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Covariate selection is an activity routinely performed during pharmacometric analysis. Many are familiar with the stepwise procedures,
but perhaps not as many are familiar with some of the issues associated with such methods. Recently, attention has focused on
selection procedures that do not suffer from these issues and maintain good predictive properties. In this review, we endeavour to put
the main variable selection procedures into a framework that facilitates comparison. We highlight some issues that are unique to
pharmacometric analyses and provide some thoughts and strategies for pharmacometricians to consider when planning future
analyses.

Introduction

Pursuit and identification of the ‘best’ regression model
has a long, rich history in the sciences. Data analysts had
several motivating factors when searching for a model to
describe their data. Designing, conducting and analysing
an experiment could be a lengthy and costly process.
Finding the key predictors of the response could reduce
the cost by eliminating extraneous conditions that did not
need to be studied in the next experiment. Such a reduc-
tion in the dimensionality of the problem appealed not
only to the intellectual principle of parsimony (a heuristic
stating that simpler, plausible models are preferable), but
had practical appeal; simpler systems were easier to
understand, discuss and implement. This resonated with
data analysts, especially prior to the age of high-speed
computers. Much of the early 1960s literature on variable
selection was devoted to organizational methods for effi-
cient variable selection by desktop calculator or even by
hand [1–3]. Some of these considerations are still applica-
ble to pharmacometric analyses in the present age even
though some contexts may have changed subtly.

The focus of this review is on methods for the selection
of covariates or predictors, i.e. patient variables, either
intrinsic or extrinsic, that attempt to explain between-

subject variability in the model parameters.1 For clarity, we
make a distinction in this article between the effects of
predictors (covariates) and parameters. Parameters are
defined here to be quantities integral to the structure of
the model and that usually have scientific interpretation in
and of themselves, e.g. clearance (CL), volume of distribu-
tion (V), maximum effect (Emax) or concentration yielding
half Emax (EC50). The effects of predictors are defined as
those which manifest the influence of a variable on one of
the parameters. In pharmacometrics literature, the terms
‘covariate’ and ‘predictor’ are often used interchangeably,
with ‘covariate’ being used more often. These terms can
be used interchangeably throughout this article as well.
Historically, however, these two terms are not identical in
meaning. The term ‘covariate’ stems from analysis of
covariance (ANCOVA) and is defined more purely as a con-
tinuous variable used to control for its effect when testing
categorical, independent variables, such as treatment
levels. We also differentiate from those variables specified
in the design that are more structural, which we denote
here as independent variables, also to promote clarity.
For example, one might consider dose and time to be

1We note that predictor variables could also account for within-subject
variability when time varying.
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independent variables in a pharmacokinetic (PK) model.
Investigators may apply statistical hypothesis tests to inde-
pendent variables, e.g. assessment of dose proportionality.
However, such evaluations are usually performed when
trying to determine a basic structural model (i.e. when
defining the model parameters) and, as such, play a larger
role when assessing goodness of fit (often using residuals),
but are rarely associated with variable selection proce-
dures. Predictor variables in clinical drug development are
typically sampled randomly from the population, yet often
have truncated distributions with specific ranges due to
inclusion/exclusion criteria. For example, a clinical trial
may be conducted in the elderly. The inclusion/exclusion
criteria may set an age threshold, which defines what is
considered elderly. However, the protocol is unlikely to set
specific requirements for such numbers at each age when
recruiting for the study. This also occurs in renal impair-
ment studies. Subjects are stratified by certain categories
of renal impairment, yet within each group the calculated
creatinine clearance (CLcr) varies randomly. There is
another consideration for pharmacometric analyses that is
not typical for standard regression. In standard regression,
each predictor usually is associated with one fixed effect or
coefficient. This one-to-one relationship is not common-
place in pharmacometric analysis, where it is not atypical
for each predictor variable to be associated with more
than one parameter. A notable example is the allometric
specification of bodyweight on CL and V in PK [4]. In this
review, we use the term ‘predictor effects’ or ‘effects’,
instead of just ‘predictors’ to maintain clarity that predictor
variables can have more than one effect, hence more than
one coefficient that needs to be estimated in the model.
This distinction has a bearing on pharmacometric analysis
and will be discussed in greater detail below.

We limit the scope of our review to methods specifi-
cally designed for selection of nested predictor effects, i.e.
the determination that an effect is included or excluded
from the parameter submodel. Exclusion occurs when the
coefficient is fixed to the null effect value, which is typically
zero for predictors incorporated in an additive fashion or
one for those incorporated multiplicatively. The require-
ment that the effects be nested keeps with the classical
distributions of the test statistics used in the procedures.
We do not provide details on methods that do not allow
for exclusion of a predictor effect. Methods such as ridge
regression [5] and principal component regression [6, 7]
do not attempt specifically to identify effects for exclusion
and are also not generally applicable to generalized
nonlinear mixed-effects models (GNLMEMs) [8]. These
methods do provide some interesting insight into issues
associated with collinearity or correlation between predic-
tor variables and will be discussed in this context only.

We also do not discuss general issues associated with
model or submodel selection. An example of model selec-
tion is the process of identifying the number of compart-
ments in a PK model (e.g. see [9]). Such models are

typically not nested; for example, the one-compartment
model space is not completely contained in the two-
compartment model space. While not nested, the
one-compartment model is a limiting case of the
intercompartmental distribution rate constant going to
zero or infinity and, as such, the log-likelihoods will share
identical values when these parameters of the two-
compartment model approach the boundary. Such evalu-
ations require less standard (more technical) statistical
considerations. Submodels are defined here as the func-
tional form by which the predictor effect affects the
parameter or enters into the model. Such specification
is unique to nonlinear mixed-effects analysis and the
desire to predict individual time–response profiles. We
assume that the choice between submodels has been
made prior to selection (inclusion or exclusion) of the
effect. For example, we assume the choice between

CL CL Weight Weight= × ( ) − ( )[ ]0 exp ln ln , a typical power

model, or CL CL Weight Weight= × −( )0 exp for modelling

clearance as a function of weight (Weight) has been made
prior to evaluating whether weight is influential (CL0 and

Weight are the reference clearance and weight, respec-
tively). Such evaluations are also not nested, so the distri-
butions of the test statistics for such comparisons are not
standard. Bayesian model averaging [10] and the more
recent frequentist model averaging [11], despite their
potential value to pharmacometric analysis, are also not
discussed. The methods are not specifically focused on
reducing the dimensionality of the predictor effects and,
as such, do not consider the value and interpretation of a
predictor per se. Often, prediction and interpretation of a
predictor variable are desirable because there is some
intrinsic value in this knowledge (such as which predictors
have enough ‘value’ that these should be included in a
product label).

We are conscious that many readers are familiar, at
least somewhat, with the popular stepwise variable selec-
tion procedures and even the issues associated with these.
As a reviewer pointed out, our exposition is somewhat
statistical. We have tried to provide clarification in the text
and extended descriptions in an attempt to keep the
reader from being bogged down by notation. We have
attempted to use this notation to present these methods
in a way that will allow comparisons with other procedures
that are not as popular, yet are worth discussing.

The article is organized as follows. The next section
discusses known issues with variable selection methods
and strategies for mitigating some of the issues prior to
undertaking such procedures. The following section dis-
cusses variable selection methods we feel are relevant
to the past, present and near future of pharmaco-
metric analyses. Many of the issues presented here that
are interesting, in our opinion, are not about the variable
selection methods per se; rather, issues that came from
research, contemplation of the literature results and our
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own experiences, about focusing on strategies to mitigate
known or anticipated issues germane to pharmacometric
analyses.

