform drug development into a highly efficient, cost
effective engine to produce new treatments, but it will
certainly play a critical role in the effort to embed scientific
thinking into the drug development process itself.
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