Considerations prior to performing
selection of predictor or
covariate effects

We will assume the investigator has found an adequate
and sufficient base structural and statistical model prior to
performing the selection procedures. The term ‘base’ is
used to indicate that no candidate predictor effects have
yet been included in the model. Effects known to be pre-
dictive or influential can have been included; these are not
intended to be evaluated by the selection procedure. For
example, the investigator may wish to include the effect of
creatinine clearance (CLcr) on CL in the base model for a
compound known to be eliminated renally. We also
assume the investigator has evaluated the goodness of fit
with regard to standard likelihood assumptions, or the
investigator has carried out due diligence in evaluating
the adequacy of approximate models with regard to pre-
dictors on parameters of key interest [12]. Interactions
between structural, statistical and predictor effects have
been reported in the literature [13]. Such issues should be
kept in mind, yet are not examined explicitly here. If such
issues are thought to exist because of an inadequate
design, simulation studies might be performed to help
identify the key issues.

The development of computers gave investigators
greater flexibility and ability to evaluate the effects of
predictors. As such procedures were implemented more
frequently, the focus shifted to understanding their prop-
erties. Several excellent review articles exist for ordinary
least-squares (OLS) regression. Hocking [14] provides a
thorough review and analysis of such. The issues identified
in these reviews are worth consideration, and so we now
discuss some of the technical results, theoretical and
simulation-study based, that have shaped opinions on
variable selection.

A key quantity used in OLS is the X′X matrix, where X is
the matrix of predictor and/or independent variables. A
fundamental result in OLS is Var X Xˆ ˆβ σ( ) = ′( )−1 2, where β̂ is
the vector of estimated coefficients, σ̂2 is the estimated
residual variability, and Var(·) represents taking the vari-
ance. The equation effectively states that the standard
errors of (the precisions in) the estimated coefficients
depend upon the residual variability and also upon X. More
specifically, the expected distance between the OLS esti-
mate β̂ and the true coefficient β is related to the residual
variance and the sum of the inverse of the eigenvalues of
X′X. Thus, if X′X is unstable due to correlations between the
predictors, some of the eigenvalues of X′X will be close to
or equal to zero. As a result, β̂, despite being unbiased,
may yield predictions of poor quality because of the vari-

ability in the estimates. Consideration of X is thus impor-
tant. One can see that if X′X has any zero eigenvalues, then
the number of predictors in X should be reduced in some
way by the number of zero eigenvalues. If some of the
eigenvalues of X′X are small, a more likely occurrence
in pharmacometric analyses, then it is unclear how to
proceed. We term correlations between variables in X as
a priori correlation, because it can be evaluated prior
to any model fitting. We recommend computing the
eigenvalues of the predictors (i.e. X′X matrix) even for
pharmacometric analyses. We feel the eigenvalue
approach to be better than pair-wise correlation plots for
assessing correlations between the predictors because
of the obvious issue with determining correlations
between continuous and categorical covariates, and
suggest that investigators routinely calculate and report
these eigenvalues. One might prefer computing these
eigenvalues after computing the ‘correlation matrix’ of X
because the predictors will be unitless (and scaled).

If moderate or severe correlations between the vari-
ables in X exist, many suggest reducing or limiting the set
to plausible predictors in X. Use of data-reduction tech-
niques, such as using results in the literature to eliminate
unlikely predictors, is considered good practice [15]. This is
because the model has difficulty deciding on which pre-
dictor effects are influential when X′X is unstable. Derksen
and Keselman [16] demonstrated that the magnitudes of
the correlations between the predictor variables affected
the selection of true predictor variables [16].

A considerable amount of influential work was done
to overcome issues with the X′X matrix. Such works even-
tually inspired some newer and promising methods used
today in variable selection (and are discussed below).
Ridge regression is one such method developed to over-
come the issue of an unstable X′X [5]. The method uses a
tuning constant that governs the amount of augmenta-
tion to X′X, thereby stabilizing it, and was developed pri-
marily for prediction, not variable selection. We note that
there is an inherent suggestion by the method for dele-
tion of variables, which results from the rapid conver-
gence of some coefficient estimates to zero as the tuning
constant is increased [17] (foreshadowing the newer
methods). Kendall and Massy advocated transforming X′X
to orthogonal predictors determined by the eigenvectors
and deleting those with small eigenvalues [6, 7]. The new
matrix is constructed as linear combinations of the prior
predictors. However, this does not reduce the dimension-
ality of the original predictors necessarily, in the sense
that all of the original predictors could be combined into
a single new predictor variable. Principal component
regression has not been used in pharmacometric model-
ling, probably due to the difficulty in interpreting the
coefficients and the derived predictors in a clinical
context. The method does reduce the dimensionality
with respect to prediction, but not with respect to inter-
pretation of the original predictors which are meaningful.
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It is also unclear how one would deal with the same pre-
dictor in potentially different sets of predictors for each
parameter, which is a salient issue in pharmacometric
analyses.

It is easy to see that if the predictors in X are correlated,
then pharmacometric models will have issues even
though GNLMEMs do not use X′X explicitly during estima-
tion. As stated above, we recommend computing the
eigenvalues of X′X to assess the degree of correlation
between the predictors. If the degree is high, then predic-
tors should be removed from the set of candidates, pref-
erably based on information not obtained from the data
directly, but using preclinical findings or literature results
from well-powered and well-analysed studies that found
no effect of the predictor. A large condition number (the
ratio of the largest to smallest eigenvalue from the corre-
lation matrix of X′X) indicates that the predictors are highly
correlated. Managing a priori correlation should help to
reduce the number of spurious effects found in GNLMEM
analyses.

There are some unique issues associated with
GNLMEMs as implemented in pharmacometric analyses,
to which we have alluded. Pharmacometric models are
typically composed of key structural parameters.
Submodels for evaluating predictors are constructed for
each of the parameters of interest. Thus, the same predic-
tor variable can be evaluated on more than one param-
eter (e.g. bodyweight on CL and V) and thus have more
than one effect or coefficient for the predictor variable.
Figure 1 provides examples of submodels for a
PK and a pharmacokinetic–pharmacodynamic (PK-PD)
model. Testing even a few predictors in multiple param-
eter submodels can lead to the estimation of a large
number of coefficients due to the multiplicity.

Other issues can arise from correlations induced in the
estimates because of an inadequate design. Even though
one has identified a set of predictors that is a priori rela-
tively uncorrelated, the design can induce a posteriori cor-
relation. For example, consider a trial conducted with a
dose range that spans from zero (placebo) to a level that
achieves less than half the maximal drug effect (i.e. the
ED50). The estimates for the Emax and ED50 parameters will
be highly correlated. Such correlation can leak into the
estimates of the effects. The information content in the
data does not have sufficient resolution to determine
whether the effects of predictors influence the Emax or the
ED50. Thus, in contrast to ordinary regression, spurious
findings can result not only from selecting the wrong pre-
dictor, but also from selecting its effect on the wrong
parameter. Confusion as to which parameter a predictor
should be associated was found in an analysis performed
by Hutmacher et al. [18]. In that case, the model had diffi-
culty selecting between effects on hysteresis (time of
onset of the effect) or potency, two parameters that have
very different interpretations for how best to dose a
subject long term.

Owing to the multiple effects of predictors and the
potential interactions between design and parameters
(and effects) in GNLMEM analyses, it is worth discussing
the estimated covariance matrix of the maximum likeli-
hood estimates (COV). In many ways, the COV is to
GNLMEM what ′( )−X X 1 is to OLS regression. The COV is
typically computed using the inverse Hessian matrix of the
negative log-likelihood evaluated at the maximum likeli-
hood estimates (MLEs), where the Hessian matrix is the
matrix of second derivatives. Most GNLMEM software
packages provide this as standard output. The Hessian is
thus the observed (Fisher) information matrix. This is in
contrast to the Fisher information matrix, which is calcu-
lated by taking the expected value (and is thus uncondi-
tional [19]). The information matrices, and hence COV,
depend upon the model, the independent variables (i.e.
the design) and predictor variables. A correlation matrix of
the estimates can be computed from the COV matrix, and
is also reported typically by software. We refer to this as a
posteriori correlation. Correlation between the parameters
and their predictors induced by either design and/or
collinearity of the predictors can be assessed only from the
COV or some other estimate thereof (such as a bootstrap
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Figure 1
Examples of pharmacokinetic and pharmacokinetic–pharmacodynamic
models. I{·} represents and indicator function that = 1 when the condition
in braces is true and = 0 otherwise. A variable with bars represents some
summary of the variable (e.g. median) for reference
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[20]). Computing the eigenvalues of the correlation matrix
is helpful for assessing the correlation. This is discussed
more below.

We thus provide the following suggestions for consid-
eration during the planning stages of variable (predictor)
selection for pharmacometric applications of GNLMEM
analyses. A list of parameters should be compiled, and the
specific sets of predictor variables corresponding to these
should be prepared prior to the analysis. Also, we do not
recommend evaluating correlated covariates such as
bodyweight and body mass index simultaneously in a
selection procedure. Selection of one by scientific argu-
ment is preferable, if possible. Given that the number of
predictors considered in X was found to be related to the
number of spurious predictors selected by the procedure
[16, 21], only scientifically plausible predictors of clinical
interest should be considered. For the PK example in
Figure 1, the first table row would specify Sex, Weight and
CLcr on CL and Sex and Weight on V. This should be done at
the analysis planning stage, if preparing a plan, which we
feel should be done for regulatory submission work. If
there is no prior modelling experience with the drug, such
that the parameters of the structural model are not known,
then the predictors should be associated with concepts of
parameters; for example, baseline, maximal drug effect,
maximal placebo effect, placebo effect onset rate con-
stant, drug effect onset rate constant, etc. One might not
wish to test a predictor on all parameters; for example, not
testing CLcr on V (as in Figure 1). Careful planning here
when considering predictor–parameter relationships is
wise because it will help to prevent spurious results that
are difficult to explain or interpret, which can then lead to
additional ad hoc (not prespecified) analyses of predictors
that are hard to rationalize or defend. In our experience,
such analyses are done quite often when a nonsensical
predictor from a poorly defined analysis is selected (and
not to the analyst’s liking). An example is finding that CLcr
affects the apparent absorption rate constant (ka) and then
rationalizing that this is because it is correlated with
bodyweight.

Although this review considers such work to have been
performed prior to variable selection, we specifically note
that the issues and strategies discussed here are best
detailed in an analysis plan formulated before any compo-
nent of the data has been manipulated.

Variable selection criteria

According to Hocking, there are three key considerations
for variable selection: (i) the computational technique
used to provide the information for the analysis; (ii) the
criterion used to analyse the variables and select a subset:
and (iii) the estimation of the coefficients in the final equa-
tions [14]. Often, these three are performed simultane-
ously without clear identification. In the GNLMEM case, (i)

will typically be differences in the −2 × log-likelihood
(−2LL) values with a penalty (different from Hocking)
between models. For (ii), some method (such as stepwise
procedures) is chosen, often considering only computa-
tional expenditure. This is the focus of the next section.
The third component is more subtle. Often (iii) is not con-
sidered by the analyst, but it can be important and is dis-
cussed in the Discussion section. Much of the traditional
literature, as well as more recent pharmacometric litera-
ture, attempts to address the influence of the choice of (ii)
on the results presented in (iii).

Likelihood-based methods are typically used in
pharmacometric work, because maximum likelihood-
based estimation is the primary method used and pro-
vides an objective function value at minimization (OFV)
that either differs from the −2LL by a constant k (OFV =
−2LL + k) or is equal to it (k = 0). Inclusion of the constant
is immaterial. Consider a model M1 with q1 estimated
coefficients, and a model nested within it, M2 which has
q2 estimated coefficients. That is, M2 can be derived from
M1 by setting some of its coefficients to the null value.
The notation M1 ⊃ M2 represents the nesting and implies
that M1 is larger or richer than M2, i.e. q2 < q1. The differ-
ence between the OFVs is ΔOFV(M2, M1) = OFV(M2) −
OFV(M1), with ΔOFV(M2, M1) ≥ 0 because OFV(M2) ≥
OFV(M1). The nesting implies that the richer model must
provide a ‘better’ fit (lower OFV) to the data at hand. The
ΔOFV provides a statistic for the relative improvement in
fitness for M1 over M2. The χ2 distribution with q = q1 – q2

degrees of freedom (df) is a large sample approximation
of the distribution of ΔOFV. When a P-value is calculated
using ΔOFV for a prespecified two-sided hypothesis test
of level α (i.e. type 1 error), the test is known as a likeli-
hood ratio test (LRT) [22]. If P-value < α, the alternative
hypothesis is accepted and M1 is selected; if not, it is con-
cluded that insufficient information is available to indi-
cate that M1 should be selected (note that one should
not conclude the null hypothesis of no effect). The test
as specified is formulated to evaluate whether the
smaller model can be rejected in favour of accepting
the larger model. It should be noted that when the like-
lihood is approximated using Laplace-based methods
(including first-order conditional estimation or FOCE [23]),
the OFV approximates −2LL + k and asymptotically
approaches it in certain conditions [24].

Variable selection in pharmacometrics work is primarily
based on the LRT concept. This formulation is generalized
here and intended to divest the remainder of the discus-
sion from the LRT interpretation. To judge whether the
improvement in fitness by the lower OFV for the fuller
model is enough to justify the cost of estimating the coef-
ficient of the effect, a penalty is applied to the ΔOFV sta-
tistic. The penalty is the cost in information required to
include the effect, and it is used to avoid overfitting. This
leads to what we will term a ‘general information criterion’
(GIC):
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GIC OFV penaltyM M M M2 1 2 1, ,( ) = ( ) +Δ (1)

The larger dimensional model (M2) is preferred when
the GIC is > 0, and the smaller model (M1) when the GIC is
< 0. The most popular choices of the penalty are based on
cut-off values, which are determined by selecting α levels
from the χ2 distribution; for example, the cut-off c is the
value of the χ2 cumulative distribution function for = 1 – α
with df = q1 – q2. Typical α level choices with df = 1 are 0.05,
0.01 and 0.001, and these correspond to a c of 3.841, 6.635
and 10.828, respectively. The α levels in pharmacometrics
are much smaller than those used in ordinary regression,
for example; see Wiegand [1]. We surmise that the higher
penalty values are chosen due to the legacy of the percep-
tion of poor performance of the LRT for the first-order (FO)
estimation methods [23] and its inadequate approxima-
tion of the likelihood, or perhaps in an attempt to adjust
for the multiplicity of testing. Wählby et al. confirmed this
perception of the FO method, and also evaluated the type
1 error for the FOCE methods under various circumstances
[25]. Beal provided a commentary which discussed, some-
what cryptically, the issues associated with significance
and approximation of the likelihood [26]. It is important to
note that even though a cut-off is based on an chosen α
level, the variable selection procedure will not maintain
the properties of an α level test, nor should selected effects
be interpreted in such a light.

Other penalty values can be used for the GIC. The
Akaike information criterion (AIC) [27] and Schwarz’s
Bayesian criterion (SBC), which is also known as the Bayes-
ian information criterion (BIC), are notable. The AIC uses
penalty = 2 × (q2 – q1), which corresponds interestingly to
an α level = 0.157 when q2 – q1 = 1. A small sample correc-
tion for AIC was proposed by Hurvich and Tsai, but is ben-
eficial at sample sizes (when the ratio of effects to data
points is not large) smaller than typically found in clinical
pharmacometric data sets [28]. The BIC uses penalty = (q2 –
q1) × ln(nE), where we refer to nE as the effective sample size
[29]. How to calculate nE has been debated. In fact, SAS is
inconsistent in this matter. PROC MIXED for linear mixed
effects model uses the total number of evaluable data
points (nT), while PROC NLMIXED uses the number of sub-
jects contributing data (nS). It is clear that the nS represents
the sample size, which is completely independent (indi-
viduals represent independent pieces of information).
Jones [30] states that longitudinal data are not completely
independent and that nT yields a penalty that is inappro-
priately high for GLNMEM, yet using nS would be too con-
servative. The appropriate nE is nS < nE < nT, and he suggests
a method for calculating nE from the model fit.

Efforts have been made to compare the AIC and BIC.
Clayton et al. state that the BIC in large samples applies a
fixed and (nearly) equal penalty for choosing the wrong
model and that this suggests that the AIC is not asymptoti-
cally optimal nor is it consistent (i.e. it does not select the

correct model with probability one as the sample size
increases) [31]. They do state that the AIC is asymptotically
Bayes with penalties that depend upon the sample size
and the kind of selection error made. Moreover, they state
the AIC imposes a severe penalty when a ‘false’ lower
dimensional model is selected as opposed to selecting a
‘false’ higher dimensional model, and that this could make
good sense for prediction problems. The authors then
evaluate these in the context of prediction error. Harrell Jr
discusses these as well [15]. Overall, it is clear from the form
of the penalties that the BIC will lead to selection of fewer
predictor effects in general. While AIC and BIC are the most
popular, other penalties have been derived. Laud and
Ibrahim [32] note some of these.

Variable selection procedures

We loosely define the concept of the model space next,
prior to discussion of the variable selection procedures.
Conceptualization of the model space helps to illustrate
the differences between the variable selection methods.
Often, the model space is defined by the following. Let q
be the number of candidate predictor effects being con-
sidered, derived from the unique presence or absence of
each effect (i.e. q is the sum of the number of coefficients
per parameter over the number of parameters). The
support of the model space M is the set of all possible
candidate models and thus has 2q elements. However, we
deviate from this formulation to provide more flexibility in
evaluating models. The investigator may wish to evaluate
some effects in groups. For example, the investigator may
wish to lump all the coefficients for different race groups
into one set of effects called RACE, rather than evaluate
these by individual classifications (such as White, Black,
etc). Therefore, we will consider evaluation of sets of
predictor effects. The ‘each effect evaluated separately’
convention discussed above is a special case of our
formulation. After forming these effect sets, let there be p
of these (p ≤ q with equality only if there is one effect per
set). Indexing the sets of effects from one to p, the base
model with no sets of effects is defined as M0 = {}, and the
full model is MA = {1, 2, . . ., p}, with all sets of effects in the
model. Numbers in the brackets indicate the sets of effects
included (coefficients estimated) in the model. Note that
another convention for representing the model space is
convenient when considering the genetic algorithm (dis-
cussed below). For this binary convention, each model is
represented as a set with p elements, each of which can be
zero for exclusion or one for inclusion of a set of effects.
That is, M0 = {0, . . ., 0}, MA = {1, . . ., 1}, and Mgj = {0, . . ., 0, 1,
0, . . ., 0, 1, 0 . . . 0} is the model with the gth and jth sets of
effects included (coefficients estimated).

The objective of the variable selection is to find the
‘best’ or optimal model according to some specified cri-
teria. Most of the methods discussed here use the GIC
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values across the model space in an attempt to find the
optimal model. Thus, the shape of the model space is
defined by the GIC values, which are influenced by the
following factors: (i) the observed response data; (ii) the
independent predictor data (such as dose and time, i.e.
the design); (iii) correlations between the predictor vari-
ables; (iv) correlations between the estimates of the struc-
tural parameters and coefficients, i.e. the a posteriori
correlation; and (v) the choice of penalty applied by the
investigator. The final model is based on the effects
selected by the procedure.

Stepwise procedures
Stepwise procedures are the most commonly used in
pharmacometric analyses. There are three basic types,
namely forward selection (FS), backward elimination (BE)
and classical stepwise. A fourth procedure is also used
often; it is a combination of the FS and BE procedures.

The FS procedure begins with the base model, M0. Let
Mgj = {j, g}, which defines the model with the gth and jth set
of effects included. In Step 1, models M1, M2, . . . Mp are
fitted, and the GIC for each model Mi relative to M0 is com-
puted, i.e. GIC(M0, Mi). The Mk with the largest GIC > 0 is
selected for Step 2 (note that M0 ⊂ Mk). If all GIC < 0, then
the procedure terminates and M0 is selected. In Step 2,
models M1k, M2k, . . ., Mk−1k, Mk k+1, . . ., Mkp are fitted, the
GIC(Mk, Mik) values are computed, and the model Mkw with
the largest GIC > 0 is selected for Step 3 (note that M0 ⊂ Mk

⊂ Mkw; the model is becoming richer, and the indices are in
numerical order, not the order of inclusion). This continues
until all the GIC < 0 for a step. When this occurs, the refer-
ence model from the previous step is selected as the final.
One can see why the penalty is often called the stopping
rule in the literature.

This procedure is computationally economical. If the
procedure completes the maximum possible p number of
steps, only 1/2p(p + 1) models are fitted. However, it is also
easy to see that this procedure ignores portions of the
model space after each step based on the result of the
step. The path through the model space is represented by
M0 ⊂ Mk ⊂ Mkw . . . Mijkmw. Randomness in the data could lead

to selecting a model at a step that precludes finding the
best model. If, in the example, the path M0 ⊂ Mk ⊂ Mky was
selected due to randomness, Mkw is no longer on the path,
and thus, certain parts of the model space are no longer
reachable. Ultimately, FS does not guarantee that the
optimal model will be found, but it is computationally
cheap, which can be an advantage for models with long
run times. The FS procedure is illustrated in Figure 2a
through an example. It is also noted that the order of effect
selection does not confer the importance of the covariate
predictor [33]. It has been observed that covariates
selected for inclusion in an early step of the FS procedure
may have less predictive value once other covariate
parameters are included in subsequent steps.

The BE (also known as backward deletion) procedure
begins with the full model. We redefine Mgj = {1, 2, . . ., g – 1,
g + 1, . . ., j – 1, j + 1, . . . p} for convenience, where Mgj reflects
the model with the gth and jth set of effects excluded.
Thus, the full model is M0. In Step 1, models M1, M2, . . . Mp

are fitted, and the GIC for each model Mi relative to M0 is
computed, i.e. GIC(Mi, M0). The Mk with the smallest GIC < 0
is selected for Step 2 (M0 ⊃ Mk). If all GIC > 0, then the
procedure terminates and M0 is selected. In Step 2, models
M1k, M2k, . . ., Mk−1k, Mk k+1, . . ., Mkp are fitted, the GIC(Mik, Mk)
values are computed, and the model Mkw with the smallest
GIC < 0 is selected for Step 3 (M0 ⊃ Mk ⊃ Mkw). This contin-
ues until all the GIC > 0 for a step. When this occurs, the
reference model from the previous step is selected as the
final.

This procedure is computationally economical com-
pared with the all subsets procedure described below, but
is less so than the FS procedure. Only 1/2p(p + 1) models are
fitted if the procedure completes the maximum possible p
number of steps, which is identical to the FS procedure.
However, the BE procedure starts with the largest models,
which can have the longest run times, whereas, the FS
procedure starts with the smallest models. Also similar to
the FS procedure, it is easy to see that this procedure
ignores portions of the model space after each step which
can be due to random perturbations of the data. Mantel
[34] showed that BE tends to be less prone to selection bias

▶

Figure 2
An illustration of two points of view for model selection using one example data set. (A) The somewhat ‘linear’ path taken by the FS (forward selection –
black lines and arrows) and BE (backward selection – grey lines and arrows) procedures as the number of effects in the model increases and decreases. The
covariate effects in the models are represented using binary notation, where ‘1’ indicates inclusion of a parameter and ‘0’ indicates exclusion. The four
covariate effects evaluated, ordered by the binary notation, were weight on clearance (CL), sex on CL, weight on volume (V), and sex on V. A penalty of 3.841
was applied to the FS and BE procedures. An arrow indicates that an effect was selected, while a filled circle indicates that the effect was evaluated, yet did
not meet the criteria. The FS and BE procedures both select the same effects (model), M0110 (shaded circle with darker grey outline), with sex on CL and
weight on V. M1011 is the true model (shaded circle), with weight on CL and V and sex on V. The selection made in Step 2 by the FS procedure removes the
true model from the search path. The BE procedure evaluates the true model, yet does not select it in favour of another model. (B) An attempt to portray
the model surface for all subsets regression using the SBC penalty. The minimum SBC was found for the M1110 model (weight for CL, sex for CL and weight
for V), and the distances from the other models to M1110 are the differences in the SBCs. The three centrally located models overlap because of similar SBC
values. The example considered 30 subjects using a one-compartment model following a single bolus dose
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due to collinearity among the predictors than the FS pro-
cedure for traditional regression. This is because the BE
procedure begins with all the predictors included in the
model and does not suffer from issues in which sets of
effects have less predictive value after other sets of effects
are included in the model. For this reason, many statisti-
cians prefer the BE procedure to the FS procedure [35]. The
BE procedure is also illustrated in Figure 2 using the same
example.

The classical stepwise procedure combines the FS and
BE algorithms within a step. Let Mjg = {j, g} as with FS. The
procedure starts with M0. In Step 1, FS is performed, either
selecting a model Mi or terminating. Forward selection is
continued during the first part of the next step (Step 2a),
either selecting a model Miw or terminating based on the
GIC. In the second part of the step (Step 2b), BE is per-
formed, i.e. the ith set of effects is evaluated for elimination
using the GIC comparison from the BE. Thus, for every step
of the stepwise procedure, first models with sets of effects
not yet included are evaluated with the FS procedure and
then the sets of effects from the previous steps (not yet
included from this current forward step) are evaluated for
deletion using BE. Note that for this procedure, the penalty
for the FS does not have to be the same penalty applied to
the BE. In fact, the FS penalty is often less than that chosen
for the BE to avoid situations where a set of effects meets
the criterion for entry in the current step yet immediately
fails to remain in the model based on the exit criteria. The
stepwise procedure results in more model fittings than the
FS or BE, and the search traverses the space in a zig-zag-
like pattern; for example, M0 ⊃ Mi ⊃ Miw ⊂ Mw ⊃ Mjw . . . ⊃
Mijkmw ⊂ Mijkm ⊂ Mikm (⊃ represents a forward step and ⊂ a
backward step). This method is not commonly used in
pharmacometric applications to our knowledge. The
stepwise procedure also attempts to address the limitation
previously discussed for the FS procedure in that it
re-evaluates covariates included from a previous step once
additional sets of effects are included in the model. A more
popular approach used in practice to address the limita-
tion of the FS procedure is the combined FS and BE proce-
dure.

The combination FS/BE procedure is straightforward.
The forward selection procedure is run until it terminates.
The final model from the FS procedure is then used as the
full model, and the BE procedure is performed until it ter-
minates. Different penalties for the FS and BE procedures
can be applied. This procedure essentially traces a path
through the model space as with FS, with the potential to
find a new path after completion of the FS path, but only
towards lower models; for example, M0 ⊃ Mi ⊃ Miw ⊃ Mijw . . .
⊃ Mijkmw ⊂ Mijkm ⊃ Mikm . . . ⊂ Mm. The optimal model is still
not guaranteed.

Despite the relative computation economy of the
stepwise procedures, investigators have endeavoured to
increase it further. Mandema et al. [36] discussed the use of
generalized additive models (GAM) [37] to evaluate the

effects of predictors in PK-PD models. The procedure per-
forms the GAM analysis on subject-specific empirical Bayes
(EB) predictions of the PK-PD model parameters to identify
the influential predictor effects and even to assess func-
tional relationships between predictor and parameter. The
advantage of this technique is that it is extremely cheap
computationally, in that it requires only the base model fit
to perform it. Obvious disadvantages are that a parameter
must be able to support estimating a random effect to
evaluate the influences of predictor effects on it, and the
method is not multivariate, i.e. it can consider the effects
on only one parameter at time. Subtle issues appear upon
deeper consideration. Such procedures often require inde-
pendent and identically distributed data (with predictors)
for validity. The EB predictions suffer from shrinkage and
hence are biased. Savic and Karlsson [38] estimate shrink-
age in a population sense, yet one can conceive of shrink-
age with respect to each parameter estimate had it been
estimated in an unbiased way; depending on each sub-
ject’s design, his or her estimates will be shrunk differently
(e.g. subjects dosed well below the ED50 will have their Emax

parameters shrunk towards the typical parameter value).
The individual EB predictions each have different variances
and are also not completely independent because the
population parameters are used in their calculations. The
effect of these issues on selection is unclear. It is our under-
standing that the GAM is used more currently as a screen-
ing procedure. Jonsson and Karlsson [39] proposed
linearization of the effects of the predictors using a first-
order Taylor series to decrease the computational burden
relative to the full nonlinear model and to avoid the issues
associated with the GAM procedure (for a more recent
treatment of this procedure, see [40]).

All subsets procedure
One issue evident with the stepwise methods is that these
models do not report models close in the model space
(yielding similar GIC) to the final selected model. If the
model space is somewhat flat, many models could be close
to the selected model. These models could easily be
chosen if the data set were slightly different. The all
subsets procedure attempts to address these issues.

The all subsets procedure computes the GIC for all 2p

models in M, i.e. M0 to MA, and thus explores the entire
model space. This procedure is extremely intensive
computationally; for 10 sets of effects, 210 = 1024 GIC
values need to be computed. The advantages of such a
procedure are as follows: it finds the optimal model; it
allows the analyst to see models that are close to the
optimal; and, as Leon-Novelo et al. [41] suggest, this is
helpful to the analyst who does not want to select a single
‘best’ model but a subset of plausible, competing models.
Authors in the 1960s derived methods to improve the
computation efficiency. Garside [42] improved the compu-
tation efficiency for finding the OLS model with the
minimum residual mean square error by capitalizing on
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properties of inverting matrices, thereby reducing the
average number of computations from p3 to p2. Furnival
[43] improved on this and reduced the number of compu-
tations by using a sweep procedure (a tutorial is provided
by Goodnight [44]), although these were still of order p2.
Efforts to reduce the computational burden also resulted
in best subsets regression, where the best models of dif-
ferent sizes (defined as the number of effects) were iden-
tified. Hocking and Leslie [45] devised a procedure for best
subsets regression optimized using Mallow’s Cp, which is
equivalent to the AIC for regression models. They found
that the best subsets of certain size could be computed
with few fittings of models of that size. Furnival and Wilson
Jr [46] found that the computations to invert matrices
were rate limiting, and pursued best subset regression
using their ‘leaps and bounds’ algorithm, for which they
provided Fortran code. Lawless and Singhal [47] general-
ized the procedures by using the full model maximum
likelihood effect estimates and the COV to approximate
ΔOFV. They adapted the method of Furnival and Wilson
[46] to find the best m subsets of each size using ΔOFV (the
penalty they used in the GIC was zero). They also provide a
one-step update approximation to ΔOFV, but it requires
more calculations. The approximation of ΔOFV described
by Lawless and Singhal [47] is used in the Wald approxi-
mation method (WAM) described by Kowalski and
Hutmacher [48]. They use an approximate GIC (approxima-
tion of ΔOFV) attributable to Wald [49] with an SBC penalty
when performing all subset regression and suggest evalu-
ating the approximation by obtaining the actual ΔOFV and
hence GIC for a set of the top competing models (say 15).
It should be noted that the Wald approximation to the
COV is not invariant to parameterization. Also, it has been
observed that the COV estimated by the inverse Hessian
performs better that using the robust sandwich estimator
of the COV (i.e. the default estimator used by NONMEM).
For the FS and BE example discussed above, the model
space for all subsets regression using the SBC is provided
in Figure 2b.

Genetic algorithm
Bies et al. [50] introduced the genetic algorithm (GA) into
the pharmacometric literature, which was followed by
Sherer et al. [51] more recently. The authors use the algo-
rithm for overall model selection, including the structural
model (e.g. one or two compartments in a PK model),
interindividual variability, structure of predictor effects in
parameter submodels and residual variability. We discuss
the GA in the context of selection of predictor effects only;
that is, we focus on GA as a stochastic-based global search
technique for searching the model space M defined above.

It is helpful to use the binary characterization of the
model space described above for conceptualization of this
algorithm. The 0–1 coding can be thought of as genes of
the model, with each model having a unique make-up.
Using sets of effects in the algorithm is permissible in

theory, but we are unsure whether the current software
facilitates such an implementation. The algorithm starts by
fitting a random subset of candidate models from M; for
example, Mξ1, Mξ2, Mξ3 and Mξ4, where the subscripts (ξ)
represent unique 0−1 exclusion/inclusion of effects. The
GIC is calculated and scaled, and using these ‘fitness’
values as weights, a weighted random selection of effects
with replacement is performed to select models from this
initial subset. These selected models are ‘mated’ with
random ‘mutation’ to derive new models, say Mξ5 and Mξ6,
based on the resultant 0–1 sequences. Models with bad
traits have a reduced chance to mate compared with those
that have good traits. ‘Evolution’ occurs by the ‘natural
selection’ imposed by the ‘fitness’ of each model2. As can
be seen, the GA traverses M in a stochastic but not com-
pletely random manner. Additional features, such as
‘nicheing’ and ‘downhill search’ were included by the
authors to improve the robustness and/or convergence of
the GA algorithm. Bies et al. [50] and Sherer et al. [51]
added the following components to the penalty of the GIC
other than those based on sample size or dimensionality:
a 400 unit penalty if the covariance matrix (COV) was
nonpositive semidefinite; and a 300 unit penalty if any
estimated pairwise correlations of the estimates were
>0.95 in absolute value. We do not find these penalties
necessary for pure variable selection. Given that the COV
can be estimated for the full model and that the full model
is stable, we anticipate that COV should be estimable for
any model in M. For the same reason, we argue that the
penalty for pairwise correlation is not likely to be of value.
Putting a penalty on the model with such a correlation
does not change the fact that the model space is ill
defined, in which case no search algorithm should be
expected to perform well. The model space will be flat,
which indicates that small perturbations in the data will
lead to the selection of a different model by happenstance.

The strength of the GA is that it searches a large portion
of M and, as Bies indicates, it is reported to do a good job
of finding good solutions, yet it is inefficient at finding the
optimal one in a small region of the space. A disadvantage
is that the data analyst must track the progress of the
algorithm, because it is difficult to determine ‘conver-
gence’. The GA is not guaranteed to find the optimal
model, but it does not require approximations, such as the
WAM, in its search.

Penalized methods
As stated above, ridge regression is a biased method by
design for better prediction, and it has influenced some
more recent discoveries. These newer methods have
attractive properties for selection of effects.

2Describing the GA process with the term ‘evolution’ might not be com-
pletely accurate. The number of genes is fixed by the number of effects
evaluated and the number of genes cannot increase as ‘evolution’
transpires.
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The lasso (least absolute shrinkage and selection
operator) was developed by Tibshirani [52] for linear
models and brought to the pharmacometrics literature by
Ribbing et al. [53]. The lasso is a shrinkage estimator like
ridge regression, but because of its unique formulation it
allows certain effects to be estimated as zero (null effect).
The lasso uses the full model MA and estimates the coeffi-
cients of the model according to the following:

ˆ argmin , , ,
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where θ = (θ(S), θ(C)), θ(S) is a vector of structural effects and
θ(C) is a vector of coefficients of length q, λ is the
LaGrangian multiplier, and arg min indicates that the GIC
is minimized to find θ̂. This notation appears awkward
but provides continuity with the previous procedures
that have a penalty not dependent upon the magnitude
of the parameters. Additional motivation for this is pro-
vided below. Essentially, Equation (2) translates into
penalized maximum likelihood. Minimizing the GIC as
specified here is equivalent to estimating the θ(C) subject
to the constraint, ∑ ≤=
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j
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j
C

1 θ κ . Tibshirani [54] suggests
using 5-fold cross-validation to determine the tuning
parameter, κ, and this is implemented as follows. The pre-
diction error is estimated across a grid of values of κS

(scaled κ) ranging from 0 to 1, where κ κ θS = ∑ =
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C( ) are the (nonshrunk) OLS estimates from model MA

(note that κS = 0 yields model M0). The κ̂S yielding the
lowest prediction error is selected as the model size (this
is a definition of model size that is different from the
number of effects estimated). Ribbing et al. [53] use the
OFV in their cross-validation procedure to estimate κS. It
should be noted that the OFV does not necessarily corre-
spond to prediction error in a population. These authors
also limit their implementation to a multiplicative-linear
model, which requires constraints to keep parameters
such as CL > 0. The authors state that the lasso cannot be
used with power models. We do not see why this restric-
tion is necessary. Tibshirani [54] used the lasso in a Cox
proportional hazards setting, which uses the exponential
link to maintain positivity. One could use the same
parameterization in pharmacometric work; for example,
see the PK model example in Figure 1. In this example,
the coefficient θWT

CL( ) is the exponent of a power model (it
should be noted that the covariates need to be standard-
ized by their standard deviation). This parameterization
also obviates the need for additional constraints that are
necessary for the multiplicative-linear model. It is unclear
how these additional constraints would or should interact
with those imposed by the lasso methodology. The
benefit of the lasso is that it finds models with smaller
prediction error when the sample sizes (number of sub-
jects) are smaller; perhaps around the size of a single

phase 2 study. The disadvantage is the lasso requires
restrictions on the parameterization of the parameter
submodels, and inference on the shrunken estimates is
more difficult.

Fan and Li expound on penalized least squares (PLS)
[55]. They bridged PLS and typical stepwise procedures by
showing essentially that the GIC used for stepwise and
best subset selection provides a ‘hard thresholding rule’,
i.e. if the PLS estimates are greater than some value, the
estimates are retained; otherwise these are set to 0. They
then discuss conceptual properties that penalties used in
PLS should have. They develop the smoothly clipped abso-
lute deviation penalty (SCAD), which is compared graphi-
cally to the lasso penalty, and prove that it has the oracle
property, i.e. the property that says inferences based on
the model will approach asymptotically those had the
correct model been known prior to fitting the data. This
method has not been evaluated in the pharmacometric
literature. However, we see no reason why it could not be
implemented, provided penalized likelihood estimation
can be performed.

Bayesian methods
The concept of model selection in Bayesian analyses is
straightforward. It does require another level of priors to
be specified, i.e. a prior probability for each model, Mj, 1 ≤
j ≤ p. Let y be the data and p(y|θ(j), Mj) the distribution of the
data under model Mj with corresponding effect subset θ(j)

(non-covariate effect parameters are implicit for brevity).
The distribution of y given a model is p(y|Mj) = ∫p(y|θ(j),
Mj)h(θ(j)|Mj)dθ(j), where h(θ(j)|Mj) is the prior for the effects
given the model. The posterior probability of a model is
given by:
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where h(|Mj) is the prior for model Mj. One could compute
P(Mj|y) for all Mj and rank these to find a subset with the
greatest posterior probability (i.e. the most likely models)
or, given the considerable computation, one could
perform a search. The priors specified for the model can be
subjective or objective. Leon-Novelo et al. [41] develop
and discuss the case for objective priors. Lunn [56] imple-
ments a novel and parsimonious method for selecting
the model priors with the reversible jump technique for
estimation. He also provides a nice discussion on the
consideration of model uncertainty, which is natural in the
Bayesian variable selection setting. Bayesian model aver-
aging is also discussed, but such a procedure does not
seek to identify specifically a model (a particular set of
effects) and thus is not germane to this review. Laud and
Ibrahim [32] discuss variable selection based on a formu-
lation of the Bayesian predictive density.
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Resampling-based methods
One can define the problem of variable selection in terms
of finding the subset of effects which minimizes the pre-
diction or model error. Breiman and Spector [57] discuss
such a strategy for OLS. Let x be the matrix of predictor
variables and xnew be these in a new set of data. The pre-
diction error and model error for model Mj can be esti-
mated using:

ˆ ˆ , ,

ˆ ˆ ˆ ,

PE M y M
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where yi
new is a vector of new observations, N is the

number of new observations, ˆ ,μ x i jMnew( ) is the prediction
from the fitting of model Mj and σ̂2 is an estimate of the
residual variability. The idea is to find Mĵ such that

ˆ min ˆ
ˆME M ME Mj j j( ) = ( ), i.e. to find the model that mini-

mizes the model error over all the models. They evaluated
complete cross-validation, V-fold cross-validation, the
bootstrap and partial cross-validation, and concluded the
following: complete cross-validation is too computa-
tionally expensive; partial cross-validation is biased and
should not be entertained; and V-fold cross-validation and
the bootstrap performed well.

Sauerbrei and Schumacher discuss combining a boot-
strap method with stepwise procedures [58]. Shao [59] dis-
cussed the bootstrap variable selection from a theoretical
viewpoint. In Shao’s work, a correct model was defined as
any model containing the ‘true’ model, because the pre-
dictions were unbiased. He showed that variable selection
using the bootstrap as typically performed did not lead to
consistent model selection as the sample size increased
(that is, the procedure did not asymptotically approach
probability = 1 of selecting the true model). To make the
procedure consistent, bootstrap selection should be per-
formed using a smaller number of samples than those con-
tained in the data. We do not know of any use or
evaluations of this reduced sampling in GNLMEM. Typi-
cally, methods considering prediction error are only used
such as in the lasso or used to evaluate models selected by
stepwise procedures. One would need to consider the
definition of prediction error as well as whether squared
error loss is appropriate given that the marginal density of
GNLMEM is not expected to be normally distributed.

Discussion

Many authors have provided evidence and commentary
regarding how poorly the stepwise procedures can
perform, at least for OLS. The all subset regression proce-
dures find the optimal model as defined by the GIC, but
this is not necessarily the optimal model with regard to the
intended use. Authors frequently discuss failure to select
authentic predictors and inclusion of excess noise vari-

ables. Derksen and Keselman [16] state that, ‘the data
mining approach to model building is likely to result in
final models containing a large percentage of noise vari-
ables which will be interpreted incorrectly as authentic’.
They go on to quote Cohen [60], ‘If you torture the data for
long enough, in the end they will confess’. Authors discuss
the inflation of confidence in predicting new data. Breiman
and Spector [57] focus on the poor predictability of ‘fixed
path’ procedures and their overoptimism. They also state
that much of the optimality of the penalties discussed
above is nullified when variable selection is data driven. In
the end they conclude, ‘We hope this present simulation
will drive another nail into the practice of using fixed path
estimators when data driven submodel selection is in
operation’. Finally, Harrell Jr [15] writes, ‘Stepwise variable
selection has been a very popular technique for many
years but if this procedure had just been proposed as a
statistical method, it would likely be rejected because it
violates every principle of statistical estimation and
hypothesis testing’.

Despite these harrowing remarks, stepwise methods
are still popular today. We feel that this is probably due to
the fact these are easy to understand and implement
(automate). In fairness, it should be noted that many of the
early evaluations in OLS were done with small sample sizes
(∼200 observations) and large predictor-to-observation
ratios (∼30–40 predictors). Wiegand [1] evaluated a larger
range of sample sizes that included 1000 and 5000 obser-
vations. He found at these larger sample sizes that the
stepwise procedures demonstrated improvement for
selection of true predictors yet continued to select false
ones. This suggests at larger sample sizes that selection
bias decreases (which is expected). Also, many articles
assume that all the potential authentic predictors have
been collected. This is unlikely to be the case in
pharmacometric work. Experience has shown that often
predictors are not sufficient to adjust for differences in
response levels across studies. This suggests unexplained
study-to-study variability (or heterogeneity) and, in addi-
tion to other factors such as study design, casts doubt as to
whether all the important predictors were contemplated
or collected. It should be noted that subjects are
randomized between studies, so one should not anticipate
that differences between studies should be negligible. The
randomization within a study is what helps to ensure that
baseline values between treatment arms will be similar.
Few have evaluated the performance of any of these
methods with respect to latent or unmeasured covariates
that are potentially correlated with those evaluated. This is
not to say that the difficulties with stepwise procedures
would improve. On the contrary, they would probably
worsen, but this is worth keeping in perspective. Ulti-
mately, it is clear that variable selection requires some
forethought and planning, because these methods unfor-
tunately generate complex statistical and interpretational
issues despite their ease of use.
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Based on such results and commentary, many have
advocated not performing variable selection at all and
retain the full model as the final model [61, 62]. This cor-
responds to penalty = 0 in the GIC. The full model esti-
mates remain unbiased estimates, their confidence
intervals have proper coverage critical for inference, and
the model results do not suffer from selection bias, which
often occurs due to lack of statistical power [63]. The full
model approach avoids the potential for abuse often per-
petrated by implementation of variable selection. It is
easy for the analyst to treat the final model that results
from the variable selection procedure as if it were
prespecified, i.e. to make inference using the resulting
estimates and their confidence intervals or assign P values
(from the GIC values) to effects as these enter or exit,
establishing importance. In essence, it is easy to use
stepwise procedures as if they had the oracle property
when clearly they do not.

One cannot help but reflect on the issue of accuracy vs.
precision, which is always lurking in analyses. Hocking [14]
shows clearly (an intuitive result and assuming one is not
using data-driven selection) that including extra variables
decreases the precision of the predictions, which balances
prediction biases resulting from failing to include authen-
tic predictors. Additionally, Breiman and Spector [57] con-
clude from their simulation work, ‘The message is clear:
You may win big using submodel selection in the
x-random case, especially for thin sample sizes and irregu-
lar X-distribution’ (note that they are not against variable
selection, just certain procedures for it). They go on to
state that one can even win more by picking smaller
submodels. Such statements appeal to the desire for par-
simony. If one always selects the full model as the final
model, then one will not need to worry about selection
bias and errors associated therewith. But, what errors is
one making or will one make in the summary or use of
such a model? Questions of which are the ‘most important’
predictors or ‘what factors do we need to worry about’
arise throughout drug development. When one considers
how to address these, one needs to think about many
issues: for what purpose will this information be used; and
in what development stage is the compound (as this
affects sample size and the range of and number of pre-
dictor variables)? For example, end of phase 3 label nego-
tiations might require different strategies from internal
phase 2 decision making. Picking a smaller submodel
makes sense when discussing the label. Full models work
well for looking at each covariate individually, but are
unwieldy (cursed by their dimensionality) and could thus
be misused in practice when it comes to finding
subpopulations, i.e. groups of patients based on a set of
predictors that may require dose adjustment. As predic-
tors are often multiplicative in effect, multiple factors can
accumulate to lead to a prediction that is suggestive of a
need for altering the dosing strategy. It might be difficult
to get agreement or buy-in from stakeholders if the results

are difficult to use practically. Simulation from a full model
is also cumbersome. Some analysts have advocated that
covariates be retained in a model only if their effects are
clinically meaningful. For example, one might state that a
15% change in CL is not clinically meaningful for females
and remove this effect from the model. This has been
advocated to be applied to full models, or even the results
of stepwise methods. We did not address this in this article,
but comment briefly here. It is easy to find situations in
pharmacometric analysis in which nonclinically meaning-
ful effects can predict clinical meaningful differences in
responses. For example, if one adds this 15% change in CL
to a change also influenced by weight and age, then this
could lead to a subpopulation that is over- or underex-
posed. Subpopulations that require dose adjustment
could be composed of many patient factors that could
even be correlated. If one eliminates a covariate based on
its effect in isolation, the identification of a subpopulation
could be misinformed.

If the stepwise methods that are discussed herein are
to be used for variable selection, we recommend the fol-
lowing strategy. Before embarking on any modelling pro-
cedure we suggest that the investigator fit the full model
MA first and evaluate the stability of the fit, such as calcu-
lating the condition numbers from the estimated correla-
tion matrices of the COV to assess the a posteriori
correlation. We also suggest calculating these for the
entire matrix and the submatrix related to the predictor
effects. These condition numbers, in our opinion, provide
cursory examination of the flatness of the model surface,
which can inform the variable selection strategy. Building
a full model is the easiest way to ensure that the data can
support the estimation of all the predictor effects before
invoking a variable selection procedure, even if the FS pro-
cedure is to be used. One cannot expect good results (i.e.
minimizing spurious findings) from the FS if the full model
is unstable, and if the full model is not assessed, one might
be blind to these issues.

One can view model flatness in the context of typical
regression. Many regression functions can fit small
amounts of data. This is analogous for models. If the model
space is flat, many models will appear to fit the data
adequately, and small changes in the data could lead one
to conclude that one model is better than another. Other
factors that contribute to the flatness of the model space
are the number of subjects or sample size [1] and the ratio
of these to the number of predictor variables [21]. These
considerations are of specific interest in time-to-event
analyses with low event rates. Harrell Jr [15] provides some
rules of thumb for the number of predictors that should be
evaluated based on the observed data.

If the model space is flat, one should consider data
reduction. First, re-evaluate which predictor–parameter
combinations make sense from a clinical perspective.
Grouping of effects is another strategy. This can be
performed for effects of the same predictor when the
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parameters are correlated or within the same parameter
across predictors when the predictors are correlated. In
such a case, one should recognize the limitations of the
data or design, and clearly articulate what the implica-
tions of these are to any inference one intends to make.
Selection bias can take on many apparent forms, such as
selecting the wrong predictor effect or selecting the
correct predictor on the wrong parameter. Additionally,
the selection procedure might not select a predictor on
either correlated parameter. This can occur when indi-
vidually parameters do not have enough information but
in combination they do, and this can be an issue for the
FS method. This provides greater rationale to group such
effects during a search. If an effect is of interest, but the
design is such that there is lower power to evaluate it –
for example, the range of a continuous predictor is too
narrow or the number with a certain categorical predictor
(e.g. pharmacogenomic group) is too few – then the
covariate could be retained until more data can be incor-
porated. This will avoid selection bias and concluding that
the effect is not influential based on insufficient informa-
tion to say whether it is influential. Alternatively, one
could attempt to evaluate the model size that yields the
lowest prediction error and use that number as a guide to
determine the amount of predictors that can be evalu-
ated. Such a strategy could be computationally expen-
sive. A more direct evaluation of the flatness of the model
space is available by all subset regression, but this is at
computational expense.

In certain cases, we advocate performing two variable
selection procedures in sequence. For example, it can be of
interest to evaluate the effects of concomitant medication
in the data. Such predictors can have a fair degree of
uncertainty in the collection of the data as well as how to
incorporate its effect into the model (usage or categorized
by dose amount). Evaluations of these effects are more
exploratory in our opinion. We suggest first performing a
variable selection procedure investigating the standard
set of predictors to obtain a tentative final model, and then
adding the concomitant medication predictors to this ten-
tative final model and evaluating them using a second
variable selection procedure applied only to the concomi-
tant medication predictors. In this way, one relegates the
predictors measured with a greater degree of uncertainty
to a secondary evaluation in an attempt to mitigate the
influence of these on predictors that do not carry such
uncertainty. Ultimately, more consideration upfront of
meaningful effect evaluations saves time rationalizing the
findings, arbitrarily dismissing such findings or performing
ad hoc analyses to ‘save’ the interpretation of the analysis.
Clear articulation of the predictors and in which parameter
submodels these will be evaluated should be prescribed in
the analysis plan.

When presenting the results, we suggest presenting
the final model with as much information about compet-
ing models as possible. Report the estimates and stand-

ard errors for the base, full and final model in one table in
the report. We feel that this is extremely important. One
can see how the standard errors increase in the full
model relative to the base model when adding the
effects. This represents the cost of exploration. The esti-
mates of the final model can now be compared with the
base and full model to see how sensitive the estimates
were to the selection procedure. Hopefully, the estimates
in the final model do not change much upon elimination
of the other variables, because this would indicate that
these are not necessarily robust to the choice of the
covariates. One can compare the standard errors from the
final model with the full model to see the downward bias
that results from the selection procedure. In fact, we rec-
ommend using the standard errors from the full model
when computing confidence intervals for the final model.
This procedure will not fix issues with estimates that are
associated with the selection procedure, but will help to
resolve the issue with confidence interval size. This is not
compatible with confidence intervals from the bootstrap
using the percentile method. However, if one boots-
traps the full model, then standard errors from the boot-
strap could be used to compute the confidence intervals.
Wald-based confidence intervals could be computed for
the full model and compared with those from the per-
centile method to attain some level of comfort in the
procedure. We would expect for reasonable sample sizes
that the two methods would be close.

More evaluation of the final model with respect to the
full model could be performed to improve confidence
and demonstrate adequacy of the model selection (vali-
dation). This can be done internally or externally. One
should, however, be conscious of what it means to be
predictive. Typically, it means how well the model, built
on a sample from a population, predicts another sample
from the same population. During drug development, it is
not clear that this is a practical definition. In phase 2,
healthy volunteers are replaced with patients, who have
different characteristics. As the drug development pro-
gramme expands and approaches phase 3, a greater
number of sites spanning diverse ethnic and geographical
regions often occurs. Inclusion/exclusion criteria may be
relaxed or tightened to facilitate recruitment or enrich the
population, anticipating a larger effect. After filing and
approval, the drug will no longer be in a controlled
setting. Investigators who have modelled double-blinded
data and encountered difficulties incorporating open-
label extension data can relate to the challenges of
extrapolating to a less controlled setting. Additionally,
once approved, the population of patients may expand to
regions of the predictor space never studied. For these
reasons, the performance of model selection techniques
and the adequacy of predictions extrapolated to new
experimental settings or populations will continue
to be a necessary but challenging endeavour for
pharmacometricians.
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